C ϵ

P6000A/P5000

Output Options

Operator's Manual

Additional products from	
Counters	Rate Meters
Frequency Meters	Timers
PID Controllers	Totalizers
Clock/Timers	Strain Gauge
Printers	Meters
Process Meters	Voltmeters
On/Off	Multimeters
Controllers	Soldering Iron
Recorders	Testers
Relative	pH pens
Humidity	pH Coltrollers
Transmitters	pH Electrodes
Thermocoples	RTDs
Thermistors	Thermowells
Wire	Flow Sensors
For Immediate Assistance	
In the U.S.A. and Canada: 1-800-NEWPORT ${ }^{\circledR}$	
In Mexico: (95) 800-NEWPORTSM	
Or call your local NEWPORT Office.	

NEWPORTnet ${ }^{\text {sm }}$ On-Line Service http://www.newportUS.com

Internet e-mail info@newportUS.com

It is the policy of NEWPORT to comply with all worldwide safety and EMC/EMI regulations that apply. NEWPORT is constantly pursuing certification of its products to the European New Approach Directives. NEWPORT will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but NEWPORT Electronics, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.
WARNING: These products are not designed for use in, and should not be used for, patient connected applications.
 Case Bezel Design" are trademarks of NEWPORT Electronics, Inc.

PATENT NOTICE: This product is covered by one or more of the following patents: U.S. Pat. No. Des. 336,895; 5,274,577 / Canada 2052599; 2052600 / Italy 1249456; 1250938 / France Brevet No. 9112756 / Spain 2039150; 2048066 / UK Patent No. GB2 249 837; GB2 248954 / Germany DE 4134398 C2. Other US and International Patents Pending.

This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.

CHG	ECO NO	DATE	BY	CHK
B	9261	21 JAN 98	ML	

TABLE OF CONTENTS

ISOLATED PARALLEL BCD OPTION PAGE
1.0 GENERAL INFORMATION 1
2.0 MECHANICAL INSTALLATION 1
3.0 ELECTRICAL CONNECTIONS 1
3.1 Power 1
3.2 BCD Outputs 2
3.3 Polarity Output 4
3.4 Decimal Point Binary Address 4
3.5 Overflow Output 4
3.6 Alarm Outputs 5
3.7 DATA READY Output 5
3.8 Instrument Select Inputs 5
3.9 HOLD Input 5
4.0 JUMPER SELECTION 6
5.0 CONTROLLER INTERCONNECTIONS 7
5.1 Interconnections with a Parallel BCD Printer 7
5.2 Interface with Programmable Controllers 9
6.0 PARALLEL BCD DRAWINGS 10
ILLUSTRATIONS
Figure 5-1 Connections with a Parallel BCD Printer Using Right-hand Decimal Point 7
Figure 5-2 Connections with a Parallel BCD Printer Using Left-hand Decimal Point 8
Figure 6-1 Parallel BCD Board Assembly Diagram 10
Figure 6-2 Parallel BCD Board Schematic Diagram 11
Table 3-1 Required Address to Enable Outputs 3
Table 3-2 Decimal Point Binary Address 4
DUAL 8 A RELAY OPTION PAGE
1.0 GENERAL INFORMATION 12
2.0 MECHANICAL INSTALLATION. 12
3.0 ELECTRICAL CONNECTIONS AND JUMPER SELECTION 12
3.1 Relay Outputs 12
3.2 S3 of the Relay Board. 13
4.0 RELAY BOARD DRAWINGS 14
ILLUSTRATIONS
Figure 3-1 TB4 Connector with Electrical Connections 12
Figure 3-2 Relay Board Pin Groups 13
Figure 4-1 Relay Board Assembly Diagram 14
Figure 4-2 Relay Board Schematic Diagram 15
ISOLATED ANALOG OUTPUT OPTION PAGE
1.0 GENERAL INFORMATION 16
2.0 SPECIFICATIONS 16
2.1 Power and Signals 16
2.2 Environment 16
2.3 Output Control 16
3.0 ELECTRICAL CONNECTIONS \& ADJUSTMENT LOCATIONS 17
4.0 CONFIGURATION PROCEDURE 17
4.1 Output Range Selection 18
4.2 Display Range Selection 18
4.3 Span Range Selection 18
4.4 Offset Range Selection 19
5.0 MECHANICAL INSTALLATION 20
6.0 FRONT PANEL SETUP 20
7.0 CALIBRATION 21
7.1 Voltage Output (V01) 21
7.2 Current Output (101, IO2). 21
7.3 Current Output (IO2) 22
7.4 Preamp Zero Adjust (R7) 23
8.0 ISOLATED ANALOG OUTPUT DRAWINGS 24
ILLUSTRATIONS
Figure 3-1 Isolated Analog Output Option Rear View 17
Figure 8-1 Isolated Analog Output Assembly Diagram 24
Figure 8-2 Isolated Analog Output Schematic Diagram 25
Table 4-1 Output Ranges 18
Table 4-2 Display Ranges 18
Table 4-3 Span Ranges 19
Table 4-4 Offset Ranges 20

