

Motion Controller/Driver

User’s Manual

ESP301

ii Preface

EU Declaration of Conformity

Preface iii

Warranty

Newport Corporation warrants that this product will be free from
defects in material and workmanship and will comply with
Newport’s published specifications at the time of sale for a period of
one year from date of shipment. If found to be defective during the
warranty period, the product will either be repaired or replaced at
Newport's option.

To exercise this warranty, write or call your local Newport office or
representative, or contact Newport headquarters in Irvine, California.
You will be given prompt assistance and return instructions. Send the
product, freight prepaid, to the indicated service facility. Repairs will
be made and the instrument returned freight prepaid. Repaired
products are warranted for the remainder of the original warranty
period or 90 days, whichever comes first.

Limitation of Warranty

The above warranties do not apply to products which have been
repaired or modified without Newport’s written approval, or
products subjected to unusual physical, thermal or electrical stress,
improper installation, misuse, abuse, accident or negligence in use,
storage, transportation or handling. This warranty also does not apply
to fuses, batteries, or damage from battery leakage.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR USE. NEWPORT CORPORATION SHALL NOT
BE LIABLE FOR ANY INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM THE
PURCHASE OR USE OF ITS PRODUCTS.

First printing 2008

Copyright 2008 by Newport Corporation, Irvine, CA. All rights
reserved. No part of this manual may be reproduced or copied
without the prior written approval of Newport Corporation. This
manual is provided for information only, and product specifications
are subject to change without notice. Any change will be reflected in
future printings.

iv Preface

Preface

Confidentiality & Proprietary Rights

Reservation of Title
The Newport Programs and all materials furnished or produced in
connection with them (“Related Materials”) contain trade secrets of
Newport and are for use only in the manner expressly permitted.
Newport claims and reserves all rights and benefits afforded under
law in the Programs provided by Newport Corporation.

Newport shall retain full ownership of Intellectual Property Rights in
and to all development, process, align or assembly technologies
developed and other derivative work that may be developed by
Newport. Customer shall not challenge, or cause any third party to
challenge, the rights of Newport.

Preservation of Secrecy and Confidentiality and Restrictions to
Access
Customer shall protect the Newport Programs and Related Materials
as trade secrets of Newport, and shall devote its best efforts to ensure
that all its personnel protect the Newport Programs as trade secrets of
Newport Corporation. Customer shall not at any time disclose
Newport's trade secrets to any other person, firm, organization, or
employee that does not need (consistent with Customer's right of use
hereunder) to obtain access to the Newport Programs and Related
Materials. These restrictions shall not apply to information (1)
generally known to the public or obtainable from public sources; (2)
readily apparent from the keyboard operations, visual display, or
output reports of the Programs; (3) previously in the possession of
Customer or subsequently developed or acquired without reliance on
the Newport Programs; or (4) approved by Newport for release
without restriction.

Preface v

Sales, Tech Support & Service

North America & Asia
Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA
Sales
Tel.: (949) 253-1461
or (800) 222-6440 x31461
e-mail: sales@newport.com
Technical Support
Tel.: (949) 253-1406
or (800) 222-6440 x31406
e-mail: tech@newport.com
Service, RMAs & Returns
Tel.: (949) 253-1694
or (800) 222-6440 x31694
e-mail: rma.service@newport.com

Europe
MICRO-CONTROLE Spectra-Physics
S.A
1, rue Jules Guesde – Bât. B
ZI Bois de l’Épine – BP189
91006 Evry Cedex
France
Sales France
Tel.: +33 (0)1.60.91.68.68
e-mail: france@newport-fr.com
Sales Germany
Tel.: +49 (0) 61 51 / 708 – 0
e-mail: germany@newport.com
Sales UK
Tel.: +44 (0)1635.521757
e-mail: uk@newport.com
Technical Support
e-mail: tech_europe@newport.com
Service & Returns
Tel.: +33 (0)2.38.40.51.55

Service Information

The user should not attempt any maintenance or service of the
ESP301 Controller/Driver system beyond the procedures outlined in
this manual. Any problem that cannot be resolved should be
referred to Newport Corporation. When calling Newport regarding a
problem, please provide the Tech Support representative with the
following information:

• Your contact information.
• Unit’s serial number or original order number.
• Description of problem, faults or messages.
• Environment in which the system is used.
• State of the system before the problem.
• Frequency and repeatability of problem.
• Can the product continue to operate with this problem?
• Can you identify anything that may have caused the problem?

vi Preface

mailto:sales@newport.com
mailto:tech@newport.com
mailto:rma.service@newport.com
mailto:france@newport-fr.com
mailto:germany@newport.com
mailto:uk@newport.com
mailto:tech_europe@newport.com

Newport Corporation RMA Procedures

Any ESP301 Controller/Driver being returned to Newport must have
an assigned RMA number issued by Newport. Assignment of the
RMA requires the unit’s serial number.

Packaging

ESP301 Controller/Driver being returned under an RMA must be
securely packaged for shipment. If possible, re-use the original
factory packaging. For insurance purposes, it is recommended to take
a digital photograph of the unit in its packaging prior to shipping.

Preface vii

viii Preface

Table of Contents

Warranty ... iv
Limitation of Warranty ... ii
Copyright .. ii

Section 1 – Introduction ...1-1
1.1 Scope... 1-1
1.2 Safety Considerations 1-2
1.3 Conventions and Definitions........................... 1-3
 1.3.1 Definitions and Symbols 1-3
 1.3.2 Terminology....................................... 1-4
1.4 System Overview .. 1-5
 1.4.1 Features .. 1-5
 1.4.2 Specifications 1-6
 1.4.3 Descriptions of Front Panel Versions 1-7
 1.4.4 Rear Panel Description....................... 1-8
1.5 System Setup... 1-10
 1.5.1 Line Voltage..................................... 1-10
 1.5.2 First Power ON 1-10
1.6 Quick Start .. 1-11
 1.6.1 Connecting Motion Devices............. 1-11
 1.6.2 Motor On.. 1-12
 1.6.3 Homing... 1-12
 1.6.4 First Jog.. 1-13

Section 2 – Modes of Operation...............................2-1
2.1 Overview of Operating Modes........................ 2-1
 2.1.1 LOCAL Mode 2-1
 2.1.2 REMOTE Mode................................. 2-1
2.2 Operation in LOCAL Mode............................ 2-1
 2.2.1 Accessing the Menu 2-2
 2.2.2 Navigating the Menu.......................... 2-2
 2.2.3 Changing Values 2-2
 2.2.4 Motion from the Front Panel.............. 2-3

2.2.5 Detailed Description of Menu Items .. 2-5

Section 3 – Remote Mode...3-1
3.1 Programming Modes....................................... 3-1
3.2 Remote Interfaces.. 3-3
 3.2.1 RS-232C Interface.............................. 3-4
 3.2.2 USB Interface..................................... 3-4
 3.2.3 IEEE488 Interface.............................. 3-5

Preface ix

3.3 Software Utilities .. 3-6
3.4 Command Syntax.. 3-7
 3.4.1 Summary of Command Syntax 3-8
3.5 Command Summary 3-9
 3.5.1 Command List by Category 3-10
 3.5.2 Command List - Alphabetical 3-15
3.6 Description of Commands 3-19

Section 4 – Advanced Capabilities4-1
4.1 Grouping ... 4-1
 4.1.1 Introduction – Advanced Capabilities 4-1

4.1.2 Defining a Group & Group
 Parameters .. 4-1
 4.1.2.1 Creating a Group................. 4-1
 4.1.2.2 Defining Group Parameters 4-2
4.1.3 Making Linear and Circular Moves ... 4-2
 4.1.3.1 Making Linear Move 4-3
 4.1.3.2 Making Circular Move........ 4-3
4.1.4 Making Contours................................ 4-4
4.1.5 Miscellaneous Commands 4-7

4.2 Slaving a Stage to Trackball, Joystick, or a
 Different Stage .. 4-7
 4.2.1 Introduction – Slaving a Stage 4-7
 4.2.2 Slave to a Different Stage 4-8
 4.2.3 Slave to a Joystick………………...... 4-9
4.3 Closed Loop Stepper Motor Positioning......... 4-9
 4.3.1 Introduction – Closed Loop Stepper .. 4-9
 4.3.2 Feature Implementation 4-9
4.4 Synchronize Motion to External and Internal
 Events.. 4-11
 4.4.1 Introduction – Synchronize Motion . 4-11

4.4.2 Using DIO to Execute Stored
 Programs .. 4-12
 4.4.3 Using DIO to Inhibit Motion 4-13
 4.4.4 Using DIO to Monitor Motion
 Status .. 4-13

Section 5 – Motion Control Tutorial.........................5-1
5.1 Motion Systems... 5-1
5.2 Specification Definitions................................. 5-2
 5.2.1 Following Error.................................. 5-3
 5.2.2 Error ... 5-3
 5.2.3 Accuracy .. 5-3
 5.2.4 Local Accuracy 5-4
 5.2.5 Resolution .. 5-5
 5.2.6 Minimum Incremental Motion........... 5-5

x Preface

 5.2.7 Repeatability 5-7
 5.2.8 Backlash (Hysteresis)......................... 5-7
 5.2.9 Pitch, Roll and Yaw 5-8
 5.2.10 Wobble ... 5-9
 5.2.11 Load Capacity 5-9
 5.2.12 Maximum Velocity 5-10
 5.2.13 Minimum Velocity 5-10
 5.2.14 Velocity Regulation 5-11
 5.2.15 Maximum Acceleration.................... 5-11
 5.2.16 Combined Parameters 5-12
5.3 Control Loops ... 5-12
 5.3.1 PID Servo Loops 5-13
 5.3.2 Feed-Forward Loops 5-15
5.4 Motion Profiles ... 5-17
 5.4.1 Move .. 5-17
 5.4.2 Jog .. 5-18
 5.4.3 Home Search 5-19
5.5 Encoders.. 5-21
5.6 Motors ... 5-24
 5.6.1 Stepper Motors 5-25
 5.6.1.1 Stepper Motor Types.......... 5-29
 5.6.2 DC Motors.. 5-30
5.7 Drivers... 5-31
 5.7.1 Stepper Motor Drivers 5-32
 5.7.2 Unipolar-Bipolar Drivers 5-33
 5.7.3 DC Motor Drivers 5-34
 5.7.3.1 PWM Drivers 5-36

Section 6 – Servo Tuning ...6-1
6.1 Tuning Principles .. 6-1
6.2 Tuning Procedures .. 6-1
 6.2.1 Hardware and Software Requirements6-2
 6.2.2 Correcting Axis Oscillation 6-2
 6.2.3 Correcting Following Error................ 6-2

6.2.4 Points To Remember.......................... 6-4

Appendix A – Error Messages................................. A-1

Appendix B – Trouble-Shooting/Maintenance B-1
B.1 Trouble-Shooting GuideB-2
B.2 Cleaning ..B-4

Appendix C – Connector Pin Assignments............ C-1
C.1 ESP301 Rear Panel ...C-1

Preface xi

 C.1.1 GPIO Connector (37-Pin D-Sub)C-1
 C.1.2 Signal Descriptions (Digital I/O, 37-Pin
 JP4 Connector)C-1
 C.1.3 Motor Driver Card (25-Pin) I/O
 Connector ..C-2
 C.1.4 Signal Descriptions (Motor Driver Card,
 25-Pin I/O Connector).......................C-3
 C.1.5 IEEE488 Interface Connector (24-
 Pin) ..C-6
 C.1.6 RS-232C Interface Connector (9-Pin
 D-Sub) ...C-6
 C.1.7 RS-232C Interface Cable...................C-6
 C.1.8 USB Interface ConnectorC-7
 C.1.9 USB Interface Cable..........................C-7
 C.1.10 Motor Interlock Connector (BNC)C-8

Appendix D – Binary Conversion Table D-1

Appendix E – System Upgrades E-1
E.1 Adding Axes ...E-2
E.2 Adding IEEE488 ...E-3

Appendix F – ESP Configuration Logic...................F-1

Appendix G – Programming Non-ESP Compatible
 Stages..G-1

Appendix H – Factory Service................................. H-1
H.1 Service Form .. H-2

xii Preface

List of Figures

Figure No. Page

Figure 1.1: ESP 301 Controller/Driver ...1-5
Figure 1.2: ESP301 Front Panel with displays1-8
Figure 1.3: Rear Panel of the ESP301...1-9
Figure 2.1: Menu Section...2-2
Figure 2.2: Menu Item..2-3
Figure 2.3: Motion from the Front Panel Displayed2-3
Figure 2.4: Front Panel Menu Structure ...2-4
Figure 3.1: Command Syntax Diagram ...3-7
Figure 4.1: A Contour with Multiple Circular Moves4-5
Figure 4.2: A Contour with Multiple Linear and Circular Moves …4-5
Figure 4.3: Block Diagram of Via Point Data Handling
 By Command Processor..4-6
Figure 4.4: Block Diagram of Via Point Data Handling
 By Trajectory Generator..4-7
Figure 4.5: Block Diagram of Closed Loop Stepper Motor
 Positioning ...4-10
Figure 5.1: Typical Motion Control Systems5-1
Figure 5.2: Position Error Test..5-4
Figure 5.3a: High Accuracy for Small Motions.................................5-4
Figure 5.3b: Low Accuracy for Small Motions..................................5-5
Figure 5.4: Effect of Stiction and Elasticity on Small Motion5-5
Figure 5.5: Error Plot ..5-6
Figure 5.6: Error vs. Motion Step Size ..5-6
Figure 5.7: Hysteresis Plot ..5-7
Figure 5.8: Real vs. Ideal Position...5-8
Figure 5.9: Pitch, Roll and Yaw Motion Axes....................................5-8
Figure 5.10: Pitch, Yaw and Roll Motion Axes..................................5-9
Figure 5.11: Wobble Generates a Circle ...5-9
Figure 5.12: Position, Velocity and Average Velocity5-10
Figure 5.13: Servo Loop ..5-13
Figure 5.14: P Loop ...5-14
Figure 5.15: PI Loop..5-14
Figure 5.16: PID Loop...5-15
Figure 5.17: Trapezoidal Velocity Profile5-16
Figure 5.18: PID Loop with Feed Forward.....................................5-16
Figure 5.19: Tachometer-Driven PIDF Loop..................................5-17
Figure 5.20: Trapezoidal Motion Profile...5-18
Figure 5.21: Position and Acceleration Profiles5-18
Figure 5.22: Home (Origin) Switch and Encoder Index Pulse........5-20
Figure 5.23: Slow Speed Home (Origin) Switch Search..................5-20

Figure 5.24: High/Low-Speed Home (Origin) Switch Search...........5-20

Preface xiii

Figure 5.25: Home (Origin) Search From Opposite
 Direction ...5-21
Figure 5.26: Encoder Quadrature Output...5-22
Figure 5.27: Optical Encoder Scale ..5-22
Figure 5.28: Optical Encoder Read Head...5-23
Figure 5.29: Single-Channel Optical Encoder Scale and
 Read Head Assembly..5-23
Figure 5.30: Two-Channel Optical Encoder Scale and
 Read Head Assembly...5-24
Figure 5.31: Stepper Motor Operation..5-25
Figure 5.32: Four-Phase Stepper Motor ...5-25
Figure 5.33: Phase-Timing Diagram ..5-26
Figure 5.34: Energizing Two Phases Simultaneously5-26
Figure 5.35: Timing Diagram, Half-Stepping Motor5-27
Figure 5.36: Energizing Two Phases with Different
 Intensities ..5-27
Figure 5.37: Timing Diagram, Continuous Motion (Ideal)...............5-27
Figure 5.38: Timing Diagram, Mini-Stepping...................................5-28
Figure 5.39: Single Phase Energization..5-28
Figure 5.40: External Force Applied...5-28
Figure 5.41: Unstable Point ..5-29
Figure 5.42: Torque and Tooth Alignment ..5-29
Figure 5.43: DC Motor..5-30
Figure 5.44: Simple Stepper Motor Driver..5-32
Figure 5.45: Current Build-up in Phase..5-32
Figure 5.46: Effect of a Short ON Time on Current5-33
Figure 5.47: Motor Pulse with High Voltage Chopper5-33
Figure 5.48: Dual H-Bridge Driver...5-34
Figure 5.49: DC Motor Voltage Amplifier ..5-35
Figure 5.50: DC Motor Current Driver ..5-35
Figure 5.51: DC Motor Velocity Feedback Driver5-36
Figure 5.52: DC Motor Tachometer Gain and
 Compensation..5-36
Figure C.1: RS-232C Connector pin-out..C-6
Figure C.2: Connector, Pin-to-Pin RS-232C Interface Cable C-7
Figure C.3: Motor Interlock Connector (BNC) with dust cap............C-8
Figure E.1: Removal of the Top Cover... E-2
Figure E.2: Interior of the unit explaining the connectors................. E-3
Figure F.1: Configuration Logic .. F-2

xiv Preface

List of Tables

Table No. Page
Table 3.2: Command communication and process time........................... 3-3
Table 3.5.1: Command List by Category... 3-10
Table 3.5.2: Command List - Alphabetical.. 3-15
Table 4.1: Slave to a Different Stage Steps .. 4-8
Table 4.2: Slave to a Joystick Steps.. 4-8
Table 4.3: An Example of Closed Loop Stepper Motor
 Positioning Setup... 4-11
Table 4.4: Closed Loop Stepper Positioning Commands 4-11
Table 4.5: Commands to Synchronize Motion to External
 Events .. 4-14
Table 6.1: Servo Parameter Functions... 6-5
Table B.1: Trouble-Shooting Guide Descriptions.....................................B-2
Table C.1: Digital Connector Pin-Outs ..C-1
Table C.2: Driver Card Connector Pin-Outs..C-2
Table C.4: IEEE488 Interface Connector ...C-6
Table D.1: Binary Conversion Table, using decimal and
 ASCII copies ... D-1
Table H.1: Technical Customer Support Contacts................................... H-1

Preface xv

Command Index (Section 3)

Command Description Page in section 3-

AB abort motion..21
AC set acceleration...22
AC set acceleration...22
AE set e-stop deceleration..24
AF set acceleration feed-forward gain..26
AG set deceleration ..27
AP abort program...29
AU set maximum acceleration and deceleration...................................30
BA set backlash compensation..31
BG assign DIO bits to execute stored programs...................................32
BK assign DIO bits to inhibit motion..33
BL enable DIO bits to inhibit motion ...34
BM assign DIO bits to notify motion status ...35
BN enable DIO bits to notify motion status...36
BO set DIO port A, B, C direction ...37
BP assign DIO bits for jog mode ...38
BQ enable DIO bits for jog mode...39
CL set closed loop update interval...40
CO set linear compensation ...41
DB set position deadband ...42
DC setup data acquisition ...43
DD get data acquisition done status ...45
DE enable/disable data acquisition ..46
DF get data acquisition sample count ...47
DG get acquisition data ...48
DH define home ..49
DL define label..50
DO set dac offset...51
DP read desired position...52
DV read desired velocity...53
EO automatic execution on power on ...54
EP enter program mode..55
EX execute a program...56
FE set maximum following error threshold ..57
FP set position display resolution..58

xvi Preface

FR set encoder full-step resolution..59
GR set master-slave reduction ratio ...60
HA set group acceleration...61
HB read list of groups assigned ..63
HC move group along an arc ...64
HD set group deceleration ..66
HE set group e-stop deceleration..68
HF group off ..69
HJ set group jerk..70
HL move group along a line ..71
HN create new group ...73
HO group on...75
HP read group position ...76
HQ wait for group command buffer level ..77
HS stop group motion ...78
HV set group velocity ..79
HW wait for group motion stop ...80
HX delete group ..81
HZ read group size ...82
ID read stage model and serial number ...83
JH set jog high speed..84
JK set jerk rate..85
JL jump to label...86
JW set jog low speed ...87
KD set derivative gain ...88
KI set integral gain..89
KP set proportional gain...90
KS set saturation level of integral factor ..91
LC lock / unlock keyboard...92
LP list program...93
MD read motion done status ...94
MF motor off..95
MO motor on...96
MT move to hardware travel limit ..97
MV move indefinitely ..98
MZ move to nearest index ..100
OH set home search high speed ..101
OL set home search low speed..102
OM set home search mode ..103
OR search for home ...104

Preface xvii

PA move to absolute position ...106
PH get hardware status ...107
PR move to relative position ...110
QD update motor driver settings ...111
QG set gear constant ..112
QI set maximum motor current..113
QM set motor type...114
QP quit program mode..115
QR reduce motor torque..116
QS set microstep factor...117
QT set tachometer gain ...118
QV set average motor voltage ...119
RS reset the controller...121
SB set / get DIO port A, B bit status..123
SI set master-slave jog velocity update interval126
SK set master-slave jog velocity scaling coefficients127
SL set left travel limit ...128
SM save settings to non-volatile memory...129
SN set axis displacement units..130
SR set right travel limit...131
SS define master-slave relationship..132
ST stop motion ...133
SU set encoder resolution...134
TB read error message ..135
TE read error code ...136
TJ set trajectory mode..137
TP read actual position...138
TS read controller status ..139
TV read actual velocity ...140
TX read controller activity ...141
UF update servo filter..142
UH wait for DIO bit high..143
UL wait for DIO bit low ...144
VA set velocity ..145
VB set base velocity for step motors ...146
VE read controller firmware version ...147
VF set velocity feed-forward gain ...148
VU set maximum velocity ..149
WP wait for position...150
WS wait for motion stop..151

xviii Preface

WT wait ..152
XM read available memory...153
XX erase program...154
ZA set amplifier I/O configuration ..155
ZB set feedback configuration ..158
ZE set e-stop configuration ...160
ZF set following error configuration ..162
ZH set hardware limit configuration..164
ZS set software limit configuration...166
ZU get ESP system configuration ..168
ZZ set system configuration..170

Preface xix

xx Preface

Section 1 - Introduction

1.1 Scope

This manual provides descriptions and operating procedures for the
integrated 3 axis ESP301 Controller/Driver (ESP = Enhanced System
Performance).

