

Laser techniques for advanced accelerator researches:

EO sampling technique for femtosecond beam characterization

Yuelin Li, ASD

Outline

• Motivation

The need for ultrafast beams Tradition techniques

• Current EO Technique and limitation

Mechanism Characteristics Current status and limitation

• A phantom experiment and the FROG tech The phantom and the method The experiment plan

The need for ultrafast beams

Some of the methods

INVASIVE

•**RF** zero phasing

Wang et al, Phys. Rev. E 57, 2283–2286 (1998)

•Beam tomography

Yakimenko et al., PRSTAB 6, 122801 (2003)

NON-INVASIVE

•Coherent radiation transition

Lumpkin et al., PRL 88, 234801 (2002)

•Streak camera

Lumpkin et al., PRL 82, 3605 (1999)

MISC

•Compton scattering

Leemans, PRL 77, 4182 (1996)

•Spectrum statistics

Catravas, PRL 82, 5261 (1999)

Limited by rf voltage and frequency Complexity in the energy distribution Multiple shots

Beam profile is assumed not measured

Multiple shot, time resolution at 1 ps

Complexity set up Multiple shots

Multiple shots

High spectrum resolution

EO Sampling technique: Pockel's effect (ZnTe)

Progress in time resolution

Impact of Optics on Ultrafast Electronics

The field traveling with the beam

For a single charge q with $v=\beta c$:

$$\vec{E} = \frac{q\vec{R}}{4\pi\varepsilon_0 R^3\gamma^2 (1-\beta^2\sin^2\psi)^{3/2}}.$$

For a line charge density q(t) and $\gamma >>1$:

$$E_r(t) = \frac{q(t)}{2\pi\varepsilon_0 r}.$$

Past EO e-beam measurements

Fermi lab

Fitch et al, Proc Linac 2000, 155 (2000). Unsuccessful in generating bunch info

Brookhaven

Y. K. Semertzidis et al. *Proceedings PAC'99*, 490 (1999). 100 ps resolution.

FELIX

Yan et al., Phys. Rev. Lett. 85, 3404 (2000); Wilke et. al., Phys. Rev. Lett. 88, 124801 (2002). 2-ps resolution.

Other institution (SPPS, DUV-FEL, GTF) Trying

The FELIX experiment: chirped probe pulse

• Fundamental limitation: crystal response

Thickness related, for 0.1 mm crystals ZnTe: 5 THz; GaP: 9 THz: limited at 100 fs.

• Fundamental limitation: bandwidth of the probe laser

 $\Delta t \approx \sqrt{\sigma_t T}.$ where $\sigma_t \sim 1/\sigma_{\omega}$. For $\sigma_t = 100$ fs, T=100 ps, $\Delta t \approx 3$ ps.

- Geometry limitation: beam energy and distance $\Delta t = r/c\gamma$. For APS, $\gamma = 14000$, with r=1cm, $\Delta t = 2$ fs
- Instrumental limitation: spectral resolution

Crystal properties

Some formula

The probe pulse

$$E_{pin}(t) = \exp\left[-\frac{1}{2}\left(\frac{t}{T}\right)^2 - i\left(\omega + \frac{\sqrt{4T^2\Delta\omega^2 - 1}}{4T^2}t\right)t\right].$$

Given, electron beam field, E(t) in the time domain and $E(\omega) = F[E(t)]$ in the frequency domain, and the complex response function $G(\omega)$, in the FELIX exp, one measured

$$I_{pout}(\omega) = \left| F[E_p \cdot F^{-1}(E \cdot G)] \right|^2$$

The other possibility is to do a different measurement, to get

$$E_{pout}(t) = E_{pin}(t) \cdot E(t) * G(t).$$

Which is equivalent to intensity +phase.

How about a FROG?

Sample traces: FEL experiment

APS Experimental goal and setup

Key features

- Use laser-generated THz radiation as an electron beam phantom, in a lab setting
- Employ the Frequency-Resolved Optical Gating (FROG) for <u>single-shot fs</u> <u>resolution</u>

Goal

Lab

Bandwidth	16 nm
Pulse duration	70 fs
Rep Rate	1 kHz
Energy	~ mJ

Plan

Generating the phantom Optical rectification

Z. Jiang and X. C. Zhang, IEEE J. Quantum Electron. 36, 1214 (2000). H. J. Bakker et al., JOSA B 15, 1795 (1998).

A. Leitenstorfer et al., APL 74, 1516 (1999).

Probing the phantom EO sampling + FROG Try different crystals Try different laser pulses

Application in the lab?