1.0 GENERAL INFORMATION

The optional parallel BCD board works concurrently in two output modes: 6 -digit parallel BCD (24 lines) and addressable 3 -digit. In addition to the 6 -digit BCD, this board outputs the alarm condition (High, Low and Go), polarity, overflow, and decimal point binary address signals. The outputs are three-state and electrically isolated from the main board. They are active when the appropriate address is applied on connector P4, pins L24, U24, L23, and U23. The inputs are intemally connected to the main board via the interconnection of P5 with J5.

Outputs are available on P4, a 50 -pin dual-row header at the rear of the board. The P4 mates with a standard, 50 -pin mass-terminated connector. The P4 outputs can be frozen by making the HOLD input (P4-U21) low. Although the BCD outputs are always valid, the DATA READY signal goes active low for approximately 0.2 millisecond when BCD data is updated.

2.0 MECHANICAL INSTALLATION

The parallel BCD board is positioned as an upper board in the meter.
Refer to the exploded view in the main board manual.

To avoid electrical shock be sure to disconnect the unit from its power supply.
To install:

1. Hold the board upside-down with components facing the main board.
2. Position the P 5 pins to mate with the J 5 connector on the power supply board.
3. Push the board downward until it rests on the upper rear panel and the display board.

3.0 ELECTRICAL CONNECTIONS

NOTE: The software switch SS3 of Configuration 2 must be set (XXX1XX) to activate the parallel BCD board. For more information, refer to Section 4.1 of the main board manual.

3.1 POWER

An isolated $+5 \mathrm{~V} \pm 10 \%$ external power supply is required and should be connected to pin P4-L21 (+5 V) and pin P4-L19 (ISO GND). If isolation is not required, S5A, S5B, S 6 A , and S 6 B may be installed to power the parallel BCD option by the main board.

3.2 BCD OUTPUTS

The board is factory-set as 6-digit parallel BCD. Outputs are enabled when the binary address on the instrument select lines, pins L24, U24, L23, and U23, match the board address (set by pin group S1). The output polarity is normally positive true (reversible by S4) and each output can drive 10 LSTTL loads.

(N/C)	ALARM LOW	L1	U1	ALARM HIGH	(N/C)
(N/C)	N/C	2	2	ALARM GO	(N/C)
(N/C)	N/C	3	3	N/C	(N/C)
(N/C)	N/C	4	4	N/C	(N/C)
(N/C)	BCD 400 k	5	5	BCD 800 k	(N/C)
(N/C)	BCD 100 k	6	6	BCD 200 k	(N/C)
(ISO GND)	ISO GND	7	7	N/C	(N/C)
(N/C)	BCD 40 k	8	8	BCD 80 k	(N/C)
(N/C)	BCD 10 k	9	9	BCD 20 k	(N/C)
(N/C)	BCD 4 k	10	10	BCD 8 k	(N/C)
(N/C)	BCD 1 k	11	11	BCD 2 k	(N/C)
(ALARM HIGH)	D P 2	12	12	D P 4	(ALARM LOW)
(BCD 400 k)	BCD 400	13	13	BCD 800	(BCD 800 k)
(BCD 100 k)	BCD 100	14	14	BCD 200	(BCD 200 k)
(BCD 40 k)	BCD 40	15	15	BCD 80	(BCD 80 k)
(BCD 10 k)	BCD 10	16	16	BCD 20	(BCD 20 k)
(BCD 4 k)	BCD 4	17	17	BCD 8	(BCD 8 k)
(BCD 1 k)	BCD 1	18	18	BCD 2	(BCD 2 k)
(ISO GND)	ISO GND	19	19	D P 1	(OVERFLOW)
(DATA READY)	DATA READY	20	20	POLARITY	(ALARM GO)
*ISO V+,	, 5 TO 55 V	21	21	*HOLD	(HOLD)
(N/C)	N/C	22	22	OVERFLOW	(N/C)
*BOA	ARD ADDR $\bar{B} 4$	23	23	*BOARD ADDR B8	
*(BCD 1-800 ENABLE)	BD ADDR B1	24	24	*BD ADDR $\overline{\mathrm{B2}}$ (BCD	ABLE)
(N/C)	N/C	L25	U25	N/C	(N/C)