Safety considerations, conventions and definitions, and a system
overview are provided in Section 1, Introduction.

Procedures for unpacking the equipment, hardware and software
requirements, descriptions of controls and indicators, and setup
procedures are provided in Section 1, Introduction.

Instructions for configuring and powering up the ESP301 and stage
motors, for home and jog motions, and for system shut-down are
provided in Section 1, Introduction.

Overview of operating modes (LOCAL and REMOTE) and Menu
Options in LOCAL Mode are provided in Section 2, Modes of
Operation.

Motion commands, language-specific information, and error-handling
procedures are provided in Section 3, Remote Mode.

An overview of groups, including contours, slaving, closed loop
stepping and synchronization is provided in Section 4, Advanced
Capabilities.

An overview of motion parameters and equipment is provided in
Section 5, Motion Control Tutorial.

Servo tuning principles and procedures are given in Section 6, Servo
Tuning.

The following information is provided in the Appendices:

• Error messages
• Trouble-shooting and maintenance
• Connector pin assignments
• Decimal/ASCII/binary conversion table
• System upgrades for software and firmware
• Factory service

Section 1 – Introduction 1-1

1.2 Safety Considerations

The following general safety precautions must be observed during all
phases of operations of this equipment. Failure to comply with these
precautions or with specific warnings elsewhere in this manual
violates safety standards of design, manufacture, and intended use of
the equipment.

Disconnect or do not plug in the power cord in the following
circumstances:

• If the power cord or any other attached cables are frayed or
damaged.

• If the power plug or receptacle is damaged.
• If the unit is exposed to rain or excessive moisture, or liquids are

spilled on it.
• If the unit has been dropped or the case is damaged.
• If you suspect service or repair is required.
• When you clean the case.

To protect the equipment from damage and avoid hazardous
situations, follow these recommendations:

• Do not make modifications or parts substitutions.
• Return equipment to Newport Corporation for service and repair.
• Do not touch, directly or with other objects, live circuits inside the

unit.
• Keep air vents free of dirt and dust.
• Do not block air vents.
• Keep liquids away from unit.
• Do not expose equipment to excessive moisture (>85% humidity).

WARNING

All attachment plug receptacles in the vicinity of this unit are to be of the
grounding type and properly polarized. Contact an electrician to check faulty

or questionable receptacles.

WARNING

This product is equipped with a 3-wire grounding type plug. Any interruption
of the grounding connection can create an electric shock hazard. If you are

unable to insert the plug into your wall plug receptacle, contact an electrician
to perform the necessary alterations to ensure that the green (green-yellow)

wire is attached to earth ground.

1-2 Section 1 - Introduction

WARNING

This product operates with voltages that can be lethal. Pushing objects of any
kind into cabinet slots or holes, or spilling any liquid on the product, may touch

hazardous voltage points or short out parts.

WARNING

When opening or removing covers observe the following precautions:

• Turn power OFF and unplug the unit from its power source
• Remove jewelry from hands and wrists
• Use insulated hand tools only
• Maintain grounding by wearing a wrist strap attached to instrument

chassis.

1.3 Conventions and Definitions

The following terms and symbols are used in this documentation and also
appear on the ESP301 Controller/Driver where safety-related issues occur.

1.3.1 Definitions and Symbols

The following are definitions of safety and general symbols used on
equipment or in this manual.

WARNING
Calls attention to a procedure, practice or condition which, if not correctly

performed or adhered to, could result in injury or death.

CAUTION

 Calls attention to a procedure, practice, or condition which, if not correctly
performed or adhered to, could result in damage to equipment

NOTE
Calls attention to a procedure, practice, or condition that is considered

important to remember in the context.

Section 1 – Introduction 1-3

This symbol indicates the principal On/Off
push-push switch is in the ON position when
pressed in, and in the OFF position when de-
pressed.

Protective conductor terminal

Caution, risk of electric

Caution (refer to accompanying documents)

Fuse

Stop (of action or operation)

1.3.2 Terminology

The following is a brief description of the terms specific to motion
control and the ESP301 Motion Controller/Driver.

Axis – a logical name for a stage/positioner/ motion device

Encoder – a displacement measuring device, term usually used for both
linear and rotary models

ESP – Enhanced System Performance motion system is synonymous with
a plug-and-play motion system.

ESP – compatible – refers to Newport Corporation stage with its own
firmware-based configuration parameters. Newport stages or other stages
without this feature are referred to as being non ESP-compatible and must
be uniquely configured by the user.

Home (position) – the unique point in space that can be accurately found
by an axis, also called origin

1-4 Section 1 - Introduction

Jog – a motion of undetermined-length, initiated manually

Motion device – electro-mechanical equipment. Used interchangeably
with stage and positioner.

Move – a motion to a destination

Origin – used interchangeably with home

PID – a closed loop algorithm using proportional, integral, and derivative
gain factors for position control

Positioner – used interchangeably with stage and motion device

Stage – used interchangeably with motion device and positioner

1.4 System Overview

The Enhanced System Performance (ESP) architecture consists of
ESP-compatible controllers and stages. The ESP301, an ESP-
compatible controller, is an advanced stand-alone controller with
integrated motor drivers. It can control and drive up to 3 axes of
motion in any stepper and DC motor configuration.

The ESP plug-and-play concept significantly increases user
friendliness and improves overall motion performance.

The ESP301 is used as a stand-alone controller to drive an ESP
motion device. All components are designed for optimal performance.

Figure 1.1: ESP301 Controller/Driver

1.4.1 Features
A number of advanced features make the ESP301 an excellent choice
for many applications:

• Integrated controller and driver design is cost effective and space
saving

• Compact, standard 2U height rack mountable or bench-top
enclosure

Section 1 – Introduction 1-5

• Allows any combination of motor types (2 or 4-phase stepper and

brush DC) up to 3A, 48V per axis
• 200MHz Digital Signal Processing architecture
• Real-time high speed command processing
• Powerful commands for most demanding applications
• Motion program storage (up to 99 programs) in 64kB non-volatile

memory
• Advanced motion programming capabilities and complex digital

I/O functions
• User selectable displacement units
• Full-featured front panel with position and status displays for each

axis, push-buttons for simple motion sequences and access to an
elaborate menu that allows setup of the system without use of a
computer.

1.4.2 Specifications

Function:
• Integrated motion controller and driver.

Number of motion axes:
• 1 to 3, in any combination or order of 2 or 4- phase stepper and

brush DC motors, up to 48VDC, 3A per axis.

Trajectory type:
• Trapezoidal velocity profile
• S-curve velocity profile.

Motion device compatibility:
• Family of motorized Newport motion devices, using either stepper

or DC motors
• Custom motion devices (contact Technical Support for

compatibility).

DC motor control:
• 16 bit DAC resolution
• 5 MHz maximum encoder input frequency
• Digital PIDFF servo loop, 0.4 ms update rate.

Stepper motor control:
• Up to 1000 microstep resolutions per full step.

Computer interface:
• RS232-C, 19200 baud, 8 bits, 8, N, 1
• USB, 921600 baud, 8bits, 8, N, 1
• IEEE488 (optional)

1-6 Section 1 - Introduction

Utility interfaces:
• 16 bit digital inputs/outputs, user definable, in blocks of 8.
• Remote motor off input (interlock).

User memory:
• 64 KB non-volatile program memory
• 512 byte command buffer

Operating modes:
• Local mode – stand-alone operation, executing motion from the

front panel
• Remote mode – executing commands received over one of the

computer interfaces
• Program execution mode – execution of a stored program.

Display:
• 80 character alpha-numeric LCD display
• Displays position, status, utility menus and setup screens.

Dimensions:
• 3.0" H x 16.9" W x 12. 6" D (76.2 x 429.5 x 320 mm) without

feet.

Power requirements:
• 100-240VAC ±10%, 50/60 Hz
• 6.3A max.

Weight:
• 14.3 lb. max. (6. 5 Kg max.)

Operating conditions:
• Temperature: 0°C to 40°C
• Humidity: 20% to 85% RH, non-condensing

1.4.3 Description of Front Panel Version
The ESP301 is available with a front panel with LCD display and
manual control buttons. A menu allows the user to change velocities,
accelerations and more, without a computer interface.

Section 1 – Introduction 1-7

FRONT PANEL DISPLAY

A general view of the front panel is shown in Figure 1.2. There are
two distinct areas: a display/menu section and a motion section that
allows simple low and high speed manual JOG motion.

Up/Down
Buttons

Menu/Enter
Button

Jog Buttons

EscapeButton

Numerical
Keyboard

Motor On/Off

Display Window

Figure 1.2: ESP301 Front Panel

Power Section
The black switch at the rear of the ESP301 controller is used to turn
power On or Off.

1.4.4 Rear Panel Description

NOTE

See Appendix C for pin-outs.

AXIS CONNECTORS (AXIS 1 – AXIS 3)

There are up to three 25-pin D-Sub connectors on the rear panel, one
for each axis. Unused axes have blank panels.

GPIO CONNECTOR

This is a 37-pin D-Sub connector used for general purpose, digital
Input/Output signals. A variety of commands are available to control
these ports. See Section 3, Remote Mode and Appendix C for
Connector Pin Outs.

1-8 Section 1 - Introduction

Power Entry
Module

Motor Interlock
Connector

Power ON/OFF
switch

IEEE-488 (optional)

GPIO

USB
Axis 3 Axis 2 Axis 1

Axis Connectors

RS232-C

Figure 1.3: Rear Panel of the ESP301

MOTOR INTERLOCK CONNECTOR

The coaxial connector provides remote motor power interlock
capability. One or more external switches can be wired to remotely
inhibit the motor power in a way similar to the Motor Off button on
the front panel.

The controller is shipped with a mating connector that provides the
necessary wiring to enable proper operation without an external
switch.

RS232-C CONNECTOR

The RS232-C interface to a host computer or terminal is made
through this 9 pin D-Sub connector. The pin out enables the use of an
off-the-shelf, pin-to-pin cable.

IEEE488 CONNECTOR

This is a standard 24 pin connector to interface with a standard
IEEE488 device. (NOTE: This is an optional feature).

USB CONNECTOR

This is a standard USB B-type connector.

POWER ENTRY MODULE

The power entry section on the right side of the rear panel provides a
standard IEC 320 inlet and a power ON/OFF switch.

Section 1 – Introduction 1-9

1.5 System Setup

This section guides the user through the proper set-up of the motion
control system.

Carefully unpack and visually inspect the controller and stages for
any damage. A good indicator of shipping damage is the condition of
the shipping box.

Place all components on a flat and clean surface.

1.5.1 Line Voltage

NOTE

The controller can operate from 100-240VAC, ±10%, at a frequency of 50/60Hz.

1.5.2 First Power ON
Plug the AC line cord supplied with the ESP301 into the power entry
module on the rear panel.

Plug the AC line cord into the AC wall-outlet.

Switch the POWER on button at the rear panel.

Shortly after the power is switched on, the ESP301 will perform a
start-up sequence as described below.

• Momentarily display: "Newport ESP301" and the Firmware
Version

• Momentarily show the stage type that is connected. Since there
should be no stages connected at this point, the "NO STAGE"
message is displayed for all axes.

NOTE

When contacting technical support, provide the firmware version which is
displayed every time the controller is powered on. This is essential to

troubleshoot a problem.

1-10 Section 1 - Introduction

1.6 Quick Start

Unpacking and Handling
It is recommended that the ESP301 Controller/Driver be unpacked in
your lab or work site rather than at the receiving dock. Unpack the
system carefully; small parts and cables are included with the
equipment. Inspect the box carefully for loose parts before disposing
of the packaging. You are urged to save the packaging material in
case you need to ship your equipment.

Inspection for Damage
ESP301 Controller/Driver has been carefully packaged at the factory
to minimize the possibility of damage during shipping. Inspect the
box for external signs of damage or mishandling. Inspect the contents
for damage. If there is visible damage to the equipment upon receipt,
inform the shipping company and Newport Corporation immediately.

WARNING

Do not attempt to operate this equipment if there is evidence of shipping
damage or you suspect the unit is damaged. Damaged equipment may present

additional hazards to you. Contact Newport technical support for advice
before attempting to plug in and operate damaged equipment.

This section serves as a quick start for ESP301.

The following paragraphs guide you through a very basic motion
sequence that verifies that the ESP301 unit is working properly.

1.6.1 Connecting Motion Devices

NOTE

Never connect/disconnect stages while the ESP301 is powered on. Always
verify that the power to the ESP301 is off before connecting/disconnecting

stages.

If an ESP301 motion control system was purchased, all necessary
hardware for set-up is included.

With ESP-compatible stages, the configuration of each axis is
identified automatically by the ESP301 at power up. ESP compatible
stages are visually identified with a blue "ESP Compatible" sticker,
on the stage.

Section 1 – Introduction 1-11

Carefully connect one end of the supplied cable to the stage and the
other end to the appropriate axis connector on the rear of the
controller. Secure both connectors with the locking thumb-screws.

1.6.2 Motor On
After the controller and the stages are connected as described, the
motors can be powered on.

Make sure that the motion devices are placed on a flat surface and
their full travel is not obstructed.

CAUTION

Be prepared to quickly turn the motor power off by pressing the MOTOR
ON/OFF (STOP ALL) button or power switch if any abnormal operation is

observed.

After the power switch is pushed in, the controller performs the start-
up sequence as described in Section 1.5.2.

The default state after start-up is motor power off.

To apply power to the motors, press the Motor ON/OFF button to the
left of the display or press each button on the right of the display to
enable power for each individual axis. The ON state of the motor
power is indicated on the display.

1.6.3 Homing
HOME Search

The HOME Search routine is a sequence of motion segments through
which the controller determines the exact location of a home (origin)
switch. A detailed description of the algorithm can be found in the
Motion Control Tutorial (Section 5).

NOTE

It is recommended that the user perform a home search routine after each
controller power-on. The controller must know the exact initial position of the
motion device not only to accurately repeat a motion sequence (program) but

also to prevent it from hitting the travel limits (limit switches).

To perform a home search routine, at start-up, press the assigned axis
key to the right of the display, then press the Menu key and select the
Home menu. Then press the assigned axis key to the right of the
display to home each axis.

In the position display, the home routine is indicated as in progress. H

1-12 Section 1 - Introduction

NOTE

The position value is reset at the home position.

Only one axis can be homed at a time; i.e., even if multiple homing
commands are issued, the prior axis has to finish homing before the
second can start homing.

1.6.4 First Jog
If left jog key is pressed, the selected axis will move slowly in the
negative direction. To move a single step at a time, press this switch
once. See Section 2.2.4 for details.

If right jog key is pressed, the selected axis will move slowly in the
positive direction. To move a single step at a time, press this switch
once. See Section 2.2.4 for details.

If the << >> key between the jog keys is pressed simultaneously
with one of the jog keys, the axis will jog fast in the selected
direction. See Section 2 for setting of high speed rate.

At this point, you may proceed to Section 2 of this manual, to get
familiar with the controller and the local motion modes.

NOTE

Remember that only motions inside the software travel limits are allowed (see
'SL' command in Section 3, Remote Mode). Any move outside these limits will

be ignored.

Section 1 – Introduction 1-13

1-14 Section 1 - Introduction

Section 2 – Modes of Operation

2.1 Overview of Operating Modes

The ESP301 can be operated in two basic modes:

• LOCAL mode
• REMOTE mode

2.1.1 LOCAL Mode
In LOCAL Mode the user has access to a sub-set of the ESP301
command set. In this Mode, the ESP301 is controlled by pressing the
menu key and axis push-buttons on the front panel.

Using this mode, the user can adjust motion parameters like velocity
and acceleration without using a computer or terminal.

NOTE: See Section 2.2 for a detailed description of the front
panel.

2.1.2 REMOTE Mode
In COMMAND Mode, the ESP301 receives motion commands
through one of its interfaces (IEEE488, RS232-C or USB) using a
computer or terminal.

In this mode, the ESP301 employs a set of over 100 commands.
Please refer to Section 3 (Remote Mode) for a detailed description of
the ESP301 command set.

In Program Execution Mode, internally stored programs are executed
(See Section 3.1).

2.2 Operation in LOCAL Mode

This section provides a detailed explanation of the LOCAL mode.
Typical parameters that can be set are velocity, acceleration and the
computer interface. Please remember that all menu items can also be
accessed with remote commands (See Section 3, Remote Mode).

Section 2 – Modes of Operation 2-1

2.2.1 Accessing the Menu
Figure 2.1 shows the menu section of the front panel. The menu
listing can be accessed by pressing the Menu key to the bottom-right
of the display.

Numeric Keypad
Scroll Up / Down

Menu
Escape Menu

Select Menu

Figure 2.1: Menu Section

2.2.2 Navigating the Menu
Once in the menu listing, use four buttons to access all available menu
items and change values where applicable. Keep in mind that these
buttons serve multiple functions.

The UP and DOWN buttons scroll through the current Menu list. The
UP, DOWN and ESC(DEL) buttons are assigned to the axis only in
Position submenu, where each button can be used to turn on or
off that specific axis.

The MENU button selects a menu item, the ESC button brings up the
previous menu. The MENU/ENT button also executes an action for
the selected axis (Home, Absolute or Relative moves).

2.2.3 Changing Values
This example is an illustration of how to change values within a menu
item.

1. Press MENU to enter the menu listing.
2. Press the Down repeatedly until the cursor (diamond shaped) is

aligned with the CONFIGURATION menu item.
3. Press the MENU/ENTER button once. Now, a sub-menu list

becomes available.
4. Press the MENU/ENTER button to select the SET VELOCITIES

menu item.

2-2 Section 2 – Modes of Operation

5. Press the MENU/ENTER button to select the SET LOW JOG VEL

menu item. The screen shown below is displayed at this time.

Figure 2.2: Set Low Jog Vel Menu Item

6. Use the numeric keypad on the right to enter the value desired.
Use ESC/DELETE to delete entries.

7. Then press MENU/ENTER to save the new value.

2.2.4 Motion from the Front Panel

As shown in Figure 2.3, the right side of the front panel
accommodates simple manual notion capabilities.

Move in Positive

Direction Move with High
Speed

Move in Negative
Direction

Figure 2.3: Motion from the Front Panel Displayed

Move in Negative Direction with low speed. This button can be
programmed to move at low speed in the negative direction as long as
it is pressed. See SET VELOCITY menu items in Section 2.2.5.

Move in Positive Direction with low speed. This button can be
programmed to move at low speed in the positive direction as long as
it is pressed. See SET VELOCITY menu items in Section 2.2.5.

Move with High Speed. This button is active only when pushed
simultaneously with either move button above. See SET VELOCITY
menu items in Section 2.2.5.

Motor ON/OFF. During motion, when this button is pressed, all
motion is stopped and the front display indicates that all motors are

Section 2 – Modes of Operation 2-3

OFF. Pressing the button when motors are off, will turn all motors on.
This button is equivalent to the Interlock connector on the rear of the
unit. See ZE command in Section 3: Remote Mode, for further
information.

Figure 2.4: Front Panel Menu Structure

2-4 Section 2 – Modes of Operation

2.2.5 Detailed Description of Menu Items

HOME

This menu item allows the user to home each stage.

OR - Search for home

MOVE ABSOLUTE

This menu item allows the user to move a stage to an absolute
position.

PA - Move to an absolute position

MOVE RELATIVE

This menu item allows the user to move a stage to a relative position.

PR - Move to a relative position

RUN PROGRAM

Programs can be entered or downloaded to the ESP301 through its
standard interfaces (RS232, USB or IE488). The ESP301 is capable
of storing up to 99 different programs in its non-volatile program
memory (64KB total). This menu allows execution of any of the
stored programs.

1EX - Execute program 1

RESET POSITION

This menu item allows the user to reset the current position displayed
to zero.

Section 2 – Modes of Operation 2-5

DH - Defines the current position, HOME position

GET ERRORS

This menu item allows the user to get the errors that are stored in the
error queue. The error queue can store up to 10 errors. If the number
of errors exceeds ten, the oldest errors are superseded.

TE or TB - Tell error or Tell buffer

SET VELOCITY

This menu makes it possible to change velocities that are used with
the jog and home search buttons. The following sub-menus are
available:

SET LOW JOG VEL

Sets the velocity of the stage when either jog button is pushed.

JL - Set low jog velocity

SET HI JOG VEL

Sets the velocity of the stage when either jog button is pushed
simultaneously with the High Speed button.

JH - Set high jog velocity

SET HOME VEL

Sets the velocity used during homing sequences. Refer to Section
1.6.3 for details on homing.

2-6 Section 2 – Modes of Operation

OH - Set home velocity

SET ACCEL/DECEL

This menu makes it possible to change acceleration and deceleration
that are used with the jog and home search buttons. The following
sub-menus are available:

SET ACCELERATION

Sets the acceleration that is used to accelerate to the desired velocity
when the jog buttons are used.

AC - Set Acceleration

SET DECELERATION

Sets the deceleration that is used to decelerate to the standstill when
the jog buttons are released.

AG - Set Deceleration

GET STAGE MODELS

This menu allows the user to retrieve the model numbers of the stages
that are connected to the respective axes.

ID - Get stage identifier

SAVE PARAMETERS

This menu allows the users to save all current settings (velocity,
acceleration, etc.) to the ESP301 non-volatile memory.

COMMUNICATION

This menu allows the user to retrieve the current communication
configuration settings.

RS232 CONFIG

This shows the current RS232 configuration settings.

Section 2 – Modes of Operation 2-7

2-8 Section 2 – Modes of Operation

USB CONFIG

This shows the current USB configuration settings.

IEEE CONFIG

This shows the current IEEE configuration settings.

Section 3 – Remote Mode

3.1 Programming Modes

The ESP301 is a command driven system. In general, commands are a
series of two letter ASCII characters preceded by an axis number and
followed by parameters specific to the command. To communicate
with the ESP301 controller, a host terminal has to transfer ASCII
character commands according to the respective communication
protocol (See Section 3.2 for IEEE488, RS232 or USB interfaces).