() Output in addressable 3-digit-at-a-time mode

* An input

N/C No internal connection

To enable the outputs, install jumpers on the pin groups and apply the proper address on the instrument select lines as indicated below:

6-Digit Parallel BCD	S1 Positions	Connector P4 with Instrument Select Lines			
		U23	L23	U24	L24
Install jumpers on	B8, B4, B2, B1*	0	0	0	0
S2-A and S3-A; U5A	B8, B4, B2, BT	0	0	0	1
and U6A on XU5A	B8, B4, B2, B1	0	0	1	0
and XU6A sockets.	$B 8, B 4, B 2, \overline{B 1}$	0	0	1	1
	B8, B4, B2, B1	0	1	0	0
	B8, $\overline{B 4}, \mathrm{B2} 2, \overline{B 1}$	0	1	0	1
	B8, B4, B2, B1	0	1	1	0
	B8, B4, B2, BT	0	1	1	1
	B8, B4, B2, B1	1	0	0	0
	B8, B4, B2, $\overline{B 1}$	1	0	0	1
	$\overline{\mathrm{B}}$, B4, $\overline{\mathrm{B2}}$, B1	1	0	1	0
	$\overline{\mathrm{B8}}, \mathrm{B4}, \mathrm{B2}, \overline{\mathrm{B1}}$	1	0	1	1
	$\overline{\text { B8, }}$ B4, B2, B1	1	1	0	0
	B8, B4, B2, B1	1	1	0	1
	B8, B4, B2, B1	1	1	1	0
	$\overline{B 8}, \overline{B 4}, \overline{B 2}, \overline{B 1}$	1	1	1	1

Addressable 3-Digit	S1 Positions	Connector P4 with Parallel BCD	
		U23 Lnenent Select Lines	
		ENABLES	U24 L24

$0=$ Open or TTL High level (more than 2.0 V)
1 = Ground or TTL Low level (less than . 8 V)

X = Don't Care

* = Default Setting

Table 3-1 Required Address to Enable Outputs

3.3 POLARITY OUTPUT

This three-state output is active when Digits 1,2 and 3 are enabled. Signal polarity can be reversed by a push-on jumper at S4. With a jumper on S4-A, a high level corresponds to a positive display value.

3.4 DECIMAL POINT BINARY ADDRESS (D.P. 1, 2 AND 4)

These three-state outputs are enabled with Digits 1,2 and 3 . Signal polarity can be reversed by a push-on jumper at S4. With a jumper on S4-A, the outputs represent positive true binary address of a right-hand decimal point (see Table 3-2).

Decimal Point Position	D.P. 4	D.P. 2	D.P. 1
FFFFFF.	0	0	1
FFFFF.F	0	1	0
FFFF.FF	0	1	1
FFF.FFF	1	0	0
FFFFFF	1	0	1
F.FFFFF	1	1	0

Table 3-2 Decimal Point Binary Address

3.5 OVERFLOW OUTPUT

This three-state output is active when Digits 4,5 and 6 are enabled. 54 reverses the polarity. When a jumper is installed on S4-A, an overflow condition makes this output go high. In this case, all of the digits of the parallel BCD board represent a " 9 " (BCD 1001). The decimal point address corresponds to the point selected as Fixed Range decimal point. S7 connects this output to pin U22 of the P4 connector.

3.6 ALARM OUTPUTS (HI, LO, GO)

These three-state outputs are enabled with Digits 4,5 and 6. S8, S9, and S10 connect HI, LO, and GO to P4-U1, L1 and U2, respectively. The polarity is positive true (high level corresponds to an alarm condition) when a jumper is installed on S4-A.

3.7 DATA READY OUTPUT

The output is always valid because the parallel BCD data updates synchronously with a single clock pulse. A negative true DATA READY signal goes high, however, for about 0.2 milliseconds when the parallel BCD data is updated.

3.8 INSTRUMENT SELECT INPUTS (P4-U23, L23, U24 AND L24)

These are TTL-compatible inputs with 47 k Ohms pull-up resistors. When the input logic levels match the instrument address (set by S1), the outputs are enabled. When the logic levels do not match, they are in high impedance. Refer to Table 3-1.

3.9 $\overline{\text { HOLD }}$ INPUT

When low, this input freezes the outputs and makes the DATA READY low true. The internal BCD data continues to update. The updated data replaces the outputs when HOLD goes high.*

* If the $\overline{\mathrm{HOLD}}$ input goes high during transmission, the output update is postponed in order to prevent erroneous output. Each transmission requires approximately 10 milliseconds.

4.0 JUMPER SELECTION

Pin Group	Function
S1	Selects the binary address (Table 3-1). Jumper installed on A:* Board can be selected by four address lines on connector P4, pins L24, U24, L23 and U23. Jumper installed on B: A high or low level on L24 selects the board when S1-B1 or S1-B1 are installed respectively. Controls the DATA READY output.
S3	
S4	Jumper installed on A:* $\overline{\text { DATA READY is active low when }}$ the input address matches the board address. S5, S6
Jumper installed on B: $\overline{\text { DATA READY is active when P4-L24 }}$ matches S1-B1 or P4-U24 matches S1-B2. Inverts all output logics except DATA READY. S4-A** corresponds to positive true logic. S7, S8, S9, S10	
Jumpers installed on A and B of S5 and S6: The main board powers the parallel BCD board. The outputs are not isolated from the main board. Default setting of these jumpers is open. Connects Overflow, High, Low and Go signals to connector P4, pins U22, U1, L1 and U2, respectively. Default setting of these jumpers is open.	

*Default Setting.

5.0 CONTROLLER INTERCONNECTIONS

5.1 INTERCONNECTION WITH A PARALLEL BCD PRINTER

If printing the decimal point is not required or if the printer recognizes a positive true binary address for the decimal point, simply connect the 24 line BCD outputs (6 digits $x 4$) to the corresponding inputs of the printer. For negative true $B C D$ and decimal point address, install S4-B. If the parallel BCD printer accepts more than 6 digits, tie the unused inputs (digits 7, 8, etc.) to GND or high level, as required, to print a BLANK on those positions.
Some printers or data acquisition systems can only accept a binary address of a lefthand decimal point (001 corresponds to XXXXX.X instead of XXXXXX.). For interconnection to such a system, connect each digit (4 BCD lines) to the next more significant digit input of the printer. (e.g., D1 \rightarrow D2, D3 \rightarrow D4, ...D6 \rightarrow D7) With this method, all of the digits are printed one position to the left; therefore, the decimal point prints in the correct position. Digit 1 input and other unused inputs of the printer should be tied to the appropriate level to print a BLANK or zero.

Figure 5-1 Connections with a Parallel BCD Printer Using Right-hand Decimal Point

Figure 5-2 Connections with a Parallel BCD Printer Using Left-hand Decimal Point

5.2 INTERFACE WITH PROGRAMMABLE CONTROLLERS

If the controller can accept 24 bits of BCD data (32 bits if other data is also required), the 6 -digit parallel BCD mode can be used.

In addressable 3-digit-at-a-time mode, only half of the I/O lines are required. In this mode, digits 4, 5, and 6, Overflow, High, Low, and Go signals can be accessed on the same lines of Digits 1, 2, and 3, D.P. 1, D.P.2, D.P. 4 and Polarity signals. Parallel BCD board can be configured as an addressable 3-digit-at-a-time BCD as follows:

1. Move U5A and U5B integrated circuits (IC) to U5B and U6B sockets.
2. Install a jumper on S2-B and S3-B.

The outputs can be enabled by an appropriate logic level on U24 and L24 pins of P4 (see Table 3-1).