As briefly mentioned in Section 2, the ESP distinguishes between two
different programming modes:

COMMAND MODE

In this mode, the ESP301 controller provides a command input buffer
enabling the host terminal (e.g., PC) to download a series of
commands and then proceed to other tasks while the ESP301
controller processes the commands.

As command characters arrive from the host terminal, they are placed
into the command buffer. When a carriage-return (ASCII 13 decimal)
terminator is received, the command is interpreted. If the command is
valid and its parameter is within the specified range, it will be
executed. If the command contains an error, it will not be executed and
a corresponding error message will be stored in the error buffer.

NOTE

The ESP301 power up state is command mode.

An example of a typical command sequence is shown below:

Example 1:
1PA + 30 ⎮ move axis 1 to absolute position 30 units
1WS ⎮ wait for axis 1 to stop
2PR-10 ⎮ move axis 2 to relative position 10 units

Section 4 – Advanced Capabilities
 4-1

Assuming that axis 1 and 2 are configured, Example 1 instructs the
ESP controller to move axis 1 to absolute position +30 units, wait for
it to stop, and then move axis 2 motor to relative –10 units.

Note that a command prefix identifies the axis or group that should
execute a command. Commands received without an axis prefix
generate an error. If a command is referenced to a non-existing axis, an
error is also generated. See Section 3.4 for further details on the
command syntax.

Also note that it is necessary to explicitly instruct the ESP controller
with the WS (Wait for Stop) command to wait for axis 1 motion to
stop. This is necessary because the ESP controller executes commands
continuously as long as there are commands in the buffer unless a
command is fetched from the buffer that instructs the controller to
wait. Executing a move does not automatically suspend command
execution until the move is complete. If the WS command were not
issued in Example 1, the controller would start the second move
immediately after the first move begins and simultaneously move axis
1 and axis 2.

 NOTE

Unless instructed otherwise, the ESP controller executes commands in the
order received without waiting for completion of previous commands.

Remember that commands must be terminated with a carriage-return
(ASCII 13 decimal). Until a terminator is received, characters are
simply kept in contiguous buffer space without evaluation.

Example 2:
1PA+30; 1WS; 2PR-10

Example #1 and Example #2 perform the same operations. In
Example #2 however, semicolons are used in place of carriage-returns
as command delimiters, keeping the ESP301 controller from
interpreting any commands on that line until the carriage-return
terminator is received at the very end of the string.

PROGRAM EXECUTION MODE

The ESP301 controller also implements an internal program execution
mode that enables the user to store up to 100 programs in a 64kB non-
volatile memory.

Even while executing stored programs, the ESP301 controller
maintains open communication channels so that the host terminal can

3-2 Section 3 – Remote Mode

continue to direct the ESP301 to report any desired status, and even
execute other motion commands.

Let’s illustrate program execution mode using the previous example:

Example 3:
EP ⎮ invoke program entry mode
1PA+30 ⎮ enter program
1WS
2PR-10
QP ⎮ exit program entry mode
1EX ⎮ execute compiled program #1

As shown above, the sequence of commands has to be downloaded
into the ESP301 controller program memory without inadvertently
executing them. To facilitate this, the system provides the EP (Enter
Program) command; characters received thereafter are redirected to
program memory. Command syntax and parameters are not evaluated
(even after the carriage-return). Instead, they are treated as a series of
characters to be stored in contiguous memory.

3.2 Remote Interfaces

In this manual, Remote Interface refers to the three communication
interfaces that the controller can use to communicate with a computer
or a terminal via commands in ASCII format. It is not called a
Computer Interface since any device capable of sending ASCII
characters can be interfaced with the controller.

The remote interface should not be confused with the General Purpose
Input/Output (digital I/Os, a.k.a. GPIO).

Below is a table comparing the communication speeds of the
interfaces using typical commands.

Command communication and process time (in milliseconds)
RS232C USB IEEE

Command send
and read response ESP301 ESP300 ESP301 ESP300 ESP301 ESP300

TB? 25.08 28.02 4.18 - 1.32 2.88
VE? 24.84 27.60 3.92 - 0.96 1.68

Table 3.2: Command communication and process time

Measurements have been taken from a PC using Windows XP
operating system and with a 2GHz processor and 1Gb RAM.

Section 3 – Remote Mode 3-3

3-4 Section 3 – Remote Mode

 3.2.1 RS-232C Interface

HARDWARE CONFIGURATION

The serial (RS-232C) communication interface on the ESP controller
is accessed through the 9 pin Sub-D connector located on the rear
panel. The pin out is designed to interface directly with an IBM PC or
compatible computer, using a straight through cable.

Appendix C shows the pin out of the RS-232C connector and different
cable types that may be used to interface to a computer.

COMMUNICATION PROTOCOL

The RS-232C interface must be properly configured on both devices
communicating. A correct setting is one that matches all parameters
(baud rate, number of data bits, number of stop bits, parity type and
handshake type) for both devices.

The ESP301’s RS-232C configuration is fixed at 8 data bits, no
parity, and 1 stop bit.

To prevent buffer overflow when data is transferred to the ESP301
controller input buffer, a CTS/RTS hardware handshake protocol is
implemented. The host terminal can control transmission of characters
from the ESP301 by enabling the Request To Send (RTS) signal once
the controller’s Clear To Send (CTS) signal is ready. Before sending
any further characters, the ESP will wait for a CTS from the host.

As soon as its command buffer is full, the controller de-asserts CTS.
Then, as memory becomes available because the controller reads and
executes commands in its buffer, it re-asserts the CTS signal to the
host terminal.

3.2.2 USB Interface
HARDWARE CONFIGURATION

The USB communication interface on the ESP301 controller is
accessed through the 4 pin USB Type B connector located on the rear
panel. The pin out is designed to interface directly with a PC, using a
straight through cable.

Appendix C shows the pin out of the USB connector and the cable that
may be used to interface to a computer.

COMMUNICATION PROTOCOL

The USB interface must be properly configured on both devices
communicating. A correct setting is one that matches all parameters
(baud rate, number of data bits, number of stop bits, parity type and
handshake type) for both devices.

The ESP301 USB configuration is fixed at 921600 baud, 8 data bits,
N parity, and 1 stop bit.

 3.2.3 IEEE-488 Interface

HARDWARE CONFIGURATION

A typical IEEE-488 setup consists of a controller (host terminal) and
several devices connected to the bus. All devices are connected in
parallel to the data lines, data management and synchronization lines.

As a result of this type of connection, each device on the bus must
have a unique address so that the controller can selectively
communicate with it.

The address can be set through the optional front panel display or with the
SA (set address) command. (Note that the factory default is address 1)

COMMUNICATION PROTOCOL

The IEEE-488 interface is implemented on the motion controller
somewhat differently from a typical instrument because the standard
IEEE-488.2 command set and command format are inadequate for a
complex motion control. Since the ESP controller has its own
language and command set, the IEEE-488 interface is used only as a
communication port. The extended protocol is not supported.

The ESP301 controller has an ASCII command set and also outputs
system status in ASCII format. It features a command input buffer. If
the buffer fills up, the ESP301 will not allow further communication
until memory becomes available to accept new characters.

To send a command to the ESP301 controller, use the command
specific to your IEEE-488 terminal [e.g., output (ASCII)].

If the host terminal asks the controller for a response [e.g., input
(ASCII)] and no response is obtained, the controller will eventually
will time-out.

Section 3 – Remote Mode 3-5

USE OF SRQ LINE

The ESP301 controller can be instructed to generate an IEEE-488
service request (SRQ) upon processing the RQ command. This allows
the user to generate SRQs anywhere within the ESP command stream
thereby facilitating efficient event synchronization capability with the
host computer.

The following example illustrates the use of the RQ command:

1PR10; 1WS100; 2PR10; 3PR10; 3WS100; RQ
In the above example, the SRQ line is asserted only after execution of
the sequence preceding the RQ command is finished.

SERIAL POLL

When the IEEE-488 controller senses a service request on the bus, it
creates an interrupt to the application program (if configured to do so).
The application program must contain a service routine for this
interrupt. First, the program must determine which device on the bus
generated the service request. This is usually achieved with a function
called Serial Poll. The exact syntax for the serial poll command
depends on the IEEE-488 controller.

Using that interrupt service routine, a serial poll command can be
issued to each device. The device polled at each instance will respond
with a status byte. Bit 6 of the status byte indicates whether a specific
device (i.e., ESP301 controller) generated the service request or not.
Bits 0 through 5 are under user control and are set with the RQ
command. For example, command “RQ5” sets bits 0 and 2. This is
useful in helping the application program determine which RQ in a
program with multiple RQs generated the SRQ.

3.3 Software Utilities

In order to communicate with the controller, the user must have a
terminal or a computer capable of communicating through RS-232C,
USB or IEEE488. One approach is to use a computer with
communications software that can emulate a terminal. Windows XP
provides an RS232 terminal emulation program named Hyper
Terminal (HyperTrm.Exe) located in Accessories. HyperTrm allows
the user to send ASCII commands to the motion controller. The user
can even download text files with stored programs. Additionally, it can
be used to download controller firmware for future upgrades.

3-6 Section 3 – Remote Mode

For IEEE488 communications National Instruments Inc. provides a
program named IBIC with their products that allow the user to send
and receive ASCII characters and download files. This could be useful
in determining that the interface is working.

3.4 Command Syntax

As mentioned previously, the ESP301 controller utilizes an ASCII
command set and also outputs system status in ASCII format.
Commands may be either upper or lower case characters.
The diagram below illustrates the ESP301 controller command syntax.
As indicated in this diagram, a valid command consists of three main
fields. The first field consists of a numerical parameter “xx”, the
second field consists of a two letter ASCII mnemonic, and the third
field consists of numerical parameter “nn”. The command is finally
terminated by a carriage return. For example, 3PA10.0 is a valid
command.

If a command does not require parameter “xx” and/or parameter “nn”,
that field may be skipped by leaving a blank character (space). For
example, BO1, 3WS, and AB are all valid commands.

If a command requires multiple parameters in the third field, all these
parameters must be comma delimited. For example, 1HN1,2 is a valid
command.

In a similar fashion, multiple commands can be issued on a single
command line by separating the commands by a semi-colon (;). For
example, 3MO; 3PA10.0; 3WS; 3MF is a valid command line.

parameter
"xx" command parameter

"nn"

terminator
(carriage
return)

command
separator

(;)

parameter
separator

(,)

Figure 3.1: Command Syntax Diagram

Section 3 – Remote Mode 3-7

 NOTE
A controller command (or a sequence of commands) has to be terminated with
a carriage return character. However, responses from the controller are always
terminated by a carriage return/line feed combination. This setting may not be

changed. If the IEEE interface is used, the IEEE controller has to be
configured to terminate the input (read) function when it senses the line feed

character.

 3.4.1 Summary of Command Syntax

nn AA XX COMMAND FORMAT

The general format of a command is a two character mnemonic (AA).
Both upper and lower case are accepted. Depending on the command,
it could also have optional or required preceding (xx) and/or following
(nn) parameters.

BLANK SPACES

Blank spaces are allowed and ignored between parameters and
commands. For the clarity of the program and memory saving
considerations, use blank spaces with restraint. The following two
commands are equivalent.

2 PA 1000
2PA1000

but the first example is very confusing and uses more than twice the
memory.

COMMAND LINE

Commands are executed line by line. A line can consist of one or a
number of commands. The controller will interpret the commands in
the order they are received and execute them sequentially. This means
that commands issued on the same line are executed significantly
closer to each other than if they would be issued on separate lines. The
maximum number of characters allowed on a command line is 80.

3-8 Section 3 – Remote Mode

SEPARATOR

Commands issued on the same line must be separated by semicolons (;).

Multiple parameters issued for the same command are separated by
commas (,).

TERMINATOR

Each command line must end with a line terminator, i.e., carriage
return.

3.5 Command Summary

The controller understands many commands. The following tables list
all of them, sorted first by category and then alphabetically. The tables
also show the operating modes in which each command can be used.
The acronyms used in the tables have the following meaning:

IMM IMMediate mode

Controller is idle and the
commands will be executed
immediately.

PGM ProGraM mode

Controller does not execute but
stores all commands as part of a
program. EP activates this mode
and QP exits it.

MIP Motion In Progress
Controller executes command on
the specified axis while in
motion.

Section 3 – Remote Mode 3-9

TABLE 3.5.1 – Command List by Category

GENERAL MODE SELECTION
Cmd. Description IMM PGM MIP Page
BQ Enable/disable DIO jog mode ♦ ♦ ♦ 3- 39

DO Set DAC offset ♦ ♦ ♦ 3- 51

FP Set position display resolution ♦ ♦ ♦ 3- 58

LC Lock/Unlock keyboard ♦ ♦ 3- 92

MF Power OFF ♦ ♦ ♦ 3- 95

MO Power ON ♦ ♦ ♦ 3- 96

QD Update Unidriver amplifier ♦ ♦ ♦ 3- 111

RS Reset the controller ♦ ♦ 3- 121

TJ Set trajectory mode ♦ ♦ 3- 137

ZA Set amplifier configuration ♦ ♦ 3- 155

ZB Set feedback configuration ♦ ♦ 3- 158

ZE Set E-stop configuration ♦ ♦ 3- 160

ZF Set following error configuration ♦ ♦ 3- 162

ZH Set hardware limit configuration ♦ ♦ 3- 164

ZS Set software limit configuration ♦ ♦ 3- 166

ZU Get ESP system configuration ♦ ♦ 3- 168

ZZ Set system configuration ♦ ♦ 3- 170

STATUS FUNCTIONS
Cmd. Description IMM PGM MIP Page
DP Get target position ♦ ♦ 3- 52

DV Get working speed ♦ ♦ 3- 53

ID Get stage model and serial
number

♦ ♦ 3- 83

MD Get axis motion status ♦ ♦ 3- 94

PH Get hardware status ♦ ♦ 3- 107

TB Get error message ♦ ♦ 3- 135

TE Get error number ♦ ♦ 3- 136

TP Get position ♦ ♦ 3- 138

TS Get controller status ♦ ♦ 3- 139

TV Get velocity ♦ ♦ 3- 140

TX Get controller activity ♦ ♦ 3- 141

VE Get firmware version ♦ ♦ 3- 147

XM Get available program memory ♦ ♦ 3- 153

3-10 Section 3 – Remote Mode

MOTION & POSITION CONTROL
Cmd. Description IMM PGM MIP Page
AB Abort motion ♦ ♦ 3- 21

DH Define home ♦ ♦ 3- 49

MT Move to hardware travel limit ♦ ♦ ♦ 3- 97

MV Move indefinitely ♦ ♦ ♦ 3- 98

MZ Move to nearest index ♦ ♦ 3- 100

OR Origin searching ♦ ♦ ♦ 3- 104

PA Move absolute ♦ ♦ ♦ 3- 106

PR Move relative ♦ ♦ ♦ 3- 110

ST Stop motion ♦ ♦ ♦ 3- 133

MOTION DEVICE PARAMETERS
Cmd. Description IMM PGM MIP Page
FE Set following error threshold ♦ ♦ ♦ 3- 57

FR Full step resolution ♦ ♦ ♦ 3- 59

GR Set gear ratio ♦ ♦ ♦ 3- 60

QG Set gear constant ♦ ♦ 3- 112

QI Motor current ♦ ♦ 3- 113

QM Define motor type ♦ ♦ 3- 114

QR Torque reduction ♦ ♦ ♦ 3- 116

QS Set microstep factor ♦ ♦ 3- 117

QT Define tachometer constant ♦ ♦ 3- 118

QV Set motor voltage ♦ ♦ 3- 119

SI Set master-slave jog update
interval

♦ ♦ ♦ 3- 126

SK Set slave axis jog velocity
coefficients

♦ ♦ ♦ 3- 127

SL Set left limit ♦ ♦ ♦ 3- 128

SN Set units ♦ ♦ 3- 130

SR Set right limit ♦ ♦ 3- 131

SS Set master-slave relationship ♦ ♦ 3- 132

SU Set encoder resolution ♦ ♦ 3- 134

PROGRAMMING
Cmd. Description IMM PGM MIP Page
DL Define label ♦ 3- 50

EO Automatic execution on power
on

♦ ♦ 3- 54

EP Enter program download mode ♦ 3- 55

EX Execute stored program ♦ ♦ 3- 56

JL Jump to label ♦ ♦ 3- 86

LP List program ♦ ♦ 3- 92

QP Quit program mode ♦ 3- 115

Section 3 – Remote Mode 3-11

SM Save to non-volatile memory ♦ 3- 129

XM Get available program memory ♦ ♦ 3- 153

XX Delete a stored program ♦ ♦ 3- 154

TRAJECTORY DEFINITION
Cmd. Description IMM PGM MIP Page
AC Set acceleration ♦ ♦ ♦ 3- 22

AE Set e-stop deceleration ♦ ♦ ♦ 3- 24

AG Set deceleration ♦ ♦ ♦ 3- 27

AU Set maximum acceleration ♦ ♦ ♦ 3- 30

BA Set backlash compensation ♦ ♦ ♦ 3- 31

CO Set linear compensation ♦ ♦ ♦ 3- 41

JH Set jog high speed ♦ ♦ ♦ 3- 84

JK Set jerk rate ♦ ♦ ♦ 3- 85

JW Set jog low speed ♦ ♦ ♦ 3- 87

OL Set home search low speed ♦ ♦ ♦ 3- 102
OH Set home search high speed ♦ ♦ ♦ 3- 101

OM Set home search mode ♦ ♦ ♦ 3- 103

SH Set home preset position ♦ ♦ ♦ 3- 125

UF Update filter parameters ♦ ♦ ♦ 3- 142

VA Set velocity ♦ ♦ ♦ 3- 145

VB Set base velocity for step motors ♦ ♦ ♦ 3- 146

VU Set maximum speed ♦ ♦ ♦ 3- 149

FLOW CONTROL & SEQUENCING
Cmd. Description IMM PGM MIP Page
DL Define label ♦ 3- 50

JL Jump to label ♦ ♦ 3- 86

RQ Generate service request ♦ ♦ ♦ 3- 120

SA Set device address ♦ ♦ ♦ 3- 122

WP Wait for absolute position
crossing

♦ ♦ ♦ 3- 150

WS Wait for stop ♦ ♦ ♦ 3- 151

WT Wait for time ♦ ♦ ♦ 3- 152

I/O FUNCTIONS
Cmd. Description IMM PGM MIP Page
BG Assign DIO bits to execute stored

programs
♦ ♦ 3- 32

BK Assign DIO bits to inhibit motion ♦ ♦ ♦ 3- 33

BL Enable DIO bits to inhibit motion ♦ ♦ ♦ 3- 34

BM Assign DIO bits to notify motion
status

♦ ♦ ♦ 3- 35

BN Enable DIO bits to notify motion
status

♦ ♦ ♦ 3- 36

3-12 Section 3 – Remote Mode

BO Set DIO Port Direction ♦ ♦ ♦ 3- 37

BP Assign DIO for jog mode ♦ ♦ ♦ 3- 38

BQ Enable/disable DIO jog mode ♦ ♦ ♦ 3- 39

DC Setup data acquisition ♦ ♦ 3- 43

DD Get data acquisition done status ♦ ♦ 3- 45

DE Enable/disable data acquisition ♦ ♦ 3- 46

DF Get data acquisition sample count ♦ ♦ 3- 47

DG Get acquisition data ♦ ♦ 3- 48

SB Set DIO state ♦ ♦ ♦ 3- 123

UL Wait for DIO bit low ♦ 3- 144
UH Wait for DIO bit high ♦ 3- 143

GROUP FUNCTIONS
Cmd. Description IMM PGM MIP Page
HA Set group acceleration ♦ ♦ ♦ 3- 61

HB Read list of groups assigned ♦ ♦ 3- 63

HC Move group along an arc ♦ ♦ ♦ 3- 64

HD Set group deceleration ♦ ♦ ♦ 3- 66

HE Set group E-stop deceleration ♦ ♦ ♦ 3- 68

HF Group motor power OFF ♦ ♦ ♦ 3- 69

HJ Set group jerk ♦ ♦ ♦ 3- 70

HL Move group along a line ♦ ♦ ♦ 3- 71

HN Create new group ♦ ♦ 3- 73

HO Group motor power ON ♦ ♦ ♦ 3- 75

HP Get group position ♦ ♦ 3- 76

HQ Wait for group via point buffer
near empty

♦ ♦ ♦ 3- 77

HS Stop group motion ♦ ♦ ♦ 3- 78

HV Set group velocity ♦ ♦ ♦ 3- 79

HW Wait for group motion to stop ♦ ♦ ♦ 3- 80

HX Delete a group ♦ ♦ ♦ 3- 81

HZ Get group size ♦ ♦ 3- 82

Section 3 – Remote Mode 3-13

DIGITAL FILTERS
Cmd. Description IMM PGM MIP Page
AF Acceleration/Deceleration feed-

forward gain
♦ ♦ ♦ 3- 26

CL Set closed loop update interval ♦ ♦ ♦ 3- 40

DB Set position deadband ♦ ♦ ♦ 3- 42

KD Set derivative gain Kd ♦ ♦ ♦ 3- 88

KI Set integral gain Ki ♦ ♦ ♦ 3- 89

KP Set proportional gain Kp ♦ ♦ ♦ 3- 90

KS Set saturation coefficient Ks ♦ ♦ ♦ 3- 91

UF Update Filter Parameters ♦ ♦ ♦ 3- 142

VF Set velocity feed-forward gain ♦ ♦ ♦ 3- 148

MASTER-SLAVE MODE DEFINITION
Cmd. Description IMM PGM MIP Page
GR Set master-slave Ratio ♦ ♦ ♦ 3- 60