6.0 PARALLEL BCD DRAWINGS

Figure 6-1 Parallel BCD Board Assembly Diagram

Floure B-2 Peralol BicD Eoner Schematic Drogram

DUAL 8 A RELAY OPTION

1.0 GENERAL INFORMATION

The relay option provides two Form-C relays corresponding with LO and HI setpoints of the meter. The inputs are internally connected and the outputs are available on TB4, a 6-position barrier. TB4J, a mating screw-clamp connector, is standard.

2.0 MECHANICAL INSTALLATION

The relay board is positioned as an upper board in the meter. Refer to the exploded view in the main board manual.

\triangle
To avoid electrical shock be sure to disconnect the unit from its power supply.
To install:

1. Hold the relay board upside-down with components facing the main board.
2. Position the P 5 pins to mate with the J 5 connector on the power supply board.
3. Push the board downward until it rests on the upper rear panel and the display board.

3.0 ELECTRICAL CONNECTIONS AND JUMPER SELECTION

3.1 RELAY OUTPUTS

These outputs are available on the TB4 connector (Figure 3-1). The relay board is rated for 8 A current with resistive and 3 A with inductive loads. Push-on jumpers must be removed from pin groups S1 and S2 (Figure 3-2) when the meter is powered by an external battery (connected to $\mathrm{V}+\mathrm{of} \mathrm{P} 2$) with a voltage higher than 9 volts.
Two Form C relays: \quad Rated 8 A at 30 Vdc , resistive load ($\mathrm{pt}=1$)
Rated 8 A at 240 Vac , resistive load ($\mathrm{pf}=1$)

Figure 3-1 TB4 Connector with Electrical Connections

Figure 3-2 Relay Board Pin Groups

3.2 S3 OF THE RELAY BOARD

If a jumper is installed on the HI position, high relay is energized when high alarm is active.

If a jumper is installed on HI , the relay is energized when high alarm is not active (LO or GO active). Also, with the jumper on FI, the high setpoint should be higher than the low setpoint.

NOTE: Refer to the main board owner's manual for low alarm polarity reversal.

4.0 RELAY BOARD DRAWINGS

Figure 4-1 Relay Board Assembly Diagram

1136cSC-01 A

ISOLATED ANALOG OUTPUT OPTION

1.0 GENERAL INFORMATION

The isolated analog output option provides 0 to $10 \mathrm{~V}, 0$ to 20 mA or 4 to 20 mA jumper-sellectable output ranges with 500 V isolation from the analog ground of the main meter assembly.
Zero and span are each set with push-on jumpers on the circuit board for coarse ranges plus a fine adjustment pot, which is accessible from the back of the meter. The coarse-span ranges are such that a span as narrow as 500 counts or as wide as 9999 counts (the right four digits) can produce the maximum 10 V or 20 mA analog output. A NEGATIVE READING IS TREATED AS A ZERO READING.

The unit is further jumper-programmable to read either the left four digits (for displays such as 198800) or the right four digits (for displays such as 001988).

2.0 SPECIFICATIONS

2.1 Power and Signals
2.2 Environment
2.3 Output Control

Analog Voltage Range
Analog Current Ranges
Offset Ranges

Span Ranges

Turndown Ratio
Zero Tempco
Span Tempco
Load Regulation
Full-scale Step Response
Resolution
Accuracy (10 to $40^{\circ} \mathrm{C}$) Isolation

Supplied by basic meter via internal board connector (150 mA maximum)
Same as the basic meter
0 to 10 V @ 20 mA
0 to $20 \mathrm{~mA}, 4$ to 20 mA sourcing with 12 V compliance
4 coarse ranges of 0 to $25 \%, 25$ to $50 \%, 50$ to $75 \%, 75$ to 100% with fine adjustment pot accessible from back of meter
12 coarse ranges for 500 to 9999 counts (when the right four digits are selected) to produce the maximum 10 V or 20 mA output with fine adjustment pot accessible from back of meter 20:1
325 nA or $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
$0.0075 \% /{ }^{\circ} \mathrm{C}$
$\pm 0.1 \%$
50 ms or less, 10 to 90%
0.05% of the output span
$\pm 0.1 \%$
500 V from analog output to meter ground

3.0 ELECTRICAL CONNECTIONS AND ADJUSTMENT LOCATIONS

Figure 3-1 Isolated Analog Output Option Rear View

4.0 CONFIGURATION PROCEDURE

Use this procedure to determine the configuration of the isolated analog output option. If reconfiguring is required, first remove all push-on jumpers.

> NOTE: Unless otherwise specified, the unit is shipped in the default condition with $0-1 \mathrm{M}=0-10 \mathrm{~V}$ or $1 \mathrm{mV} / 100$ counts.

4.1 Output Range Selection

Select one of the ranges from the Output Range Table (see Table 4-1). Then install push-on jumpers as required.

4.2 Display Range Selection

Select one of the ranges from the Display Table (see Table 4-2), left 4 digits (4 MSD) or right 4 digits (4 LSD). Then install push-on jumpers as required.

RANGE	OUTPUT	S1	S3
*V01	$0-10 \mathrm{~V}$	ABE	B
101	$0-20 \mathrm{~mA}$	ABE	A
102	$4-20 \mathrm{~mA}$	AB	A

* Default Setting

Table 4-1 Output Ranges

FULL-SCALE RANGE	S4	GAIN WITH DEFAULT SCALE \& OFFSET
4 LSD	A	$1 \mathrm{mV} /$ count
*4 MSD	B	$1 \mathrm{mV} / 100$ counts

Table 4-2 Display Ranges

4.3 Span Range Selection

Using lower output (LO), upper output (UO), lower display (LD), and upper display (UD), calculate the gain in counts/output.

$$
\text { counts/output }=\frac{(\text { UD - LD) }}{(\text { UO -LO) }}
$$

Select one of the ranges from the Span Table (see Table 4-3). Then install push-on jumpers as required.

4.4 Offset Range Selection

Using the same LO, UO, LD, and UD numbers, calculate the zero offset using the appropriate formula below:

$$
\text { V01 \& I01 Offset }=\frac{\text { LD x (UO - LO) }}{(\text { UD }- \text { LD) }}
$$

LD x (UO - LO)

$$
102 \text { Offset }=\frac{\text { LD } \times(\text { UO }- \text { LO) }}{(U D-L D)}+1
$$

Select one of the ranges from the Offset Table (see Table 4-4) which includes the calculated offset. Then reposition push-on jumpers S1-A, S1$\mathrm{B}, \mathrm{S} 1-\mathrm{C}$, and S1-D as required.

NOTE: \quad S1-E must be in, except on 102 range.

VOLTAGE RANGE	COUNTS/VOLT	CURRENT RANGE	COUNTS/MA	S2
VR1	$48.0-63.0$	CR1	$27.2-35.7$	CF
VR2	$62.5-82.0$	CR2	$35.4-46.5$	DF
VR3	$81.5-106.5$	CR3	$46.2-60.3$	E
VR4	$106.0-138.5$	CR4	$60.1-78.5$	BE
VR5	$138.0-180.0$	CR5	$78.2-102.0$	AF
VR6	$179.5-234.0$	CR6	$101.7-132.6$	CE
VR7	$233.5-304.0$	CR7	$132.3-172.2$	BDE
VR8	$303.5-395.0$	CR8	$171.9-223.8$	-
VR9	$394.5-513.5$	CR9	$223.5-290.9$	AE
VR10	$513.5-667.5$	CR10	$290.9-378.2$	C
VR11	$667.0-867.5$	CR11	$377.9-491.5$	BD
*VR12	$867.0-1127.5$	CR12	$491.2-638.8$	A

* Default Setting

NOTE: When using the default (S4-B selecting the 4 MSD), divide display counts by 100 before using Table 4-3.