SI Set master-slave jog update
interval

♦ ♦ ♦ 3- 126

SK Set slave axis jog velocity
coefficients

♦ ♦ ♦ 3- 127

SS Set master-slave mode ♦ ♦ 3- 132

3-14 Section 3 – Remote Mode

TABLE 3.5.2 – Command List – Alphabetical

Cmd. Description IMM PGM MIP Page
AB Abort Motion ♦ ♦ 3- 21

AC Set acceleration ♦ ♦ ♦ 3- 22

AE Set e-stop deceleration ♦ ♦ ♦ 3- 24

AF Set acceleration feed-forward gain ♦ ♦ ♦ 3- 26

AG Set deceleration ♦ ♦ ♦ 3- 27

AP Abort program ♦ ♦ ♦ 3- 29

AU Set maximum acceleration and deceleration ♦ ♦ ♦ 3- 30

BA Set backlash compensation ♦ ♦ ♦ 3- 31

BG Assign DIO bits to execute stored programs ♦ ♦ 3- 32

BK Assign DIO bits to inhibit motion ♦ ♦ ♦ 3- 33

BL Enable DIO bits to inhibit motion ♦ ♦ ♦ 3- 34

BM Assign DIO bits to notify motion status ♦ ♦ ♦ 3- 35

BN Enable DIO bits to notify motion status ♦ ♦ ♦ 3- 36

BO Set DIO port A, B, C direction ♦ ♦ ♦ 3- 37

BP Assign DIO bits for jog mode ♦ ♦ ♦ 3- 38

BQ Enable DIO bits for jog mode ♦ ♦ ♦ 3- 39

CL Set closed loop update interval ♦ ♦ ♦ 3- 40

CO Set linear compensation ♦ ♦ ♦ 3- 41

DB Set position deadband ♦ ♦ ♦ 3- 42

DC Setup data acquisition ♦ ♦ 3- 43

DD Get data acquisition done status ♦ ♦ 3- 45

DE Enable/disable data acquisition ♦ ♦ 3- 46

DF Get data acquisition sample count ♦ ♦ 3- 47

DG Get acquisition data ♦ ♦ 3- 48

DH Define home ♦ ♦ ♦ 3- 49

DL Define label ♦ ♦ ♦ 3- 50

DO Set DAC offset ♦ ♦ ♦ 3- 51

DP Read desired position ♦ ♦ 3- 52

DV Read desired velocity ♦ ♦ 3- 53

EO Automatic execution on power on ♦ ♦ 3- 54

EP Enter program mode ♦ 3- 55

EX Execute a program ♦ ♦ 3- 56

FE Set maximum following error threshold ♦ ♦ ♦ 3- 57

Section 3 – Remote Mode 3-15

TABLE 3.5.2 – Command List – Alphabetical (Continued)

Cmd. Description IMM PGM MIP Page
FP Set position display resolution ♦ ♦ ♦ 3- 58

FR Set full step resolution ♦ ♦ ♦ 3- 59

GR Set master-slave reduction ratio ♦ ♦ ♦ 3- 60

HA Set group acceleration ♦ ♦ ♦ 3- 61

HB Read list of groups assigned ♦ ♦ 3- 63

HC Move group along an arc ♦ ♦ ♦ 3- 64

HD Set group deceleration ♦ ♦ ♦ 3- 66

HE Set group e-stop deceleration ♦ ♦ ♦ 3- 68

HF Group motor power off ♦ ♦ ♦ 3- 69

HJ Set group jerk ♦ ♦ ♦ 3- 70

HL Move group along a line ♦ ♦ ♦ 3- 71

HN Create new group ♦ ♦ 3- 73

HO Group on ♦ ♦ ♦ 3- 75

HP Read group position ♦ ♦ 3- 76

HQ Wait for group command buffer level ♦ ♦ ♦ 3- 77

HS Stop group motion ♦ ♦ ♦ 3- 78

HV Set group velocity ♦ ♦ ♦ 3- 79

HW Wait for group motion stop ♦ ♦ ♦ 3- 80

HX Delete group ♦ ♦ ♦ 3- 81

HZ Read group size ♦ ♦ ♦ 3- 82

ID Read stage model and serial number ♦ ♦ 3- 83

JH Set jog high speed ♦ ♦ ♦ 3- 84

JK Set jerk rate ♦ ♦ ♦ 3- 85

JL Jump to label ♦ ♦ 3- 86

JW Set jog low speed ♦ ♦ ♦ 3- 87

KD Set derivative gain ♦ ♦ ♦ 3- 88

KI Set integral gain ♦ ♦ ♦ 3- 89

KP Set proportional gain ♦ ♦ ♦ 3- 90

KS Set saturation level of integral factor ♦ ♦ ♦ 3- 91

LP List program ♦ ♦ 3- 92

LC Lock/unlock keyboard ♦ ♦ 3- 921
MD Read motion done status ♦ ♦ 3- 942
MF Motor power off ♦ ♦ ♦ 3- 953
MO Motor power on ♦ ♦ ♦ 3- 964
MT Move to hardware travel limit ♦ ♦ ♦ 3- 975
MV Move indefinitely ♦ ♦ ♦ 3- 986
MZ Move to nearest index ♦ ♦ ♦ 3- 1008
OH Set home search high speed ♦ ♦ ♦ 3- 1019
OL Set home search low speed ♦ ♦ ♦ 3- 102
OM Set home search mode ♦ ♦ ♦ 3- 1031

3-16 Section 3 – Remote Mode

TABLE 3.5.2 – Command List – Alphabetical (Continued)

In a PDF format you may click on a page number to automatically be connected to the corresponding Command Page

Cmd. Description IMM PGM MIP Page
OR Search for home ♦ ♦ 3- 1043
PA Move to absolute position ♦ ♦ ♦ 3- 1064
PH Get hardware status ♦ ♦ 3- 1078
PR Move to relative position ♦ ♦ ♦ 3- 1101
QD Update motor driver settings ♦ ♦ 3- 1112
QG Set gear constant ♦ ♦ 3- 1123
QI Set maximum motor current ♦ ♦ 3- 1134
QM Set motor type ♦ ♦ 3- 1145
QP Quit program mode ♦ 3- 1156
QR Reduce motor torque ♦ ♦ ♦ 3- 1167
QS Set microstep factor ♦ ♦ 3- 1178
QT Set tachometer gain ♦ ♦ 3- 1189
QV Set average motor voltage ♦ ♦ 3- 11931
RQ Generate service request ♦ ♦ ♦ 3- 1204
RS Reset the controller ♦ ♦ 3- 1215
SA Set device address ♦ ♦ ♦ 3- 1227
SB Set/get DIO port A, B, C bit status ♦ ♦ ♦ 3- 1238
SH Set home preset position ♦ ♦ ♦ 3- 12540
SI Set master-slave jog velocity update interval ♦ ♦ ♦ 3- 12641
SK Set master-slave jog velocity scaling coefficients ♦ ♦ ♦ 3- 12742
SL Set level travel limit ♦ ♦ ♦ 3- 1283
SM Save settings to non-volatile memory ♦ 3- 1294
SN Set axis displacement units ♦ ♦ 3- 1305
SR Set right travel limit ♦ ♦ 3- 1316
SS Define master-slave relationship ♦ ♦ 3- 1327
ST Stop motion ♦ ♦ ♦ 3- 1338
SU Set encoder resolution ♦ ♦ 3- 1349
TB Read error message ♦ ♦ 3- 13550
TE Read error code ♦ ♦ 3- 13651
TJ Set trajectory mode ♦ ♦ 3- 13752
TP Read actual position ♦ ♦ 3- 1383
TS Get controller status ♦ ♦ 3- 1394
TV Get actual velocity ♦ ♦ 3- 1405
TX Get controller activity ♦ ♦ 3- 1416
UF Update servo filter ♦ ♦ ♦ 3- 1427
UH Wait for DIO bit high ♦ 3- 1438

Section 3 – Remote Mode 3-17

TABLE 3.5.2 – Command List – Alphabetical (Continued)
In a PDF format you may click on a page number to automatically be connected to the corresponding Command Page

Cmd. Description IMM PGM MIP Page
UL Wait for DIO bit low ♦ 3- 1449
VA Set velocity ♦ ♦ ♦ 3- 14560
VB Set base velocity for step motors ♦ ♦ ♦ 3- 14661
VE Read controller firmware version ♦ ♦ 3- 14762
VF Set velocity feed-forward gain ♦ ♦ ♦ 3- 1483
VU Set maximum velocity ♦ ♦ ♦ 3- 1494
WP Wait for absolute position crossing ♦ ♦ ♦ 3- 1505
WS Wait for motion stop ♦ ♦ ♦ 3- 1516
WT Wait ♦ ♦ ♦ 3- 1527
XM Get available program memory ♦ ♦ 3- 1538
XX Delete a stored program ♦ ♦ 3- 1549
ZA Set amplifier I/O configuration ♦ ♦ 3- 15570
ZB Set feedback configuration ♦ ♦ 3- 1583
ZE Set E-stop configuration ♦ ♦ 3- 1605
ZF Set following error configuration ♦ ♦ 3- 1627
ZH Set hardware limit configuration ♦ ♦ 3- 1649
ZS Set software limit configuration ♦ ♦ 3- 16681
ZU Get ESP system configuration ♦ ♦ 3- 1683
ZZ Set system configuration ♦ ♦ 3- 1706

3-18 Section 3 – Remote Mode

3.6 Description of Commands

The extensive ESP301 controller command set exists to facilitate
application development for wide range of application and needs.
However, most simple positioning can be done with just a few
commands:

VA – set velocity
AC – set acceleration
AG – set deceleration
PR – position relative
PA – position absolute
TP – tell position
WS – wait for stop

NOTE

Most of the commands take an axis number as a parameter (xx). For such
commands, the valid range of axis number is from 1 to MAX AXES, where

MAX AXES is dependent on the configuration of the ESP301 motion
controller.

Commands related to coordinated motion and contouring (group commands)
take a group number as a parameter. For such commands, the valid range of
group number is from 1 to MAX GROUPS, where MAX GROUPS is one-half

the MAX AXES.

Section 3 – Remote Mode 3-19

AA – (command mnemonic) (brief definition)
(motor type) *
 (diamonds mark which mode the command can be used in)

IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxAAnn (generic syntax format)

PARAMETERS
Description xx [int] -- (description of parameter)
 Nn [float] -- (description of parameter)

(parameter could be integer number, floating point number, character or string)

Range xx -- (minimum value to maximum value)
 nn -- (minimum value to maximum value)
Units xx -- (units description)
 nn -- (units description)
Defaults xx missing: (default or error if parameter is missing)
 out of range: (default or error if parameter is out of
 range)
 nn missing: (default or error if parameter is missing)
 out of range: (default or error if parameter is out of
 range)
DESCRIPTION (detailed description of the command)
 Note:
 (notes, reminders and things to consider when using the command, if any)

RETURNS (Type, format and description of the return the command is
 Generating, if any)

ERRORS (Error Code) – (description of errors the command could
 Generate if misused)

REL. COMMANDS (brief definition of related commands)

EXAMPLE (Command Discussed) | (description)
 (Other command) | (description)
 (Controller return) | (description)
*(motor type) – if the command is specific for a motor type (DC or stepping) it will be labeled here, otherwise
this field is blank,
** The mode mnemonics has the following meanings:
IMMediate mode – controller is in idle mode and the commands are executed immediately.

ProGraM mode – controller does not execute but stores all commands as part of a program.

Motion In Progress – controller is executing a motion on all or the specified axis.

3-20 Section 3 – Remote Mode

AB abort motion

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX AB

PARAMETERS None.

DESCRIPTION This command should be used as an emergency stop. On reception of this

command, the controller invokes emergency stop event processing for each axis
as configured by ZE (e-stop event configuration) command.

By default axes are configured to turn motor power OFF, however, individual
axes can be configured to stop using emergency deceleration rate set by AE
command and maintain motor power.

 It should be used only as an immediate command, not in a program.

 Note

This command affects all axes, however the action taken is determined by each
individual’s axis ZE command configuration.

RETURNS none

REL. COMMANDS ST - stop motion
 AE - e-stop deceleration
 ZE - e-stop deceleration
 MF - motor OFF
 MO - motor ON

EXAMPLE AB | used as an immediate command to stop all motion

Section 3 – Remote Mode 3-21

AC set acceleration

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxACnn or xxAC?

PARAMETERS
Description xx [int] - axis number
 nn [float] - acceleration value

Range xx - 1 to MAX AXES

N - 0 to the maximum programmed value in AU command
 or ? to read current setting

Units xx - none
 nn - predefined units / second2
Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING

out of range: error xx11, MAXIMUM ACCELERATION
EXCEEDED

DESCRIPTION This command is used to set the acceleration value for an axis. Its execution is
 immediate, meaning that the acceleration is changed when the command is
 processed, even while a motion is in progress.

It can be used as an immediate command or inside a program. If the requested
axis is a member of a group, the commanded acceleration becomes effective only
after the axis is removed from the group. (Refer to Advanced Capabilities
section for a detailed description of grouping and related commands)

Avoid changing the acceleration during the acceleration or deceleration periods.
For better predictable results, change acceleration only when the axis is not
moving or when it is moving with a constant speed.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS VA - set velocity
 PA - execute an absolute motion
 PR - execute a relative motion
 AU - set maximum acceleration and deceleration
 AG - set deceleration

EXAMPLE 2AU? | read maximum allowed acceleration/deceleration of axis # 2
 10 | controller returns a value of 10 units/s2
 2AC9 | set acceleration to 9 units/s2

3-22 Section 3 – Remote Mode

 2AG6 | set deceleration to 6 units/s2

2AU15 | set axis # 2 maximum acceleration/deceleration to 15 units/s2
2AU? | read maximum allowed acceleration & deceleration of axis # 2
15 | controller returns a value of 15 units

Section 3 – Remote Mode 3-23

AE set e-stop deceleration

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxAEnn or xxAE?

PARAMETERS
Description xx [int] - axis number
 nn [float] - e-stop deceleration value

Range xx - 1 to MAX AXES

nn - current normal deceleration value to 2e9 * encoder
resolution

 or ? to read current setting

Units xx - none
 nn - predefined units / second2

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 1, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the e-stop deceleration value for an axis. Its

execution is immediate, meaning that the e-stop deceleration value is changed
when the command is processed, even while a motion is in progress.

It can be used as an immediate command or inside a program. If the requested
axis is a member of a group, the commanded e-stop deceleration becomes
effective only after the axis is removed from the group. (Refer to Advanced
Capabilities section for a detailed description of grouping and related commands)

E-stop deceleration is invoked upon a local e-stop condition (e.g., front panel
Stop All pushbutton, Interlock, etc..) has occurred, if configured to do so, or if
the AB (abort motion) command is processed.

Note:
E-stop deceleration value cannot be set lower than the normal deceleration value.
Refer the description of “AG” command for range of deceleration values.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS VA - set velocity
 PA - execute an absolute motion
 PR - execute a relative motion
 AU - set maximum acceleration and deceleration

3-24 Section 3 – Remote Mode

 AG - set deceleration
 AC - set acceleration

EXAMPLE 2AE? | read e-stop deceleration of axis # 2
 100 | controller returns a value of 100 units/s2
 2AE150 | set e-stop deceleration to 150 units/s2

Section 3 – Remote Mode 3-25

AF set acceleration feed-forward gain

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxAFnn or xxAF?

PARAMETERS
Description xx [int] - axis number
 nn [float] - acceleration feed-forward gain factor

Range xx - 1 to MAX AXES
 nn- - 0 to 2e9, or ? to read current setting
Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the acceleration feed-forward gain factor Af. It is active for

any DC servo based motion device.
.

See the "Feed-Forward Loops" in Motion Control Tutorial section to
understand the basic principles of feed-forward.

Note:
The command can be sent at any time but it has no effect until the UF (update
filter) is received.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS KI - set integral gain factor
 KD - set derivative gain factor
 KP - set proportional gain factor
 KS - set saturation gain factor
 VF - set velocity feed-forward gain
 UF - update filter

EXAMPLE 3VF1.5 | set acceleration feed-forward gain factor for axis # 3 to 1.5

3AF? | report present axis-3 acceleration feedforward setting
 0.9 | controller returns a value of 0.9
 3AF0.8 | set acceleration feed-forward gain factor for axis # 3 to 0.8
 3UF | update PID filter; only now the AF command takes effect

3-26 Section 3 – Remote Mode

AG set deceleration

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxAGnn or xxAG?

PARAMETERS

Description xx [int] - axis number
 nn [float] - acceleration value

Range xx - 1 to MAX AXES
 Nn - to the maximum programmed value in AU command
 or ? to read current setting

Units xx - none
 Nn - predefined units / second2

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING

out of range: error xx11, MAXIMUM ACCELERATION
EXCEEDED

DESCRIPTION This command is used to set the deceleration value for an axis. Its execution is

immediate, meaning that the deceleration is changed when the command is
processed, even while a motion is in progress.

It can be used as an immediate command or inside a program. If the requested
axis is a member of a group, the commanded deceleration becomes effective only
after the axis is removed from the group. (Refer to Advanced Capabilities
section for a detailed description of grouping and related commands)

Avoid changing the deceleration during the acceleration or deceleration periods.
For better predictable results, change deceleration only when the axis is not
moving or when it is moving with a constant speed.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS VA - set velocity
 PA - execute an absolute motion
 PR - xecute a relative motion
 AU - set maximum acceleration and deceleration
 AC - set acceleration

Section 3 – Remote Mode 3-27

EXAMPLE 2AU? | read maximum allowed acceleration/deceleration of axis # 2
 10 | controller returns a value of 10 units/s2
 2AC9 | set acceleration to 9 units/s2
 2AG6 | set deceleration to 6 units/s2

2AG? | read maximum current deceleration of axis # 2
 6 | controller returns a value of 6 units/s2

3-28 Section 3 – Remote Mode

Section 3 – Remote Mode 3-29

AP abort program

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX AP

PARAMETERS none

DESCRIPTION This command is used to interrupt a motion program in execution. It will not stop

a motion in progress. It will only stop the program after the current command
line finished executing.

 It can be used as an immediate command or inside a program.

Inside a program it is useful in conjunction with program flow control
commands. It could, for instance, terminate a program on the occurrence of a
certain external event, monitored by an I/O bit.

RETURNS none

REL. COMMANDS EX - execute a program

EXAMPLE 3EX | execute program # 3
 •
 •
 •
 AP | stop program execution

AU set maximum acceleration and deceleration
 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxAUnn or xxAU?

PARAMETERS
Description xx [int] - axis number
 nn [float] - acceleration value

Range xx - 1 to MAX AXES
 nn - 0 to 2e+9, or ? to read current setting

Units xx - none
 nn - predefined units / second2

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING

 out of range: error xx11, MAXIMUM ACCELERATION
EXCEEDED
error xx1, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the maximum acceleration and deceleration value for an
axis. This command remains effective even if the requested axis is member of a group.
In this case, two error messages "GROUP MAXIMUM ACCELERATION
EXCEEDED" or "GROUP MAXIMUM DECELERATION EXCEEDED" are generated
if the commanded value is less than group acceleration or deceleration respectively.
(Refer to Advanced Capabilities section for a detailed description of grouping and related
commands)

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS VA - set velocity
 PA - execute an absolute motion
 PR - execute a relative motion
 AG - set deceleration
 AC - et acceleration

EXAMPLE AU? | read maximum allowed acceleration/deceleration of axis # 2
 10 | controller returns a value of 10 units/s2
 2AC9 | set acceleration to 9 units/s2
 2AG6 | set deceleration to 6 units/s2

2AU15 | set axis # 2 maximum acceleration/deceleration to 15 units/s2
2AU? | read maximum allowed acceleration & deceleration of axis # 2
15 | controller returns a value of 15 units/s2

3-30 Section 3 – Remote Mode

BA set backlash compensation

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxBAnn or xxBA?

PARAMETERS
Description xx [int] - axis number
 nn [float] - backlash compensation value

Range xx - 1 to MAX AXES
 nn - to distance equivalent to 10000 encoder counts

Units xx - none
 nn - user units

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command initiates a backlash compensation algorithm when motion

direction is reversed. The controller keeps track of the motion sequence and for
each direction change it adds the specified nn correction. Setting nn to zero
disables the backlash compensation.

NOTE: The command is affective only after a home search (OR) or define
home (DH) is performed on the specified axis.

RETURNS If “?” sign takes the place of nn value, this command reports the current setting.

REL. COMMANDS None

EXAMPLE 1BA0.0012 | Set backlash compensation value for axis #1 to 0.0012 units

1BA? | Query backlash compensation value for axis #1
 0.0012 | Controller returns a value of 0.0012 units
 1OR | Perform home search on axis #1
 1PA10 | Move axis #1 to absolute 10 units
 1PA0 | Move axis #1 to absolute 0 units

Section 3 – Remote Mode 3-31

BG assign DIO bits to execute stored programs

IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxBGnn or xxBG?

PARAMETERS
Description xx [int] - bit number used to trigger stored program execution
 nn [char] - name of stored program to be executed

Range xx - 0 to 15
 nn - None or ? to read current setting

Units None

Defaults xx missing: error 7, PARAMETER OUT OF RANGE
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to assign DIO bits for initiating the execution of a desired
stored program. Execution of the stored program begins when the specified DIO
bit changes its state from HIGH to LOW logic level.

 Note: Each DIO bit has a pulled-up resistor to +5V. Therefore, all bits will be at
HIGH logic level if not connected to external circuit and configured as input.

RETURNS If the "?" sign takes the place of nn value, this command reports the current
setting.

REL. COMMANDS BO - Set DIO port A, B direction
 EP - Enter program mode
 EX - Execute stored program
 AP - Abort stored program execution

EXAMPLE BO 04H | Set DIO ports A and B to input
 0 BG 1 | Start execution of a stored program 1 when DIO bit #0 changes
 | state from HIGH to LOW

3-32 Section 3 – Remote Mode

BK assign DIO bits to inhibit motion

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxBKnn1, nn2 or xxBK?

PARAMETERS
Description xx [int] - axis number
 nn1 [int] - bit number for inhibiting motion
 nn2 [int] - bit level when axis motion is inhibited

Range xx - 1 to MAX AXES
 nn1 - 0 to 15
 nn2 - 0 = LOW and 1 = HIGH or ? to read current setting

Units None

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn1 missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx1, PARAMETER OUT OF RANGE
 nn2 missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx1, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to assign DIO bits for inhibiting the motion of a selected
axis. If the selected axis is already in motion, and DIO bit is asserted, e-stop is
executed per E-stop configuration (Refer "ZE" command for further details). If
the axis is not moving, any new move commands are refused as long as the DIO
bit is asserted. In either case, "DIGITAL I/O INTERLOCK DETECTED" error is
generated.

 Note: The direction of the DIO port (A, B) the desired bit belongs to, should be
set to "input" in order for the DIO bit to be read accurately. Refer "BO"
command for further details.

RETURNS If the "?" sign takes the place of nn value, this command reports the current
assignment.

REL. COMMANDS BL - Enable DIO bits to inhibit motion
 BO - Set DIO port A, B direction
 BM - Assign DIO bits to notify motion status

EXAMPLE BO 04H | Set DIO ports A, B to input
 2BK 1, 1 | Use DIO bit #1 to inhibit motion of axis #2. This DIO bit should be
 | HIGH when axis #2 motion is inhibited
 2BL 1 | Enable inhibition of motion using DIO bits for axis #2
 2BK? | Query the DIO bit assignment for axis #2
 1, 1 | The controller responds with the assigned values

Section 3 – Remote Mode 3-33

BL enable DIO bits to inhibit motion

IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxBLnn or xxBL?

PARAMETERS
Description xx [int] - axis number
 nn [int] - disable or enable

Range xx - 1 to MAX AXES
 nn - 0 = disable, and 1 = enable or ? to read current setting

Units None

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx1, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to disable or enable motion inhibition of requested axes
through DIO bits.

RETURNS If the "?" sign takes the place of nn value, this command reports the current
status.

REL. COMMANDS BK - Assign DIO bits to inhibit motion.
 BO - Set DIO port A, B direction
 BM - Assign DIO bits to notify motion status
 BN - Enable DIO bits to notify motion status.

EXAMPLE BO 04H | Set DIO ports A and B to input
 2BK 1, 1 | Use DIO bit #1 to inhibit motion of axis #2. This DIO bit should be
 | HIGH when axis #2 motion is inhibited
 2BL 1 | Enable inhibition of motion using DIO bits for axis #2
 2BK? | Query the DIO bit assignment for axis #2
 1, 1 | The controller responds with the assigned values
 2BL? | Query the status of inhibiting motion for axis #2 through DIO
 1 | The controller responds with 1 indicating feature is enabled

3-34 Section 3 – Remote Mode

BM assign DIO bits to notify motion status

IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxBMnn1, nn2 or xxBM?

PARAMETERS
Description xx [int] - axis number
 nn1 [int] - bit number for notifying motion status
 nn2 [int] - bit level when axis is not moving

Range xx - 1 to MAX AXES
 nn1 - 0 to 15
 nn2 - 0 = LOW and 1 = HIGH or ? to read current setting

Units None

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn1 missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx1, PARAMETER OUT OF RANGE
 nn2 missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx1, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to assign DIO bits for notifying the motion status –
moving or not moving – of a selected axis. When the selected axis is not moving,
the DIO bit state changes to the level specified with this command (refer
parameter nn2).

 NOTE: The direction of the DIO port (A, B) the desired bit belongs to, should be
set to "output" in order for the DIO bit to be set accurately. Refer "BO"
command for further details.

 NOTE: If a motion feature, such as origin search, involves a sequence of moves,
the motion status will be set to not moving only after the entire sequence of
moves has completed.

RETURNS If the "?" sign takes the place of nn value, this command reports the current
assignment.

REL. COMMANDS BN - Enable DIO bits to notify motion status
 BO - Set DIO port A, B direction

EXAMPLE BO 06H | Set DIO port A to input and port B to output
 2BM 9, 1 | Use DIO bit #9 to indicate motion status of axis #2. This DIO bit
 | should be HIGH when axis #2 is not moving
 2BN 1 | Enable notification of motion using DIO bits for axis #2
 2BM? | Query the DIO bit assignment for axis #2
 9, 1 | The controller responds with the assigned values

Section 3 – Remote Mode 3-35

BN enable DIO bits to notify motion status

IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxBNnn or xxBN?

PARAMETERS
Description xx [int] - axis number
 nn [int] - disable or enable

Range xx - 1 to MAX AXES
 nn - 0 = disable, and 1 = enable or ? to read current setting

Units None

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx1, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to disable or enable notification of requested axis' motion
status through DIO bits.

RETURNS If the "?" sign takes the place of nn value, this command reports the current
status.

REL. COMMANDS BM - Assign DIO bits to notify motion status
 BO - Set DIO port A, B direction
 BK - Assign DIO bits to inhibit motion
 BL - Enable DIO bits to inhibit motion

EXAMPLE BO 06H | Set DIO port A to input and port B to output
 2BM 9, 1 | Use DIO bit #9 to indicate motion status of axis #2. This DIO

bit
 | should be HIGH when axis #2 is not moving
 2BN 1 | Enable notification of motion using DIO bits for axis #2
 2BM? | Query the DIO bit assignment for axis #2
 9, 1 | The controller responds with the assigned values

2BN? | Query the status of notifying motion status of axis #2 through
DIO bits

 1 | The controller responds with 1 indicating feature is enabled

3-36 Section 3 – Remote Mode

BO set DIO port A, B, C direction

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX BOnn or BO?

PARAMETERS
Description nn [int] - hardware limit configuration

Range nn - 0 to 05H (hexadecimal with leading zero(0))
 or ? to read current setting

Units nn - None

Defaults nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set digital I/O (DIO) port A and B direction where bit-0

corresponds to port A and B, bit-1 to port B. If any bit is set to zero(0) then its
corresponding port will become an input only. If any bit is set to one(1) then its
corresponding port will becomes an output only.

A DIO within a port configured as an input can only report its present HIGH or
LOW logic level. Whereas a DIO bit within a port configured as an output can
set(1) or clear(0) the corresponding DIO hardware to HIGH or LOW logic level.
Reading the status of a port configured as output returns its present output status.

NOTE: All direction bits are automatically zeroed, or cleared, after a system
reset. Therefore all DIO ports default to input by default.

NOTE: Each DIO bit has a pulled-up resistor to +5V. Therefore, all bits will be
at HIGH logic level if not connected to external circuit and configured as input.

BIT# VALUE DEFINITION

*0 0 port A (DIO bit-0 through bit-7) assigned as input
0 1 port A (DIO bit-0 through bit-7) assigned as output

*1 0 port B (DIO bit-8 through bit-15) assigned as input
1 1 port B (DIO bit-8 through bit-15) assigned as output
 * default setting after system reset

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting in hexadecimal notation.

REL. COMMANDS SB - set/clear DIO bits

EXAMPLE BO? | read DIO port direction configuration
 0H | controller returns a value of 0H (all ports are input)
 BO 1H | configure DIO port A as output
 SB 0FFH | set all port A DIO output HIGH

Section 3 – Remote Mode 3-37

3-38 Section 3 – Remote Mode

BP assign DIO bits for jog mode

IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxBPnn1,nn2 or xxBP?

PARAMETERS
Description xx [int] - axis number
 nn1 [int] - bit number for jogging in negative direction
 nn2 [int] - bit number for jogging in positive direction

Range xx - 1 to MAX AXES
 nni - 0 to 15

Units xx - none
 nni - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to assign DIO bits for jogging axes in either negative or
positive directions.

RETURNS If "?" sign is issued along with command, the controller returns the DIO bits used
for jogging in negative and positive directions respectively.

REL. COMMANDS BO - enable usage of DIO bits for jogging axes

EXAMPLE 1BP3, 4 | set DIO bit #3 to jog axis #1 in negative direction and
 DIO bit #4 to jog axis #1 in positive direction
 1BP? | query the DIO bits assigned for jogging
 3,4 | controller returns the bit assignment
 1BQ1 | enable axis #1 jogging through DIO bits.

BQ enable DIO bits for jog mode

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxBQnn or BQ?

PARAMETERS
Description xx [int] - axis number
 nn [int] - disable or enable
Range xx - 1 to MAX AXES
 nn - 0 = disable, and 1 = enable
Units xx - none
 nn - one

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to disable or enable jogging of a requested axis through

DIO bits.

RETURNS If “?” sign is issued along with command, the controller returns the status of jog

through DIO bits.

REL. COMMANDS BP - assign DIO bits for jog mode

EXAMPLE 1BP3,4 | set DIO bit #3 to jog axis #1 in negative direction and
 | DIO bit #4 to jog axis #1 in positive direction
 1BP? | query the DIO bits assigned for jogging

 3,4 | controller returns the bit assignment
 1BQ1 | enable axis #1 jogging through DIO bits.

Section 3 – Remote Mode 3-39

3-40 Section 3 – Remote Mode

CL set closed loop update interval
 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxCLnn or xxCL?

PARAMETERS
Description xx { int] - axis number
 nn [int] - closed loop update interval

Range xx - 0 to MAX AXES
 nn - 0 to 60000

Units xx - none
 nn - milliseconds

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the closed loop update interval for an axis. This will
be the time duration between position error corrections during closed loop
stepper positioning. Note that this command is effective only for steeper motors.

 Furthermore, note that encoder feedback and closed loop positioning must be
enabled for this command to be effective. Refer to feedback configuration (ZB)
command for enabling these features in the case of stepper motors.

 If "0" is used as an axis number, this command will set the specified interval to
all the axes.

RETURNS If "?" sign takes the place of nn value, this command reports the current setting.

REL. COMMANDS ZB - set feedback configuration
 DB - set position deadband value

EXAMPLE 3ZB300 | enable encoder feedback and closed loop positioning of axis #3
 3DB1 | set position deadband value to 1 encoder count
 3DB? | query deadband value
 1 | controller returns a value of 1 encoder count
 3CL100 | set closed loop update interval to 100 milliseconds
 3CL? | query closed loop update interval
 100 | controller returns a value of 100 milliseconds

CO set linear compensation
 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxCOnn or xxCO?

PARAMETERS
Description xx [int] - axis number
 nn [float] - linear compensation value

Range xx - 1 to MAX AXES
 nn - 0 to 2e+9

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command allows users to compensate for linear positioning errors due to stage

inaccuracies. Such errors decrease or increase actual motion linearly over the travel
range.

The linear compensation value, nn is calculated according to the formula given below:

⎟
⎠
⎞

⎜
⎝
⎛=

travel
errornn

where,
 travel = measured travel range
 error = error accumulated over the measured travel range

NOTE: The command is affective only after a home search (OR) or define home (DH)
is performed on the specified axis.

RETURNS If “?” sign takes the place of nn value, this command reports the current setting.

REL. COMMANDS None

EXAMPLE If a stage has a travel range of 100 mm and it accumulates an error of 0.003 mm over the

complete travel range,

00003.0
100
003.0

=⎟
⎠
⎞

⎜
⎝
⎛=nn

1CO0.00003 | Set linear compensation value for axis #1 to 0.00003
1CO? | Query linear compensation value for axis #1
0.00003 | Controller returns a value of 0.00003
1OR | Perform home search on axis #1
1PA10 | Move axis #1 to absolute 10 units

Section 3 – Remote Mode 3-41

DB set position deadband
 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxDBnn or xxDB?

PARAMETERS
Description xx [int] - axis number
 nn [int] - deadband value

Range xx - 0 to MAX AXES
 nn - to 2e9

Units xx - none
 nn - encoder counts

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING

DESCRIPTION This command is used to set the position deadband value for an axis. Since a majority of

electro-mechanical systems have mechanical backlash or frictional hysterisis, closed-loop
positioning can at times lead to oscillation or limit cycling of the systems around a
desired position. In such situations, setting position deadband value judiciously can
avoid limit cycling of the systems.

 Note that this command is effective only during position regulation (holding position) as

opposed to moving.

 Furthermore, note that encoder feedback and closed loop positioning must be enabled for
this command to be effective. Refer to feedback configuration (ZB) command for
enabling these features in the case of stepper motors.

 If “0” is used as an axis number, this command will set the specified deadband value to

all the axes.

RETURNS If “?” sign takes the place of nn value, this command reports the current setting.

REL. COMMANDS ZB - set feedback configuration
 CL - set closed loop update interval

EXAMPLE ZB300 | enable encoder feedback and closed loop positioning of axis#3
 3DB1 | set position deadband value to 1 encoder count
 3DB? | query deadband value

1 | controller returns a value of 1 encoder count
 3CL100 | set closed loop update interval to 100 milliseconds
 3CL? | query closed loop update interval
 100 | controller returns a value of 100 milliseconds

3-42 Section 3 – Remote Mode

DC setup data acquisition

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX DCnn1,nn2,nn3,nn4,nn5,nn6

PARAMETERS
Description
 nn1 [int] - data acquisition mode
 nn2 [int] - axis used to trigger data acquisition
 nn3 [int] - data acquisition parameter 3
 nn4 [int] - data acquisition parameter 4
 nn5 [int] - data acquisition rate
 nn6 [int] - number of data samples to be acquired

Range
 nn1 - 0: Start data acquisition immediately

 1: Start data acquisition when trigger axis starts motion
2: Start data acquisition when trigger axis reaches slew

speed
 nn2 - 1 to MAX AXES
 nn3 - Refer table below
 nn4 - Refer table below
 nn5 - 0 to 1000
 nn6 - to 1000

Units None

Defaults nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to setup data acquisition—analog data acquisition (ADC) as well
as acquisition of certain trace variables—using ESP motion controller.

 PARAMETER nn1: Data acquisition modes 0—2 support different ways in which

analog data can be collected.

 PARAMETER nn2: Data acquisition is triggered by the motion of an axis specified

through this parameter. Exceptions to this requirement are in the case of data acquisition
mode 0. For thiscases enabling data acquisition is sufficient to start the data acquisition
process. For all other modes, two conditions—enabling of data acquisition and any mode
dependent conditions such as trigger axis starting motion or reaching slew speed—must
be met in order to start the data acquisition process.

 PARAMETER nn3: set this value to 0.

Section 3 – Remote Mode 3-43

PARAMETER nn4: This parameter is used to identify the position feedback channels to
be collected. Please refer to table below.

nn4 Position feedback channels collected

0 none
1 channel 1
2 channel 2
3 channel 1 & 2
4 channel 3
5 channel 1 & 3
6 channel 2 & 4
7 channel 1,2,3

 PARAMETER nn5: The rate at which data is to be acquired is specified through this

parameter. The rate specified is in multiples of the (400 µs) rate. For example, a value of
0 implies data acquisition every servo cycle (400 µs), a value of 1 implies every other
servo cycle (400 µs), and so on.

PARAMETER nn6: The number of samples of data to be acquired is specified through
this parameter. Data acquisition process is considered to be "done" only after the number
of samples specified by this parameter are acquired by the controller. The status of data
acquisition process may be found by issuing ASCII command, DD. Once the data
acquisition is done, ASCII command, DG may be used to collect the data from the
controller.

Note: The controller responds with a servo cycle (400 µs) tick count along with every
data sample collected.

RETURNS None.

REL. COMMANDS DD - get data-acquisition done status
 DE - enable / disable data-acquisition
 DF - get data-acquisition status – number of samples collected
 DG - get data-acquisition data

EXAMPLE DC10,1,1,1,0,1000 | Acquire trace variable data for axis 1, in scaled integer

| format. Collect 1000 samples, one sample / servo cycle
(400 µs)

 DE1 | Enable data acquisition
 DD | Query data-acquisition done status
 1 = true, 0 = false.
 If true,
 DE0 | Disable trace variable data acquisition
 DG | Get data collected

3-44 Section 3 – Remote Mode

DD get data acquisition done status

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX DD

PARAMETERS none

DESCRIPTION This command returns the status of a data acquisition request.

RETURNS aa, where: aa = 1 for True, 0 for False

REL. COMMANDS DC - setup data acquisition request
 DG - get acquired data
 DF - data acquisition status, returns # of samples collected
 DE - enable / disable data acquisition

EXAMPLE DC10,1,1,1,0,1000 | Acquire trace variable data for axis 1, in scaled integer

| format. Collect 1000 samples, one sample / servo cycle
(400 µs)

 DE1 | Enable trace variable data acquisition
 DD | Query data-acquisition done status
 1 = true, 0 = false.
 If true,
 DE0 | Disable trace variable data acquisition
 DG | Get data collected

Section 3 – Remote Mode 3-45

DE enable/disable data acquisition

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX DEnn

PARAMETERS nn
Description nn [int] - True | False

Range nn - 1 for True, 0 for False
DESCRIPTION This command is used to enable / disable the data acquisition request.

Note: This command cannot be issued when:
1. An axis is being homed (refer ASCII command, OR).
2. An axis is being moved to a travel limit (refer ASCII command, MT).
3. An axis is being moved to an index (refer ASCII command, MZ).

RETURNS None

REL. COMMANDS DC - setup data acquisition request
 DG - get acquired data
 DF - data acquisition status, returns # of samples collected
 DD - data acquisition done status

EXAMPLE DC10,1,1,1,0,1000 | Acquire trace variable data for axis 1, in scaled integer

| format. Collect 1000 samples, one sample / servo
cycle (400 µs)

 DE1 | Enable trace variable data acquisition
 DD | Query data-acquisition done status
 1 = true, 0 = false.
 If true,
 DE0 | Disable trace variable data acquisition
 DG | Get data collected

3-46 Section 3 – Remote Mode

DF get data acquisition sample count

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX DF

PARAMETERS none

DESCRIPTION This command returns the number of a data acquisition collected to the point of

this request.

RETURNS aa, where: aa = number of samples

REL. COMMANDS DC - setup data acquisition request
 DG - get acquired data
 DD - data acquisition done status
 DE - enable / disable data acquisition

EXAMPLE DC10,1,1,1,0,1000 | Acquire trace variable data for axis 1, in scaled integer
| format. Collect 1000 samples, one sample / servo
cycle (400 µs)

 DE1 | Enable trace variable data acquisition
 DD | Query data-acquisition done status
 1 = true, 0 = false.
 If true,
 DE0 | Disable trace variable data acquisition
 DG | Get data collected

Section 3 – Remote Mode 3-47

DG get acquisition data

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX DG

PARAMETERS None

DESCRIPTION This command is used to retrieve data acquired from a data acquisition request.

RETURNS This command returns byte wide binary data. Each four bytes represents one

DSP 32 bit word. The number of bytes returned depends on the setup request.
(See DC command).

REL. COMMANDS DC - setup data acquisition request
 DE - enable / disable data acquisition
 DF - data acquisition status, returns # of samples collected
 DD - data acquisition done status

EXAMPLE DC10,1,1,1,0,1000 | Acquire trace variable data for axis 1, in scaled integer

| format. Collect 1000 samples, one sample / servo
cycle (400 µs)

 DE1 | Enable trace variable data acquisition
 DD | Query data-acquisition done status
 1 = true, 0 = false.
 If true,
 DE0 | Disable trace variable data acquisition
 DG | Get data collected

3-48 Section 3 – Remote Mode

DH define home

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxDHnn

PARAMETERS
Description xx [int] - axis number
 nn [float] - position value

Range xx - 1 to MAX AXES
 nn - 0 to ± 2e+9

Units xx - none
 nn - predefined units

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to define current position, HOME position. This means

that the current position will be preset to the value defined by parameter ‘nn’.

RETURNS If the “?” sign takes the place of nn value, this command reports the current
setting

REL. COMMANDS OR - execute a home search cycle

EXAMPLE 3OR1 | perform a home search on axis # 3
 •
 •

 •
 3DH | define current position on axis # 3 HOME as 0 units

 •
 •

 •
 3DH 20.0 | define current position on axis # 3 HOME as 20.0 units

Section 3 – Remote Mode 3-49

DL define label

 IMM PGM MIP
USAGE ♦

SYNTAX xxDL

PARAMETERS
Description xx [int] - label number

Range xx - 1 to 100

Units xx - none

Default xx missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command defines a label inside a program. In combination with JL (jump to

label) command, they offer significant program flow control.

 The operation of the DL / JL command pair is similar to commands in other

computer languages that allow conditional jumps (or GOTO's) to predefined
labels in a program.

 Note:

This command does not generate an error when not used inside a program. Since
it can not do any harm, it is only ignored.

RETURNS none

REL. COMMANDS JL - jump to label

EXAMPLE 3XX | clear program 3 from memory, if any
 3EP | create program 3
 1DL | define label 1
 •
 •
 •
 1JL 5 | jump to label 1 five(5) times
 QP | end entering program and quit programming mode
 3EX | run stored program number 3

3-50 Section 3 – Remote Mode

DO set dac offset

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxDOnn or xxDO?

PARAMETERS
Description xx [int] - DAC channel number
 nn [float] - DAC offset value

Range xx - 1 to MAX AXES
 nn - -10.0 to 10.0

 or ? to read the current setting

Units xx - None
 nn - Volts

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx16, MAXIMUM DAC OFFSET EXCEEDED

DESCRIPTION This command is used to set the DAC offset compensation for the specified DAC
channel. There are two DAC channels associated with every axis: DAC
channels 1 and 2 are associated with axis #1, DAC channels 3 and 4 with axis #2
etc.

 In order for the DAC offset to take affect, this command must be followed by the

ASCII command, UF (Update Filter). This offset may be saved to non-volatile
flash memory by issuing the ASCII command, SM. This will cause the DSP to
automatically use the saved value after system reset or reboot.

 NOTE: DAC offset compensation is necessary on servo axes to prevent motor

drift during motor off conditions.

RETURNS If the “?” sign takes the place of nn value, this command reports the current
setting.

REL. COMMANDS None

EXAMPLE 1DO0.05 | Set the offset for DAC channel #1 to 0.05V

 1UF | Update the filter settings
 SM | Save parameters to non-dvolatile flash memory

Section 3 – Remote Mode 3-51

DP read desired position

IMM PGM MIP

 USAGE ♦ ♦ ♦

SYNTAX xxDP?

PARAMETERS
Description xx [int] - axis number

Range xx - 1 to MAX AXES

Units xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command is used to read the desired positionIt returns the instantaneous

desired position.

 The command could be sent at any time but its real use is while a motion is in
 progress.