Table 4-3 Span Ranges

OFFSET RANGE	VOLTAGE	CURRENT	S1
*Z01	$0.0-2.5 \mathrm{~V}$	$0.0-4.4 \mathrm{~mA}$	AB
Z02	$2.5-5.0 \mathrm{~V}$	$4.4-8.8 \mathrm{~mA}$	AC
Z03	$5.0-7.5 \mathrm{~V}$	$8.8-13.2 \mathrm{~mA}$	BD
Z04	$7.5-10.0 \mathrm{~V}$	$13.2-17.7 \mathrm{~mA}$	CD

* Default Setting

Table 4-4 Offset Ranges

5.0 MECHANICAL INSTALLATION

The analog board is positioned as an upper board in the meter. Refer to the exploded view in the main board manual.

To install:

1. Hold the board upside-down with components facing the main board.
2. Position the P 5 pins to mate with the J 5 connector on the power supply board.
3. Push the board downward until it rests on the upper rear panel and display board.

6.0 FRONT PANEL SETUP

NOTE: The software switch SS3 of Configuration 2 must be set (XXX1XX) to activate the analog output board. For more information, refer to Section 4.1 of the main board manual.

7.0 CALIBRATION

Be sure to use the four display digits during calibration as selected in Section 4.2 .

NOTE: Calibration is possible without an input signal by setting FUNCTION to TOTAL and then OFFSET to the appropriate display reading.

7.1 Voltage output (V01)

1. Attach a voltmeter (4 $1 / 2$ digit or more) with the negative lead to TB4-1 and the positive lead to TB4-2 on the rear panel of the unit.
2. Set the voltmeter range to 10 V dc full scale.
3. Apply a signal to the input which displays the lower display reading (LD) and adjust R8 (Z) to read the lower output voltage (LO) on the voltmeter.
4. Apply a signal to the input which displays the upper display reading (UD) and adjust $\mathrm{R7}(\mathrm{~S})$ to read the upper output voltage (UO) on the voltmeter.
5. Repeat steps 3 and 4 above.

7.2 Current Output (IO1)

1. Attach an ammeter (4 $1 / 2$ digit or more) with the negative lead to TB4-1 and the positive lead to TB4-2 on the rear panel of the unit.
2. Set the ammeter range to 20 mA full scale.
3. Apply a signal to the input which displays the lower display reading (LD) and adjust R8 (Z) to read the lower output current (LO) on the ammeter.
4. Apply a signal to the input which displays the upper display reading (UD) and adjust $\mathrm{R7}(\mathrm{~S})$ to read the upper output current (UO) on the ammeter.
5. Repeat steps 3 and 4 above.

7.3 Current Output (IO2)

1. Attach an ammeter (4 1/2 digit or more) with the negative lead to TB4-1 and the positive lead to TB4-2 on the rear panel of the unit.
2. Connect a jumper wire between TB4-1 and TB4-3.
3. Set the ammeter range to 20 mA full scale.
4. Apply a signal to the input which displays zero.
5. Record the ammeter reading (5.0 mA is typical).
6. Apply a signal to the input which is equal to the display span (UD - LD) and adjust R7 (S) on the ammeter to read the output span (UO-LO) plus the offset recorded in step $5(16.0+5.0=21.0 \mathrm{~mA}$ is typical).
7. Remove the jumper between TB4-1 and TB4-3.
8. Apply a signal to the input which displays the lower display reading (LD) and adjust R8 (Z) to read the lower output current (LO) on the ammeter.
9. Apply a signal to the input which displays the upper display reading (UD) and adjust R7 (S) to read the upper output current (UO) on the ammeter.
10. Repeat steps 8 and 9 above.

7.4 Preamp Zero Adjust (R9)

The preamp zero has been adjusted at the factory and should not require adjustment unless it has been adjusted by mistake. If necessary, use the following adjustment procedures:

1. For output ranges V01 and I01, apply a signal to the input which displays zero on the selected display range (4 LSD OR 4 MSD). Jumper TB4-1 to TB4-3 and adjust R9 for zero output on the voltmeter or ammeter. Proceed to Section 7.1 or 7.2 .
2. For output range I 02 , you must add S 1 -E push-on jumper before performing step 1 above. After completing step 1, you must remove S1-E before proceeding to Section 7.3.