RETURNS nn where nn = desired position, in pre-defined units

REL. COMMANDS PA - move to an absolute position
 PR - move to a relative position
 TP - read actual position

EXAMPLE 3TP? | read position on axis # 3
 5.32 | controller returns position 5.32 for axis # 3
 3PR2.2 | start a relative motion of 2.2 on axis # 3
 3DP? | read desired position on axis # 3
 7.52 | controller returns desired position 7.52 for axis # 3

3-52 Section 3 – Remote Mode

DV read desired velocity

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxDV

PARAMETERS
Description xx [int] - axis number

Range xx - 1 to MAX AXES

Units xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command is used to read the desired velocity of an axis. The command can

be sent at any time but its real use is while motion is in progress.

RETURNS nn, where nn = desired velocity of the axis in pre-defined units.

REL. COMMANDS PA - move to an absolute position
 PR - move to a relative position

EXAMPLE 3TP? | read position on axis # 3
 5.32 | controller returns position 5.32 units for axis # 3
 3PR2.2 | start a relative motion of 2.2 units on axis # 3
 3DV | read desired velocity on axis #3
 0.2 | controller returns velocity 0.2 units/sec for axis #3
 3DP? | read desired position on axis # 3
 7.52 | controller returns desired position 7.52 units for axis # 3

Section 3 – Remote Mode 3-53

EO automatic execution on power on

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxEOnn or xxEO?

PARAMETERS
Description xx [int] - program number
 nn [int] - number of times of execution
Range xx - 1 to 100

nn - 1 to 2e9
Units xx - none

nn - none
Defaults None

DESCRIPTION This command sets the program number that is automatically executed on power

on. If nn is missing, the xx numbered program is executed once.

RETURNS If the sign “?” takes place of nn value, this command reports the number of the

program that is executed on power on and the number of times of execution.

REL. COMMANDS QP - quit programming mode
 EX - execute stored program
 AP - abort stored program execution
 XX - erase program

EXAMPLE 3EO | set program #3 to be executed once on power on
 EO? | query the program number executed on power on
 EO,3,1 | controller returns program #3 executed once on power on
 EO | Reset automatic program execution – no program is
 | executed on power on

3-54 Section 3 – Remote Mode

EP enter program mode

 IMM PGM MIP
USAGE ♦

SYNTAX xxEP

PARAMETERS
Description xx [int] - program number

Range xx - 1 to 100

Units xx - none

Defaults xx missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the controller in programming mode. All the commands

following this one will not be executed immediately but stored in memory as part
of program number xx. To exit program entry mode and return to immediate
mode, use QP command.
Programs can be entered in any order. If a program already exists then it must be
first deleted using XX command.

 Note:
 Programs are automatically stored into non-volatile memory when created.

RETURNS none

REL. COMMANDS QP - quit programming mode
 EX - execute stored program
 AP - abort stored program execution
 XX - erase program

EXAMPLE 3XX | clear program 3 from memory, if any
 3EP | activate program mode and enter following commands as
 | program 3
 •
 •
 •
 QP | end entering program and quit programming mode
 3EX | run stored program number 3

Section 3 – Remote Mode 3-55

EX execute a program

 IMM PGM MIPO
USAGE ♦ ♦

SYNTAX xxEXnn

PARAMETERS
Description xx [int] - program number
 nn [int] - number of times to execute the program

Range xx - 1 to 100
 nn - 1 to 2147385345
Units xx - none
 nn - none

Defaults xx missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

 nn missing: 1 assumed
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to start executing a program. When the command is

received the controller executes the program line by line or according to the flow control
instructions.

During program execution, only commands that ask for information and that stop the
motion are still allowed. Any of the following commands will terminate a program, in
one way or another: AB, AP, MF, RS and ST. Most natural way to just stop a program
execution is by using the AP command, the other ones having a more drastic effect.

RETURNS none

REL. COMMANDS QP - quit programming mode
 EP - enter program mode
 AP - abort stored program execution
 XX - erase program

EXAMPLE 3XX | clear program 3 from memory, if any
 3EP | activate program mode and enter following commands as
 | program 3
 •
 •
 •
 QP | end entering program and quit programming mode
 3EX | run stored program number 3

3-56 Section 3 – Remote Mode

FE set maximum following error threshold

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxFEnn or xxFE?

PARAMETERS
Description xx [int] - axis number
 nn [float] - maximum allowed following error

Range xx - 1 to MAX AXES
 nn - 0 to(2e9 * encoder resolution),

or ? to read current setting
Units xx - none
 nn - predefined units

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the maximum allowed following error threshold for an axis.

This error is defined as the difference between the real position and the
theoretical position of a motion device. The real position is the one reported by
the position sensing device (encoder, scale, etc.) and the theoretical position is
calculated by the controller each servo cycle (400 µs). If , for any axes and any
servo cycle (400 µs), the following error exceeds the preset maximum allowed
following error, the controller invokes the following error event handling process
which is defined with the ZF command. By default motor power is turned OFF.
Note
Using the ZF command each axis can be individually configured to either turn
motor power OFF, abort motion using e-stop deceleration, or ignore the error.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting.

REL. COMMANDS ZF - set following error event configuration

EXAMPLE 3FE ? | read maximum following error for axis # 3
 0.5 | controller returns for axis # 3 following error of 0.5 unit
 3FE 1.0 | set maximum following error for axis # 3 to 1 unit

Section 3 – Remote Mode 3-57

FP set position display resolution

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxFPnn or xxFP?

PARAMETERS
Description xx [int] - axis number
 nn [int] - display resolution

Range xx - 1 to MAX AXES
 nn - 0 to 7
 or ? to read present setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the display resolution of position information. For

instance, if nn = 4, the display will show values as low as 0.0001 units. If nn =
7, the display will show values in exponential form. If the user units (refer SN
command) are in encoder counts or stepper increments, the position information
is displayed in integer form, independent of the value set by this command.

RETURNS If “?” sign takes the place of nn value, this command reports current setting.

REL. COMMANDS None

EXAMPLE 1FP? | read position display resolution for axis #1
 4 | controller returns a value of 4
 1TP | read actual position of axis #1
 5.0001 | controller returns position value
 1FP2 | set position display resolution for axis #1 to 2
 1TP | read actual position of axis #1
 5.00 | controller returns position value
 1FP7 | set position display resolution for axis #1 to 7
 1TP | read actual position of axis #1
 5.000000E+0 | controller returns position value

3-58 Section 3 – Remote Mode

FR set encoder full-step resolution

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxFRnn or xxFR?

PARAMETERS
Description xx [int] - axis number
 nn [float] - encoder full step resolution

Range xx - 1 to MAX AXES
 nn - 2e-9 to 2e+9 in user defined units
 or ? to read present setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the encoder full step resolution for a Newport

Unidrive compatible programmable driver with step motor axis.

RETURNS If “?” sign takes the place of nn value, this command reports current setting.

REL. COMMANDS QS - set microstep factor
 SU - set encoder resolution

EXAMPLE 2FR? | read encoder full-step resolution setting of axis # 2
 0.0001 | controller returns a value of 0.0001 units for axis #2
 2FR0.0005 | set encoder full-step resolution to 0.0005 units for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-59

GR set master-slave reduction ratio

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxGRnn or xxGR?

PARAMETERS
Description xx [int] - axis number
 nn [float] - reduction ratio

Range xx - 1 to MAX AXES
 nn - ±1,000,000
Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the master-slave reduction ratio for a slave axis. The
trajectory of the slave is the desired trajectory or actual position of the master
scaled by reduction ratio. Refer to the TJ command to specify the desired
trajectory mode for a slave axis.

 Note:
 Use this command very carefully. The slave axis will have its speed and

acceleration in the same ratio as the position. Also, ensure that the ratio used for
the slave axis does not cause overflow of this axis’ parameters (speed,
acceleration), especially with ratios greater than 1.

RETURNS If “?” sign is issued along with command, the controller returns master-slave
 reduction ratio.

REL. COMMANDS SS - define master-slave relationship

EXAMPLE 2SS1 | set axis 2 to be the slave of axis 1
 2SS? | query the master axis number for axis 2
 1 | controller returns a value of 1
 2TJ5 | set axis 2 trajectory mode to 5
 2GR0.5 | set the reduction ratio of axis 2 to 0.5
 2GR? | query the reduction ratio of axis 2
 0.5 | controller returns a value of 0.5

3-60 Section 3 – Remote Mode

HA set group acceleration

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHAnn or xxHA?

PARAMETERS
Description xx [int] - group number
 nn [float] - vector acceleration value

Range xx - 1 to MAX GROUPS

 nn - 0 to minimum of the maximum acceleration values of all
axes assigned to this group.

Units xx - none
 nn - predefined units / second2

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated
 nn missing: error 7, PARAMETER OUT OF RANGE
 negative: error 22, GROUP PARAMETER OUT OF RANGE
 out of range: error 24, GROUP MAXIMUM ACCELERATION

EXCEEDED

DESCRIPTION This command is used to set the vectorial acceleration value for a group. This

value will be used during coordinated motion of axes assigned to the group. It
will override any original acceleration values specified for individual axes using
AC command. The axes’ original values will be restored when the group to
which they have been assigned is deleted.

This command takes effect immediately. It can be executed when controller is
idling or motion is in progress or inside a program.

Note:
Avoid changing acceleration during acceleration or deceleration phases of a
move. For better predictable results, change acceleration only when all the axes
assigned to this group are not in motion.

RETURNS If “?” sign takes the place of nn value, this command reports the current setting.

REL. COMMANDS AU - set maximum acceleration and deceleration for an axis
 HN - create a new group
 HD - set vectorial deceleration for a group

Section 3 – Remote Mode 3-61

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1AU? | query maximum acceleration of axis #1
 50 | controller returns a value of 50 units/second2
 2AU? | query maximum acceleration of axis #2
 60 | controller returns a value of 60 units/second2
 1HA50 | set vectorial acceleration of group #1 to 50 units/second2

 1HA? | query vectorial acceleration of group #1
 50 | controller returns a value of 50 units/second2

3-62 Section 3 – Remote Mode

HB read list of groups assigned

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX HB

PARAMETERS None

DESCRIPTION This command is used to read the group numbers that have already been created

or assigned.

RETURNS This command reports the current setting. If no groups have been created,
 controller returns error number 15, GROUP NUMBER NOT ASSIGNED.

REL. COMMANDS HN - create a new group
 HX - delete a group

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HN? | read axes assigned to group #1
 1,2 | controller returns the axes assigned to group #1
 2HN3,4 | create a new group (#2) with physical axes 3 and 4
 2HN? | read axes assigned to group #2
 3,4 | controller returns the axes assigned to group #2
 HB | read list of groups created
 1 2 | controller returns 1 and 2

Section 3 – Remote Mode 3-63

HC move group along an arc

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHCnn1, nn2, nn3 or xxHC?

PARAMETERS
Description xx [int] - group number
 nn1 [float] - first coordinate of arc center
 nn2 [float] - second coordinate of arc center
 nn3 [float] - arc sweep angle

Range xx - 1 to MAX GROUPS

 nn1, nn2 - any position within the travel limits
 nn3 - any angle

Units xx - none
 nn1, nn2 - predefined units
 nn3 - degrees

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated
 nni
 Missing parameter: error 21, GROUP PARAMETER MISSING

DESCRIPTION This command initiates motion of a group along an arc. It causes all axes

assigned to the group to move with predefined vectorial (tangential) velocity,
acceleration and deceleration along an arc. The group target position is
determined based on the position of axes at the beginning of move, center of arc
and sweep angle.

If this command is received while a group move is in progress, the new
command gets enqueued into a “via point” buffer. Please refer to Advanced
Capabilities section for a detailed description of via point buffer implementation.
The enqueued commands get executed on a FIFO basis when the move already in
progress has reached its destination. The group does not come to a stop at the
end of last move. Instead, there will be a smooth transition to the new move
command, just as if it were one compound move (combination of multiple
moves).

Note:
 Only trapezoid velocity profile is employed linear interpolation motion.

Note:

The transition from last move to new move will be smooth if tangential velocity
at the end of last move is the same as that at the beginning of new move.

3-64 Section 3 – Remote Mode

RETURNS If “?” sign takes the place of nn values, this command reports the commanded

center position of arc and sweep angle.

REL. COMMANDS HN - create a new group
 HV - set vectorial velocity for a group
 HA - set vectorial acceleration for a group
 HD - set vectorial deceleration for a group
 HO - enable a group
 HF - disable a group
 HL - move a group of axes to desired position along a line.

 EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HV10 | set vectorial velocity of group #1 to 10 units/second
 1HA50 | set vectorial acceleration of group #1 to 50 units/second2
 1HD50 | set vectorial deceleration of group #1 to 50 units/second2

 1HO | enable group #1
 1HP? | query current group position
 50,50 | controller returns axis #1 = 50 units and axis #2 = 50 units
 1HC40,60,180 | set axis #1 arc center = 40 units
 set axis #2 arc center = 60 units
 set sweep angle of arc = 180 degrees
 1HC? | query target position of the commanded move
 40, 60, 180 | controller returns axis #1 arc center = 40 units, axis #2 arc
 center = 70 units and arc sweep angle = 180 degrees

Section 3 – Remote Mode 3-65

HD set group deceleration

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHDnn or xxHD?

PARAMETERS
Description xx [int] - group number
 nn [float] - vector deceleration value

Range xx - 1 to MAX GROUPS

 nn - 0 to minimum of the maximum deceleration values of all
axes assigned to this group.

Units xx - none
 nn - predefined units / second2

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated
 nn missing: error 7, PARAMETER OUT OF RANGE
 negative: error 22, GROUP PARAMETER OUT OF RANGE
 out of range: error 25, GROUP MAXIMUM DECELERATION

EXCEEDED

DESCRIPTION This command is used to set the vectorial deceleration value for a group. This

value will be used during coordinated motion of axes assigned to the group. It
will override any original deceleration values specified for individual axes using
AG command. The axes’ original values will be restored when the group to
which they have been assigned is deleted.

This command takes effect immediately. It can be executed when controller is
idling or motion is in progress or inside a program.

Note:
Avoid changing deceleration during acceleration or deceleration phases of a
move. For better predictable results, change deceleration only when all the axes
assigned to this group are not in motion.

RETURNS If “?” sign takes the place of nn value, this command reports the current setting.

REL. COMMANDS AU - set maximum acceleration and deceleration for an axis
 HN - create a new group
 HA - set vectorial acceleration for a group

3-66 Section 3 – Remote Mode

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1AU? | query maximum deceleration of axis #1
 50 | controller returns a value of 50 units/second2
 2AU? | query maximum deceleration of axis #2
 60 | controller returns a value of 60 units/second2
 1HD50 | set vectorial deceleration of group #1 to 50 units/second2

 1HD? | query vectorial deceleration of group #1
 50 | controller returns a value of 50 units/second2

Section 3 – Remote Mode 3-67

HE set group e-stop deceleration
 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHEnn or xxHE?

PARAMETERS
Description xx [int] - group number
 nn [float] - vector e-stop deceleration value

Range xx - 1 to MAX GROUPS

 nn - maximum of deceleration values assigned to all axes in
the group to 2e9 * encoder resolution.

Units xx - none
 nn - predefined units / second2

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated
 nn missing: error 7, PARAMETER OUT OF RANGE
 negative: error 22, GROUP PARAMETER OUT OF RANGE
 out of range: error 22, GROUP PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the vectorial e-stop deceleration value for a group.

This value will be used during coordinated motion of axes assigned to the group.
It will override any original e-stop deceleration values specified for individual
axes using AE command. The axes’ original values will be restored when the
group to which they have been assigned is deleted.

This command takes effect immediately. It can be executed when controller is
idling or motion is in progress or inside a program.

E-stop deceleration is invoked upon a local e-stop condition (e.g., front panel
“Stop All” push button, interlock, etc…) has occurred, if configured to do so, or
if the AB (abort motion) command is processed.

RETURNS If “?” sign takes the place of nn value, this command reports the current setting.

REL. COMMANDS HN - create a new group
 HV - set vectorial velocity for a group
 HA - set vectorial acceleration for a group
 HD - set vectorial deceleration for a group

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HE100 | set vectorial e-stop deceleration of group #1 to 100 units/second2

 1HE? | query vectorial e-stop deceleration of group #1
 100 | controller returns a value of 100 units/second2

3-68 Section 3 – Remote Mode

HF group off

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHF or xxHF?

PARAMETERS
Description xx [int] - group number

Range xx - 1 to MAX GROUPS

Units xx - none

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated

DESCRIPTION This command turns power OFF of all axes assigned to a group. Refer MF

command to turn the power OFF of individual axes. The group power is
assumed to be OFF if power to any one of the axes in the group is OFF.

RETURNS If “?” sign is issued along with command, the controller returns:
 1 - group power is ON
 0 - group power is OFF

REL. COMMANDS HN - create a new group
 HO - turn group power ON

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HO | turn group #1 power ON
 1HF? | query group #1 power status
 1 | controller returns a value of 1
 1HF | turn group #1 power OFF
 1HF? | query group #1 power status
 0 | controller returns a value of 0

Section 3 – Remote Mode 3-69

HJ set group jerk
 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHJnn or xxHJ?

PARAMETERS
Description xx [int] - group number
 nn [float] - vector jerk value

Range xx - 1 to MAX GROUPS

 nn - 0 to 2e9

Units xx - none
 nn - predefined units / second3

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated
 nn missing: error 7, PARAMETER OUT OF RANGE
 negative: error 22, GROUP PARAMETER OUT OF RANGE
 out of range: error 22, GROUP PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the vectorial jerk value for a group. This value will be used

during coordinated motion of axes assigned to the group. It will override any original
jerk values specified for individual axes using JK command. The axes’ original values
will be restored when the group to which they have been assigned is deleted.

If vectorial jerk is set to zero, a trapezoid velocity profile is employed during motion.
Otherwise, an S-curve velocity profile is employed.

This command takes effect immediately. It can be executed when controller is idling or
motion is in progress or inside a program.
Note:
Avoid changing jerk during acceleration or deceleration phases of a move. For better
predictable results, change jerk only when all the axes assigned to this group are not in
motion.

RETURNS If “?” sign takes the place of nn value, this command reports the current setting.

REL. COMMANDS HN - create a new group
 HV - set vectorial velocity for a group
 HA - set vectorial acceleration for a group
 HD - set vectorial deceleration for a group
 HK - set vectorial e-stop jerk for a group

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HJ50 | set vectorial jerk of group #1 to 50 units/second3

 1HJ? | query vectorial deceleration of group #1
 50 | controller returns a value of 50 units/second3

3-70 Section 3 – Remote Mode

HL move group along a line

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHLnn1, nn2, …nni or xxHL?

PARAMETERS
Description xx [int] - group number
 nn1 [float] - target position of first axis in a group
 nn2 [float] - target position of second axis in a group

 nni [float] - target position of ith axis in a group, where i can vary
from 1 to 6

Range xx - 1 to MAX GROUPS

 nni - any position within the travel limits

Units xx - none
 nni - redefined units

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated
 nni
 Missing parameter: error 21, GROUP PARAMETER MISSING

DESCRIPTION This command initiates motion of a group along a line. It causes all axes

assigned to the group to move with predefined vectorial (tangential) velocity,
acceleration and deceleration along a line. A trapezoid velocity profile is
employed when vectorial jerk is set to zero. Otherwise, an S-curve velocity
profile is employed.

If this command is received while a group move is in progress, the new
command gets enqueued into a “via point” buffer. Please refer Advanced
Capabilities section for a detailed description of via point buffer implementation.
The enqueued commands get executed on a FIFO basis when the move already in
progress has reached its destination. The group does not come to a stop at the
end of last move. Instead, there will be a smooth transition to the new move
command, just as if it were one compound move (combination of multiple
moves).

Note:

The transition from last move to new move will be smooth if tangential velocity
at the end of last move is the same as that at the beginning of new move.

RETURNS If “?” sign takes the place of nn values, this command reports the target positions

of axes assigned to the group.

Section 3 – Remote Mode 3-71

REL. COMMANDS HN - create a new group
 HV - set vectorial velocity for a group
 HA - set vectorial acceleration for a group
 HD - set vectorial deceleration for a group
 HO - enable a group
 HF - disable a group
 HC - move a group of axes to desired position along an arc.

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HV10 | set vectorial velocity of group #1 to 10 units/second
 1HA50 | set vectorial acceleration of group #1 to 50 units/second2
 1HD50 | set vectorial deceleration of group #1 to 50 units/second2

 1HO | enable group #1
 1HP? | query current group position
 0,0 | controller returns axis #1 = 0 units and axis #2 = 0 units
 1HL50, 50 | move axis #1 to a target position = 50 units
 move axis #2 to a target position = 50 units
 1HL? | query target position of the commanded move
 50,50 | controller returns axis #1 = 50 units and axis #2 = 50 units

3-72 Section 3 – Remote Mode

HN create new group

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxHNnn1, nn2, …nni or xxHN?

PARAMETERS
Description xx [int] - group number
 nn1 [int] - physical axis number to be assigned as first axis in this group

 nn2 [int] - physical axis number to be assigned as second axis in
this group

 nni [int] - physical axis number to be assigned as ith axis in this group

Range xx - 1 to MAX GROUPS

 nni - 1 to MAX AXES

Units xx - none
 nni - none

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 already assigned: error 16, GROUP NUMBER ALREADY ASSIGNED
 floating point: truncated
 nni
 out of range: error 17, GROUP AXIS OUT OF RANGE
 already assigned: error 18, GROUP AXIS ALREADY ASSIGNED
 duplicated: error 19, GROUP AXIS DUPLICATED
 Missing parameter: error 21, GROUP PARAMETER MISSING

DESCRIPTION This command is used to create a new group. A few rules are in place to facilitate easy

management of groups.
• A group has to be created with at least two axes assigned to it before any command

related to groups can be issued. The controller returns error 15, GROUP NUMBER
NOT ASSIGNED, if, for instance, one tries to set velocity for group #1, before
creating group #1.

• A group has to be deleted (refer HX command) before axes assigned to the group
can be changed. The controller returns error 16, GROUP NUMBER ALREADY
ASSIGNED, if one attempts to change axes assigned to a group already created.
Please see the following table for correct method to change axes assigned to a group:

Correct Method Incorrect Method

1HN1,2 1HN1,2

1HX 1HN2,3

1HN2,3

• An axis cannot be a member of (or assigned to) different groups at the same time.
The controller returns error 18, GROUP AXIS ALREADY ASSIGNED, if one
attempts to assign an axis under such circumstances. Refer HX command to delete a
group.

Section 3 – Remote Mode 3-73

• An axis cannot be assigned more than once in a group. The controller returns error
19, GROUP AXIS DUPLICATED, if one attempts to assign an axis more than once
to a group.

• The order in which axes are assigned to a group is very important. This is because it
specifies the frame of reference in which coordinated motion of axes takes place.
For instance, the command 1HN1,2 assigns axis numbers 1 and 2 to group number 1,
where axis #1 is equivalent to X-axis and axis #2 is equivalent to Y-axis in a
traditional cartesian coordinate system. Reversing the ordering of axes (viz.
1HN2,1) reverses the axis assignment.

• If a group has more than two axes assigned to it, and the group was commanded to
make an arc (refer to HC command), the first two axes in the group are used to make
the desired move.

RETURNS If “?” sign takes the place of nn values, this command reports the axes assigned

to the group in the order of their assignment.

REL. COMMANDS HV - set vectorial velocity for a group
 HA - set vectorial acceleration for a group
 HD - set vectorial deceleration for a group
 HO - enable a group
 HF - disable a group
 HC - move a group of axes to desired position along an arc.
 HL - move a group of axes to desired position along a line.

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HN? | query axis assigned to group #1
 1,2 | controller returns the axes assigned to group #1
 1HN2,3 | create a new group (#1) with physical axes 1 and 2
 1HN? | query axis assigned to group #1
 1,2 | controller returns the axes assigned to group #1
 TB? | read error message
 0, 450322, GROUP NUMBER ALREADY ASSIGNED
 1HX | delete group #1
 1HN2,3 | create a new group (#1) with physical axes 1 and 2
 1HN? | query axis assigned to group #1
 2,3 | controller returns the axes assigned to group #1
 2HN? | query axis assigned to group #2
 TB? | read error message
 0, 475322, GROUP NUMBER NOT ASSIGNED
 2HN3,4 | create a new group (#2) with physical axes 3 and 4
 2HN? | query axis assigned to group #2
 TB? | read error message
 0, 500322, GROUP AXIS ALREADY ASSIGNED
 2HN4,4,5 | create a new group (#2) with physical axes 4, 4 and 5
 2HN? | query axis assigned to group #2
 TB? | read error message
 0, 525322, GROUP AXIS DUPLICATED

3-74 Section 3 – Remote Mode

HO group on

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHO or xxHO?

PARAMETERS
Description xx [int] - group number

Range xx - 1 to MAX GROUPS

Units xx - none

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated

DESCRIPTION This command turns power ON of all axes assigned to a group. Refer MO

command to turn the power ON of individual axes. The group power is assumed
to be ON if power to all axes in the group is ON.

RETURNS If “?” sign is issued along with command, the controller returns:
 1 - group power is ON
 0 - group power is OFF

REL. COMMANDS HN - create a new group
 HF - turn group power OFF

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HO | turn group #1 power ON
 1HO? | query group #1 power status
 1 | controller returns a value of 1
 1HF | turn group #1 power OFF
 1HO? | query group #1 power status
 0 | controller returns a value of 0

Section 3 – Remote Mode 3-75

HP read group position

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxHP

PARAMETERS
Description xx [int] - group number

Range xx - 1 to MAX GROUPS

Units xx - none

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated

DESCRIPTION This command is used to read the actual position, the instantaneous real position

of all axes assigned to a group.

RETURNS nn1, nn2, … nni where nni = actual position of ith axis in the group.

REL. COMMANDS HN - create a new group
 HC - move a group of axes to desired position along an arc.
 HL - move a group of axes to desired position along a line.

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HP | read position of group #1
 10,50 | controller returns axis #1 = 10 units, axis #2 = 50 units

3-76 Section 3 – Remote Mode

HQ wait for group command buffer level

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHQnn or xxHQ?

PARAMETERS
 Description xx [int] - group number
 nn [float] - level in group via point buffer

 Range xx - 1 to MAX GROUPS

 nn - to 10 (default for maximum targets in via point buffer)

 Units xx - none
 nn - milliseconds

 Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point:truncated
 nn
 Missing parameter: error 21, GROUP PARAMETER MISSING

 DESCRIPTION This command stops enqueuing new commands into the via point buffer until the

buffer level equals nn. As commands in the buffer get executed on a FIFO basis
and the buffer level equals nn, commands issued subsequent to this one get
executed.

RETURNS If “?” sign takes the place of nn value, the controller returns the room available
in via point buffer for more commands.

REL. COMMANDS HN - create a new group
 HL - move group to target position along a line
 HC - move group to target position along an arc
EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HV10 | set vectorial velocity of group #1 to 10 units/second
 1HA50 | set vectorial acceleration of group #1 to 50 units/second2
 1HD50 | set vectorial deceleration of group #1 to 50 units/second2

 1HO | enable group #1
 1HL10,10 | move group #1 to target pos. 10,10 (ax. #1 = 10, #2 = 10 units)
 1HL20,20 | move group #1 to target pos. 20,20 (ax. #1 = 20, #2 = 20 units).
 | This command gets enqueued in the via point buffer if it was
 | received prior completion of the previous move command.
 1HL50,50 | move group #1 to target pos. 50,50 (ax. #1 = 50, #2 = 50 units).
 1HQ10 | wait until the via point buffer level equals 10 commands
 1HC40,60,180 | move group #1 along an arc with center of arc at (40,60) units,
 | by a sweep angle of 180 deg. from current position.

Section 3 – Remote Mode 3-77

HS stop group motion

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHS or xxHS?

PARAMETERS
Description xx [int] - group number

Range xx - 1 to MAX GROUPS

Units xx - none

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated

DESCRIPTION This command stops the motion of all axes assigned to a group using vector

deceleration set using HD command.

RETURNS If “?” sign is supplied along with the command, the controller returns:
 1 - group motion is stopped
 0 - group motion is in progress

REL. COMMANDS HN - create a new group
 HC - move a group of axes to desired position along an arc.
 HL - move a group of axes to desired position along a line.

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HV10 | set vectorial velocity of group #1 to 10 units/second
 1HA50 | set vectorial acceleration of group #1 to 50 units/second2
 1HD50 | set vectorial deceleration of group #1 to 50 units/second2

 1HO | enable group #1
 1HP? | query current group position
 0,0 | controller returns axis #1 = 0 units and axis #2 = 0 units
 1HL50, 50 | move axis #1 to a target position = 50 units
 move axis #2 to a target position = 50 units
 1HS? | query if motion of group #1 is stopped
 0 | controller returns 0, meaning group #1 is in motion
 1HS | stop motion of group #2
 1HS? | query if motion of group #1 is stopped
 1 | controller returns 1, meaning group #1 motion has stopped

3-78 Section 3 – Remote Mode

HV set group velocity
 IMM PGM MIP
USAGE ♦ ♦ ♦
SYNTAX xxHVnn or xxHV?

PARAMETERS
Description xx [int] - group number
 nn [float] - vector velocity value

Range xx - 1 to MAX GROUPS

 nn - 0 to minimum of the maximum velocity values of all
axes assigned to this group.

Units xx - none
 nn - predefined units / second

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated
 nn missing: error 7, PARAMETER OUT OF RANGE
 negative: error 22, GROUP PARAMETER OUT OF RANGE
 out of range: error 23, GROUP MAXIMUM VELOCITY EXCEEDED

DESCRIPTION This command is used to set the vectorial velocity value for a group. This value will be

used during coordinated motion of axes assigned to the group. It will override any
original acceleration values specified for individual axes using VA command. The axes’
original values will be restored when the group to which they have been assigned is
deleted.

This command takes effect immediately. It can be executed when controller is idling or
motion is in progress or inside a program.
Note:
Avoid changing velocity during acceleration or deceleration phases of a move. For better
predictable results, change velocity only when all the axes assigned to this group are not
in motion.

RETURNS If “?” sign takes the place of nn value, this command reports the current setting.

REL. COMMANDS VU - set maximum velocity for an axis
 HN - create a new group

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1VU? | query maximum velocity of axis #1
 10 | controller returns a value of 10 units/second
 2VU? | query maximum velocity of axis #2
 15 | controller returns a value of 15 units/second
 1HV10 | set vectorial velocity of group #1 to 10 units/second

 1HV? | query vectorial velocity of group #1
 10 | controller returns a value of 10 units/second

Section 3 – Remote Mode 3-79

HW wait for group motion stop

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHWnn

PARAMETERS
Description xx [int] - group number
 nn [float] - delay after group motion is complete

Range xx - 1 to MAX GROUPS

 nn - 0 to 60000

Units xx - none
 nn - milliseconds

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED
 floating point: truncated
 nn missing: error 7, PARAMETER OUT OF RANGE
 negative: error 22, GROUP PARAMETER OUT OF RANGE
 out of range: error 26, MAXIMUM WAIT DURATION EXCEEDED

DESCRIPTION This command stops execution of any commands subsequent to it until the one

prior to it has been completed. For instance, if a command preceding it is a
group move command such as HL or HC, it stops execution of any commands
following it until the group has reached target position. If nn is not equal to zero,
the controller waits an additional nn milliseconds after the group motion is
complete before executing any further commands.

RETURNS none

REL. COMMANDS HN - create a new group
 HL - move group to target position along a line

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 2HN3,4 | create a new group (#2) with physical axes 3 and 4
 1HV10 | set vectorial velocity of group #1 to 10 units/second
 1HA50 | set vectorial acceleration of group #1 to 50 units/second2
 1HD50 | set vectorial deceleration of group #1 to 50 units/second2

 2HV10 | set vectorial velocity of group #2 to 10 units/second
 2HA50 | set vectorial acceleration of group #2 to 50 units/second2
 2HD50 | set vectorial deceleration of group #2 to 50 units/second2

 1HO | enable group #1
 2HO | enable group #2
 1HL50, 50; 1HW500; 2HL30,20 | move group #1 to a target position = 50, 50
 | units (axis #1 = 50 units and axis #2 = 50 units), wait for the

| group to reach target position, wait an additional 500 ms, and
| then move group #2 to a target position = 30, 20 units (axis #3

 | = 30 units and axis #4 = 20 units)

3-80 Section 3 – Remote Mode

Section 3 – Remote Mode 3-81

HX delete group

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHX

PARAMETERS
Description xx [int] - group number

Range xx - 1 to MAX GROUPS

Units xx - none

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED

DESCRIPTION This command deletes a group and makes available any axes that were assigned

to it for future assignments.

RETURNS none

REL. COMMANDS HN - reate a new group

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2

 1HN? | query axes assigned to group #1
 1,2 | controller returns the axes assigned to group #1
 1HX | delete group #1
 1HN? | query axis assigned to group #1
 TB? | read error message
 0, 475322, GROUP NUMBER NOT ASSIGNED

HZ read group size

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxHZ

PARAMETERS
Description xx [int] - group number

Range xx - 1 to MAX GROUPS

Units xx - none

Defaults xx missing: error 13, GROUP NUMBER MISSING
 out of range: error 14, GROUP NUMBER OUT OF RANGE
 not assigned: error 15, GROUP NUMBER NOT ASSIGNED

DESCRIPTION This command is used to read the number of axes assigned to a group.

RETURNS This command reports the current setting.

REL. COMMANDS HN - create a new group
 HX - delete a group

EXAMPLE 1HN1,2 | create a new group (#1) with physical axes 1 and 2
 1HN? | read axes assigned to group #1
 1,2 | controller returns the axes assigned to group #1
 1HZ | read size of group #1
 2 | controller returns 2

3-82 Section 3 – Remote Mode

ID read stage model and serial number

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX ID ?

PARAMETERS
Description xx [int] - axis number

Range xx - 1 to MAX AXES

Units xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 timeout: error 2, RS-232 COMMUNICATION TIME-OUT

DESCRIPTION This command is used to read Newport ESP compatible positioner (stage) model

and serial number.

 Note:
 An important information needed when asking for help with the motion control

system or when reporting a problem is the stage model and serial number. Use
this command to determine the positioner model and serial number.

RETURNS xx,yy
 where: xx = model number
 yy = serial number

REL. COMMANDS none

EXAMPLE 1 ID ? | read axis-1 positioner model and serial number
 TS50DC.5, SN1263 | controller returns model and serial number

Section 3 – Remote Mode 3-83

JH set jog high speed

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxJHnn or xxJH?

PARAMETERS
Description xx [int] - axis number
 nn [float] - high speed value

Range xx - 1 to MAX AXES
 nn - 0 to maximum value allowed by VU command
 or ? to read present setting

Units xx - none
 nn - preset units/second

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx10, MAXIMUM VELOCITY EXCEEDED

DESCRIPTION This command is used to set the high speed for jogging an axis. Its execution is

immediate, meaning that the value is changed when the command is processed,
including when motion is in progress. It can be used as an immediate command
or inside a program.

RETURNS If “?” sign takes the place of nn value, this command reports current setting.

REL. COMMANDS JW - set jog low speed
 VU - set maximum velocity

EXAMPLE 2VU? | read maximum velocity allowed axis # 2
 10 | controller returns a value of 10.0 units/second for axis #2
 2JH7.5 | set jog high speed to 7.5 units/second for axis #2
 2JH? | read jog high speed value for axis #2

7.5 | controller returns a value of 7.5 units/second for axis #2

3-84 Section 3 – Remote Mode

JK set jerk rate

 IMM PGM MIP
USAGE ♦ ♦ ♦
SYNTAX xxJKnn or xxJK?

PARAMETERS
Description xx [int] - axis number
 nn [float] - jerk value

Range xx - 1 to MAX AXES
 nn - 0 to 2e9

Units xx - none
 nn - preset units / second3
 or ? to read current setting

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx15, MAXIMUM JERK EXCEEDED

DESCRIPTION This command is used to set the jerk (i.e., rate of change in acceleration) value

for an axis. Its execution is immediate, meaning that the jerk is altered when the
command is processed and trajectory mode is set to S-curve, even while a motion
is in progress. It can be used as an immediate command or inside a program.

 Note:

Avoid changing the jerk during the acceleration or deceleration periods.
 For better predictable results, change jerk only when the axis is not
 moving.

RETURNS none

REL. COMMANDS AC - set acceleration
 TJ - set trajectory mode
 VA - set velocity

EXAMPLE 2JK? | read desired velocity of axis # 2
 10.5 | controller returns a velocity value of 10.5 units/s3
 2JK15 | set axis #2 jerk to 15 units/s3

Section 3 – Remote Mode 3-85

JL jump to label

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxJLnn

PARAMETERS
Description xx [int] - label number
 nn [int] - loop count

Range xx - 1 to 100
 nn - 1 to 65535

Units xx - none
 nn - none

Default xx missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

nn missing: assume infinite
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command changes the flow of the program execution by jumping to a

predefined label xx. This a flow control command that alters the normal
sequential flow of a program. It must be used in conjunction with the DL
command which defines a label.
Parameter nn determines the number of times to repeat the jump before allowing
the program to flow passed.

RETURNS none

REL. COMMANDS JL - jump to label

EXAMPLE 3XX | clear program 3 from memory, if any
 3EP | create program 3
 1DL | define label 1
 •
 •
 •
 1JL 5 | jump to label 1 five(5) times
 QP | end entering program and quit programming mode
 3EX | run stored program number 3

3-86 Section 3 – Remote Mode

JW set jog low speed

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxJWnn or xxJW?

PARAMETERS
Description xx [int] - axis number
 nn [float] - low speed value

Range xx - 1 to MAX AXES
 nn - 0 to maximum value allowed by VU command
 or ? to read present setting

Units xx - none
 nn - reset units/second

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx10, MAXIMUM VELOCITY EXCEEDED

DESCRIPTION This command is used to set the low speed for jogging an axis. Its execution is

immediate, meaning that the value is changed when the command is processed,
including when motion is in progress. It can be used as an immediate command
or inside a program.

RETURNS If “?” sign takes the place of nn value, this command reports current setting.

REL. COMMANDS JH - set jog high speed
 VU - set maximum velocity

EXAMPLE 2VU? | read maximum velocity allowed axis # 2
 10 | controller returns a value of 10.0 units/second for axis #2
 2JW2.5 | set jog low speed to 2.5 units/second for axis #2
 2JW? | read jog low speed value for axis #2
 2.5 | controller returns a value of 2.5 units/second for axis #2

Section 3 – Remote Mode 3-87

KD set derivative gain

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxKDnn or xxKD?

PARAMETERS
Description xx [int] - axis number
 nn [float] - derivative gain factor Kd

Range xx - 1 to MAX AXES
 nn - 0 to 2e9, or ? to read current setting
Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the derivative gain factor Kd of the PID closed loop. It is

active for any DC servo based motion device that has been selected to operate in
closed loop.

 The command can be sent at any time but it has no effect until the UF (update
 filter) is received.
.
 See the "Servo Tuning" chapter on how to adjust the PID filter parameters.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS KI - set integral gain factor
 KP - set proportional gain factor
 KS - set saturation gain factor
 UF - update filter

EXAMPLE 3KD0.01 | set derivative gain factor for axis # 3 to 0.01
 •
 •
 •
 3UF | update PID filter; only now the KD command takes effect

3-88 Section 3 – Remote Mode

KI set integral gain

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxKInn or xxKI?

PARAMETERS
Description xx [int] - axis number
 nn [float] - integral gain factor Ki

Range xx - 1 to MAX AXES
 nn - 0 to 2e9, or ? to read current setting
Units xx - none
 nn - one

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the integral gain factor Ki of the PID closed loop. It is

active for any DC servo based motion device that has been selected to operate in
closed loop.

 The command can be sent at any time but it has no effect until the UF (update
 filter) is received.
.
 See the "Servo Tuning" chapter on how to adjust the PID filter parameters.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS KD - set integral gain factor
 KP - set proportional gain factor
 KS - set saturation gain factor
 UF - update filter

EXAMPLE 3KI 0.01 | set integral gain factor for axis # 3 to 0.01
 •
 •
 •
 3UF | update PID filter; only now the KI command takes effect

Section 3 – Remote Mode 3-89

KP set proportional gain

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxKPnn or xxKP?

PARAMETERS
Description xx [int] - axis number
 nn [float] - roportional gain factor Kp

Range xx - 1 to MAX AXES
 nn - 0 to 2e9, or ? to read current setting
Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: rror xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the proportional gain factor Kp of the PID closed loop. It is

active for any DC servo based motion device that has been selected to operate in
closed loop.

 The command can be sent at any time but it has no effect until the UF (update
 filter) is received.
.
 See the "Servo Tuning" chapter on how to adjust the PID filter parameters.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS KI - set integral gain factor
 KD - set proportional gain factor
 KS - set saturation gain factor
 UF - update filter

EXAMPLE 3KP0.01 | set proportional gain factor for axis # 3 to 0.01
 •
 •
 •
 3UF | update PID filter; only now the KP command takes effect

3-90 Section 3 – Remote Mode

KS set saturation level of integral factor

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxKSnn or xxKS?

PARAMETERS
Description xx [int] - axis number
 nn [float] - saturation level of integrator KS

Range xx - 1 to MAX AXES
 nn - 0 to 2e9, or ? to read current setting
Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the saturation level of the integral factor of the PID closed

loop and is useful for preventing integral wind-up. It is active for any DC servo
based motion device that has been selected to operate in closed loop.

 The command can be sent at any time but it has no effect until the UF (update
 filter) is received.
.
 See the "Servo Tuning" chapter on how to adjust the PID filter parameters.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS KI - set integral gain factor
 KP - set proportional gain factor
 KD - set derivative gain factor
 UF - update filter

EXAMPLE 3KS0.01 | set saturation level for axis # 3 to 0.01
 •
 •
 •
 3UF | update PID filter; only now the KS command takes effect

Section 3 – Remote Mode 3-91

LC lock / unlock keyboard

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX LC nn

PARAMETERS
Description nn [int] - Lock option

Range nn - 0 – 2 (0 = unlocked; 1 = all but “Motor ON/OFF”

locked; 2 = all locked

Units nn - none

Defaults nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx01, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to lock / unlock the keyboard of the ESP301. The parameter value

means :
- 0 : unlock the keyboard
- 1 : lock all buttons but the “Motor ON/OFF”
- 2 : lock all buttons

.

RETURNS If the "?" sign takes the place of nn value, this command reports the

current setting.

REL. COMMANDS

EXAMPLE LC1 | lock the keyboard
 LC? | get lock status
 1 | returns current setting

3-92 Section 3 – Remote Mode

LP list program

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxLP

PARAMETERS
Description xx [int] - rogram number

Range xx - 1 to 100

Units xx - none

Defaults xx missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command reads a specified program from non-volatile memory and sends it

to the selected communication port (RS232 or IEEE488). During the
transmission no other command should be sent to the controller.

 Note
 The program list always terminates with the word “END”
.

RETURNS program listing

REL. COMMANDS EP - enter program mode

EXAMPLE 3LP | list program number 3
 3MO | enable axis 3 motor power
 1DL | define return label 1
 3PR+10 | move axis 3 relative +10 units
 3WS500 | wait 500ms after axis 3 stops
 3PR-10 | move axis 3 relative -10 units
 3WS500 | wait 500ms after axis 3 stops
 1JL5 | jump to label 1 location 5 times
 END | end of program list

Section 3 – Remote Mode 3-93

MD read motion done status

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxMD?

PARAMETERS
Description xx [int] - axis number

Range xx - 1 to MAX AXES

Units xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command is used to read the motion status for the specified axis n. The MD

command can be used to monitor Homing, absolute, and relative displacement
move completion status.