8.0 ISOLATED ANALOG OUTPUT DRAWINGS

Figure 8-1 Isolated Analog Output Assembly Diagram

Figure 8-2 Isolated Analog Output Schematic Diagram

Warrantyluisclaimer

NEWPORT Electronics, Inc. warrants this unit to be free of defects in materials and workmanship for a period of one (1) year from the date of purchase. In addition to NEWPORT's standard warranty period, NEWPORT Electronics will extend the warranty period for one (1) additional year if the warranty card enclosed with each instrument is returned to NEWPORT.
If the unit should malfunction, it must be returned to the factory for evaluation. NEWPORT's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by NEWPORT, if the unit is found to be defective it will be repaired or replaced at no charge. NEWPORT's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of NEWPORT's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.
NEWPORT is pleased to offer suggestions on the use of its various products. However, NEWPORT neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by NEWPORT, either verbal or written. NEWPORT warrants only that the parts manufactured by it will be as specified and free of defects. NEWPORT MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of NEWPORT with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall NEWPORT be liable for consequential, incidental or special damages.
CONDITIONS: Equipment sold by NEWPORT is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, or used on humans, or misused in any way, NEWPORT assumes no responsibility as set forth in our basic WARRANTY / DISCLAIMER language, and additionally purchaser will indemnify NEWPORT and hold NEWPORT harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

Return Requests/Inquiries

Direct all warranty and repair requests/inquiries to the NEWPORT Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO NEWPORT, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM NEWPORT'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE
contacting NEWPORT:

1. P.O. number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult NEWPORT for current repair charges. Have the following information available BEFORE contacting NEWPORT:

1. P.O. number to cover the COST of the repair,
2. Model and serial number of product, and
3. Repair instructions and/or specific problems relative to the product.

NEWPORT's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.
NEWPORT is a registered trademark of NEWPORT Electronics, Inc.
© Copyright 2003 NEWPORT Electronics, Inc. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT Electronics, Inc.

For immediate technical or application assistance please call:

Newport Electronics, Inc.
2229 South Yale Street • Santa Ana, CA •92704 • U.S.A.
TEL: (714) 540-4914 • FAX: (203) 968-7311
Toll Free: 1-800-639-7678 • www.newportUS.com •e-mail:info@newportUS.com
ISO 9001 Certified

Newport Technologies, Inc.
976 Bergar • Laval (Quebec) • H7L 5A1 • Canada
TEL: (514) 335-3183 • FAX: (514) 856-6886
Toll Free: 1-800-639-7678 • www.newport.ca •e-mail:info@newport.ca
Newport Electronics, Ltd.
One Omega Drive • River Bend Technology Centre
Northbank, Irlam • Manchester M44 5BD • United Kingdom
Tel: +44 1617776611 • FAX: +44 1617776622
Toll Free: 0800488488 • www.newportuk.co.uk •e-mail:sales@newportuk.co.uk
Newport Electronics B.V.
Postbus 8034 • 1180 LA Amstelveen • The Netherlands
TEL: +31 203472121 • FAX: +31 206434643
Toll Free: 08000993344 •www.newport.nl •e-mail: info@newport.nl
Newport Electronics spol s.r.o.
Frystatska 184, 73301 Karviná • Czech Republic TEL: +420 596311899 • FAX: +420 596311114
Toll Free: 0800-1-66342• www.newport.cz •e-mail: info@newport.cz
Newport Electronics GmbH
Daimlerstrasse 26 • D-75392 Deckenpfronn • Germany
TEL: 497056 9398-0 • FAX: 497056 9398-29
Toll Free: 0800 / 6397678 • www.newport.de •e-mail: sales@newport.de
Newport Electronique S.A.R.L.
11, rue Jacques Cartier • 78280 Guyancourt • France
TEL: +33 161372900 • FAX: +33 130575427
Toll Free: 0800466342 • www.newport.fr • e-mail: sales@newport.fr
Mexico and Latin America
FAX: 001 (203) 359-7807
En Español: 001 (203) 359-7803

| NEWPORTnet ${ }^{\text {sm }}$ On-Line Service |
| :---: | :---: |
| www.newportUS.com | | Internet e-mail |
| :---: |
| info@newportUS.com |

NEWPORT Electronics, Inc.