RETURNS nn - 0 or 1 where 0 = motion not done (FALSE)
 1 = motion done (TRUE)

REL. COMMANDS PA - move to an absolute position
 PR - move to a relative position
 OR - move to home position

EXAMPLE 3MD? | read axis #3 move done status
 1 | controller returns status 1 (motion done) for axis # 3
 3PR2.2 | start a relative motion of 2.2 on axis # 3
 3MD? | read axis #3 move done status
 0 | controller returns status 0 (motion not done) for axis # 3

3-94 Section 3 – Remote Mode

MF motor off

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxMF or xxMF?

PARAMETERS
Description xx [int] - axis number

Range xx - 1 to MAX AXES

Units xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command turns power OFF of the specified motor (axis).

RETURNS If “?” sign is issued along with command, the controller returns:
 1 - motor power is ON
 0 - motor power is OFF

REL. COMMANDS AB - abort motion
 ST - stop motion
 MO - urn motor power ON

EXAMPLE 2MF | turn axis #2 motor power OFF
 2MF? | query axis #2 motor power status
 0 | controller returns a value of 0
 2MO | turn axis #2 motor power ON
 2MF? | query axis #2 motor power status
 1 | controller returns a value of 1

Section 3 – Remote Mode 3-95

MO motor on

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxMO or xxMO?

PARAMETERS
Description xx [int] - axis number

Range xx - to MAX AXES

Units xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command turns power ON of the specified motor (axis).

CAUTION:

If the motor power was turned off by the controller detecting a fault condition,
before turning the power back on, make sure that the cause of the fault was
corrected.

RETURNS If “?” sign is issued along with command, the controller returns:
 1 - motor power is ON
 0 - motor power is OFF

REL. COMMANDS AB - abort motion
 ST - stop motion
 MF - urn motor power OFF

EXAMPLE MO | turn axis #2 motor power ON
 2MO? | query axis #2 motor power status
 1 | controller returns a value of 1
 2MF | turn axis #2 motor power OFF
 2MO? | query axis #2 motor power status
 0 | controller returns a value of 0

3-96 Section 3 – Remote Mode

MT move to hardware travel limit

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxMTnn or xxMT?

PARAMETERS
Description xx [int] - axis number
 nn [char] - direction of motion

Range xx - 1 to MAX AXES
 nn - + for positive direction or − for negative direction

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: positive direction

DESCRIPTION This command is used to move an axis to its limit (positive or negative). It uses

the home search speed during travel to hardware limit.

 Note: This command cannot be issued after enabling DAQ (refer ASCII

command, DE).

RETURNS If “?” sign takes the place of nn value, this command reports 1 if motion is done,

or 0 if motion is in progress.

REL. COMMANDS OR - home location search
 OH - set home search speed

EXAMPLE 3MT+ | move axis #3 to positive travel limit
 3MT? | query motion status

0 | controller returns 0 indicating motion is in progress

Section 3 – Remote Mode 3-97

MV move indefinitely

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxMVnn or xxMV?

PARAMETERS
Description xx [int] - axis number
 nn [char] - direction of motion

Range xx - 1 to MAX AXES
 nn - + for positive direction or − for negative direction

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: positive direction
 out of range: error xx04, POSITIVE HARDWARE LIMIT EXCEEDED
 out of range: error xx05, NEGATIVE HARDWARE LIMIT EXCEEDED
 out of range: error xx06, POSITIVE SOFTWARE LIMIT EXCEEDED
 out of range: error xx07, NEGATIVE SOFTWARE LIMIT EXCEEDED

DESCRIPTION This command initiates infinite motion. When received, the selected axis xx will

move indefinitely, with the predefined acceleration and velocity, in the direction
specified by nn. If the requested axis is member of a group, this command does
not initiate the desired motion. Instead, error xx31, " COMMAND NOT
ALLOWED DUE TO GROUP ASSIGNMENT" is generated. Refer HL and HC
commands to move along a line or an arc.

If this command is issued when trajectory mode for this axis is not in trapezoidal
or s-curve mode, the controller returns error xx32, “INVALID TRAJECTORY
MODE FOR MOVING”.

Note:

Although the command is accepted while a motion is in progress, care should be
taken not to reverse direction of motion.

RETURNS If the “?” sign takes the place of nn value, this command reports the motion done

status.

3-98 Section 3 – Remote Mode

REL. COMMANDS PA - move to absolute position
 PR - move to relative position
 ST - stop motion
 MD - move done status

EXAMPLE 3MV+ | move axis #3 indefinitely in positive direction
 3MV? | query status of move
 0 | controller returns 0 meaning, motion is in progress
 3ST | stop axis #3 motion
 3MV− | move axis #3 indefinitely in negative direction

Section 3 – Remote Mode 3-99

MZ move to nearest index

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxMZnn or xxMZ?

PARAMETERS
Description xx [int] - axis number
 nn [char] - direction of motion

Range xx - 1 to MAX AXES
 nn - + for positive direction or − for negative direction

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: ositive direction

DESCRIPTION This command is used to move an axis to its nearest index (positive or negative).
It uses the home search speed during travel to nearest index.

 Note: This command cannot be issued after enabling DAQ (refer ASCII

command, DE).

RETURNS If “?” sign takes the place of nn value, this command reports 1 if motion is done,

or 0 if motion is in progress.

REL. COMMANDS OR - home location search
 OH - set home search speed

EXAMPLE 3MZ+ | move axis #3 to nearest index in positive direction
 3MZ? | query motion status

0 | controller returns 0 indicating motion is in progress

3-100 Section 3 – Remote Mode

OH set home search high speed

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxOHnn or xxOH?

PARAMETERS
Description xx [int] - axis number
 nn [float] - high speed value

Range xx - 1 to MAX AXES
 nn - 0 to maximum value allowed by VU command
 or ? to read present setting

Units xx - none
 nn - reset units/second

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx10, MAXIMUM VELOCITY EXCEEDED
 error xx24, SPEED OUT OF RANGE

DESCRIPTION This command sets the high speed used to search for home location for an axis.

Its execution is immediate, meaning that the value is changed when the command
is processed, including when motion is in progress. It can be used as an
immediate command or inside a program.

RETURNS If “?” sign takes the place of nn value, this command reports current setting.

REL. COMMANDS OR - search for home
 OL - set home search low speed

EXAMPLE 3OH10 | set home search high speed of axis # 3 to 10 units/sec
 3OH? | query home search high speed of axis #3
 10 | controller returns a value of 10.0 units/second

Section 3 – Remote Mode 3-101

OL set home search low speed

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxOLnn or xxOL?

PARAMETERS
Description xx [int] - axis number
 nn [float] - low speed value

Range xx - 1 to MAX AXES
 nn - 0 to maximum value allowed by VU command
 or ? to read present setting

Units xx - none
 nn - preset units/second

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx10, MAXIMUM VELOCITY EXCEEDED
 error xx24, SPEED OUT OF RANGE

DESCRIPTION This command sets the low speed used to search for home location for an axis.

Its execution is immediate, meaning that the value is changed when the command
is processed, including when motion is in progress. It can be used as an
immediate command or inside a program.

RETURNS If “?” sign takes the place of nn value, this command reports current setting.

REL. COMMANDS OR - search for home
 OH - set home search high speed
 OL - set home search low speed

EXAMPLE 3OL2 | set home search low speed of axis # 3 to 2 units/sec
 3OL? | query home search low speed of axis #3
 2 | controller returns a value of 2 units/second

3-102 Section 3 – Remote Mode

OM set home search mode

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX
PARAMETERS
Description xx [int] - axis number
 nn [int] - home search mode

Range xx - 1 to MAX AXES
 nn - 0 to 6

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING

 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command selects the home search type without invoking the home search

sequence (see the description of OR command for more information on home
search). The seven home search types are +0 Position Count, Home Switch and
Index Signals, Home Switch Signal, Positive Limit Signal, Negative Limit
Signal, Positive Limit and Index Signals and Negative Limit and Index Signals.

If nn = 0 and the front panel HOME search push button is pressed, the axes will
search for zero position count. If nn = 1 and the front panel HOME search push
button is pressed, the axis will search for combined Home and Index signal
transitions. The controller responds similarly for other values of nn.

The nn parameter is overwritten by the OR command parameter.

RETURNS If “?” sign takes the place of nn value, this command reports current setting.

REL. COMMANDS OR - search for home

EXAMPLE 3OM1 | set axis #3 home search mode to 1
 3OR | start home search on axis #3 using mode 1

Section 3 – Remote Mode 3-103

OR search for home
 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxORnn

PARAMETERS
Description xx [int] - axis number
 nn [int] - home mode
Range xx - 0 to MAX AXES
 nn - 0 to 6 where:

0 = Find +0 Position Count
1 = Find Home and Index Signals
2 = Find Home Signal
3 = Find Positive Limit Signal
4 = Find Negative Limit Signal
5 = Find Positive Limit and Index Signals
6 = Find Negative Limit and Index Signals

Units xx - none
 nn - none
Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command executes a Home search routine on the axis specified by xx. If xx

= 0, a home search routine is initiated sequentially on all installed axes. If nn is
missing, the axes will search for home using the mode specified using OM
command. If nn = 0, the axes will search for zero position count. If nn = 1, the
axis will search for combined Home and Index signal transitions. If nn = 2, the
axes will search for Home signal transition only. If nn = 3, the axes will search
for positive limit signal transition. If nn = 4, the axes will search for negative
limit signal transition. If nn = 5, the axes will search for positive limit and index
signal transition. If nn = 6, the axes will search for negative limit and index
signal transition.

At the end of a home search routine, the position of axes is reset to the value
specified using SH command.

The home search motion status can be monitored with the Motion Done (MD)
status command. If a fault condition such as E-stop occurs while home search is
in progress or if this command is issued to an axis before enabling it, the
controller returns error xx20, “HOMING ABORTED”.

For a detailed description of the home search routine see the Home - The Axis
Origin chapter in the Motion Control Tutorial section.

3-104 Section 3 – Remote Mode

Note: This command should be executed once every time the controller power is
turned ON or the controller performs a complete system reset. There is no need
to issue this command in any other case since the controller always keeps track of
position, even when the motor power is OFF.

 Note: This command cannot be issued after enabling DAQ (refer ASCII
command, DE).

RETURNS none

REL. COMMANDS DH - define home
 OH - set home search speed
 OM - set home search mode
 MD - read motion done status
 SH - set home preset position

EXAMPLE 3MO | turn axis #3 motor power ON

3SH0 | set axis #3 home position to 0 units
3OR1 | perform a home search on axis # 3
3MD? | query axis #3 motion status
1 | controller returns a value of 1, when motion is done
3TP | query axis #3 position
0 | controller returns a value of 0 units

Section 3 – Remote Mode 3-105

PA move to absolute position
 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxPAnn or xxPA?

PARAMETERS
Description xx [int] - axis number
 nn [float] - absolute position destination

Range xx - 1 to MAX AXES

nn - any position within the travel limits and within ±2e9 *
encoder resolution.

Units xx - none
 nn - defined motion units

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx04, POSITIVE HARDWARE LIMIT EXCEEDED
 out of range: error xx05, NEGATIVE HARDWARE LIMIT EXCEEDED
 out of range: error xx06, POSITIVE SOFTWARE LIMIT EXCEEDED
 out of range: error xx07, NEGATIVE SOFTWARE LIMIT EXCEEDED

DESCRIPTION This command initiates an absolute motion. When received, the selected axis xx will move,
with the predefined acceleration and velocity, to the absolute position specified by nn. If
the requested axis is member of a group, this command does not initiate the desired motion.
Instead, error xx31, " COMMAND NOT ALLOWED DUE TO GROUP ASSIGNMENT"
is generated. Refer HL and HC commands to move along a line or an arc.

If this command is issued when trajectory mode for this axis is not in trapezoidal or s-
curve mode, the controller returns error xx32, “INVALID TRAJECTORY MODE FOR
MOVING”.

Note:

Even though the command is accepted while a motion is in progress, care should be taken
not to reverse direction of motion. When this command is received, the controller verifies
if it will produce a change of direction.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

actual the same as TP?.

REL. COMMANDS AC - set acceleration
 PR - move to relative position
 ST - stop motion
 MD - move done status
 VA - set velocity

EXAMPLE 3VA8 | set velocity of axis #2 to 8 units / s

 3PA12.34 | move axis #2 to absolute position 12.34

3-106 Section 3 – Remote Mode

PH get hardware status

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX PH

PARAMETERS None

DESCRIPTION This command is used to get general hardware status for all axes. This routine

allows user to observe the various digital input signals as they appear to the
controller.

 HARDWARE STATUS REGISTER #1

BIT# VALUE DEFINITION

0 0 axis 1 +hardware travel limit low
0 1 axis 1 +hardware travel limit high
1 0 axis 2 +hardware travel limit low
1 1 axis 2 +hardware travel limit high
2 0 axis 3 +hardware travel limit low
2 1 axis 3 +hardware travel limit high
3 0 axis 4 +hardware travel limit low
3 1 axis 4 +hardware travel limit high
4 0 axis 5 +hardware travel limit low
4 1 axis 5 +hardware travel limit high
5 0 axis 6 +hardware travel limit low
5 1 axis 6 +hardware travel limit high
6 0 reserved
6 1 reserved
7 0 reserved
7 1 reserved
8 0 axis 1 –hardware travel limit low
8 1 axis 1 –hardware travel limit high
9 0 axis 2 –hardware travel limit low
9 1 axis 2 –hardware travel limit high

10 0 axis 3 –hardware travel limit low
10 1 axis 3 –hardware travel limit high
11 0 axis 4 –hardware travel limit low
11 1 axis 4 –hardware travel limit high
12 0 axis 5 –hardware travel limit low
12 1 axis 5 –hardware travel limit high
13 0 axis 6 –hardware travel limit low
13 1 axis 6 –hardware travel limit high
14 0 reserved
14 1 reserved
15 0 reserved
15 1 reserved

Section 3 – Remote Mode 3-107

16 0 axis 1 amplifier fault input low
16 1 axis 1 amplifier fault input high
17 0 axis 2 amplifier fault input low
17 1 axis 2 amplifier fault input high
18 0 axis 3 amplifier fault input low
18 1 axis 3 amplifier fault input high
19 0 axis 4 amplifier fault input low
19 1 axis 4 amplifier fault input high
20 0 axis 5 amplifier fault input low
20 1 axis 5 amplifier fault input high
21 0 axis 6 amplifier fault input low
21 1 axis 6 amplifier fault input high
22 0 reserved
22 1 reserved
23 0 reserved
23 1 reserved
24 0 reserved
24 1 reserved
25 0 reserved
25 1 reserved
26 0 reserved
26 1 reserved
27 0 100-pin emergency stop (unlatched) low
27 1 100-pin emergency stop (unlatched) high
28 0 auxiliary I/O emergency stop (unlatched) low
28 1 auxiliary I/O emergency stop (unlatched) high
29 0 100-pin connector emergency stop (latched) low
29 1 100-pin connector emergency stop (latched) high
30 0 auxiliary I/O conector emergency stop (latched) low
30 1 auxiliary I/O conector emergency stop (latched) high
31 0 100-pin cable interlock low
31 1 100-pin cable interlock high

 HARDWARE STATUS REGISTER #2

BIT

#
VALUE DEFINITION

0 0 axis 1 home signal low
0 1 axis 1 home signal high
1 0 axis 2 home signal low
1 1 axis 2 home signal high
2 0 axis 3 home signal low
2 1 axis 3 home signal high
3 0 axis 4 home signal low

3 1 axis 4 home signal high
4 0 axis 5 home signal low

4 1 axis 5 home signal high
5 0 axis 6 home signal low

5 1 axis 6 home signal high
6 0 reserved

3-108 Section 3 – Remote Mode

6 1 reserved
7 0 reserved
7 1 reserved
8 0 axis 1 index signal low
8 1 axis 1 index signal high
9 0 axis 2 index signal low
9 1 axis 2 index signal high

10 0 axis 3 index signal low
10 1 axis 3 index signal high
11 0 axis 4 index signal low
11 1 axis 4 index signal high
12 0 axis 5 index signal low
12 1 axis 5 index signal high
13 0 axis 6 index signal low
13 1 axis 6 index signal high
14 0 reserved
14 1 reserved
15 0 reserved
15 1 reserved
16 0 digital input A low
16 1 digital input A high
17 0 digital input B low
17 1 digital input B high
18 0 digital input C low
18 1 digital input C high

 • • •
31 0 reserved
31 1 reserved

RETURNS This command reports the current status in hexadecimal notation.

REL. COMMANDS ZU - get ESP system configuration
 ZZ - get system configuration

EXAMPLE PH | read hardware status
 18000404H, 4H | controller returns the status of the two hardware

| regsisters

Section 3 – Remote Mode 3-109

PR move to relative position

 IMM PGM MIP

USAGE ♦ ♦ ♦

SYNTAX xxPRnn

PARAMETERS
Description xx [int] - axis number
 nn [float] - relative motion increment

Range xx - 1 to MAX AXES

nn - any value that will not cause exceeding the software
limits and

 within 2e9 * encoder resolution.
Units xx - none
 nn - defined motion units

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx04, POSITIVE HARDWARE LIMIT EXCEEDED
 out of range: error xx05, NEGATIVE HARDWARE LIMIT EXCEEDED
 out of range: error xx06, POSITIVE SOFTWARE LIMIT EXCEEDED
 out of range: rror xx07, NEGATIVE SOFTWARE LIMIT EXCEEDED

DESCRIPTION This command initiates a relative motion. When received, the selected axis xx will move,

with the predefined acceleration and velocity, to a relative position nn units away from
the current position. If the requested axis is member of a group, this command does not
initiate the desired motion. Instead, error xx31, "COMMAND NOT ALLOWED DUE
TO GROUP ASSIGNMENT" is generated. Refer HL and HC commands to move along
a line or an arc.

If this command is issued when trajectory mode for this axis is not in trapezoidal or s-
curve mode, the controller returns error xx32, “INVALID TRAJECTORY MODE FOR
MOVING”.

 Note:
 Even though the command is accepted while a motion is in progress, care should
 be taken not to reverse direction of motion.

RETURNS none

REL. COMMANDS AC - set acceleration
 PA - move to absolute position
 MD - move done status
 ST - stop motion
 VA - et velocity

EXAMPLE 3VA8 | set velocity of axis # 3 to 8 units / s
 3PR2.34 | move axis # 3 2.34 units away from the current position

3-110 Section 3 – Remote Mode

QD update motor driver settings

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxQD

PARAMETERS
Description xx [int] - axis number

Range xx - 1 to MAX AXES

Units xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

missing Unidrive: error xx23, UNIDRIVE NOT DETECTED

DESCRIPTION This command is used to update Newport programmable driver (i.e., Unidrive)

settings into working registers.

Note: This command should not be issued during motion since the motor power
is automatically turned OFF.

RETURNS none

REL. COMMANDS QS - set microstep factor
 QG - set gear constant
 QT - set tachometer gain
 QV - set average motor voltage

EXAMPLE 2QI? | read maximum motor current setting of axis # 2
 1.6 | controller returns a value of 1.6 Amp. for axis #2
 2QI 1.2 | set maximum motor current to 1.2Amp. for axis #2
 2QD | update programmable driver with latest settings for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-111

QG set gear constant

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxQGnn or xxQG?

PARAMETERS
Description xx [int] - axis number
 nn [float] - gear constant

Range xx - 1 to MAX AXES
 nn - 0 to 2e9
 or ? to read present setting

Units xx - none
 nn - evolution / unit of measure

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the gear constant for a Newport Unidrive

compatible programmable driver for DC servo axis. This command should be
used in conjunction with QT (tachometer gain) command.
The gear constant is defined as the number of revolutions the motor has to make
for the motion device to move one displacement.
This command must to be followed by the QD update driver command to take
affect.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS SN - set displacement units
 QD - update driver
 QS - set microstep factor
 QI - set motor maximum current
 QV - et average motor voltage

EXAMPLE 2QG? | read gear constant setting of axis # 2
 0.3937 | controller returns a value of 0.3937 rev / unit for axis #2
 2QG 0.25 | set gear constant to 0.25 rev / unit for axis #2
 2QT 7.0 | set tachometer gain to 7 V/Krpm for axis #2
 2QD | update programmable driver with latest settings for axis #2

3-112 Section 3 – Remote Mode

QI set maximum motor current

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxQInn or xxQI?

PARAMETERS
Description xx [int] - axis number
 nn [float] - motor current

Range xx - 1 to MAX AXES
 nn - 0 to maximum driver rating (see Specifications section)
 or ? to read present setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the maximum motor current output for a Newport

Unidrive compatible programmable driver axis. This command must to be
followed by the QD update driver command to take affect.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS QG - set gear constant
 QD - update driver
 QS - set microstep factor
 QT - set tachometer gain
 QV - set average motor voltage

EXAMPLE 2QI? | read maximum motor current setting of axis # 2
 1.6 | controller returns a value of 1.6 Amp. for axis #2
 2QI 1.2 | set maximum motor current to 1.2Amp. for axis #2
 2QD | update programmable driver with latest settings for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-113

QM set motor type
 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxQMnn or xxQM?

PARAMETERS
Description xx [int] - axis number
 nn [int] - motor type

Range xx - 1 to MAX AXES
 nn - 0 to 4 where

0 = motor type undefined (default)
 1 = DC servo motor (single analog channel)
 2 = step motor (digital control)*
 3 = commutated step motor (analog control)+
 4 = commutated brushless DC servo motor
 or ? to read current setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the motor type the for axis xx. Defining motor type

is necessary because the ESP needs to apply different control algorithms for different
motor types.

 Note:
 It will not be possible to control an axis if its motor type is undefined.

 * ESP301 motion controller does not support this motor type.

RETURNS If the “?” sign takes the place of nn value, this command reports the current setting

REL. COMMANDS QV - set average motor voltage
 QD - update driver
 QI - set maximum motor current
 QT - set tachometer gain
 QG - et gear constant

EXAMPLE 2QM? | read motor type of axis # 2
 0 | controller returns a value of 0 (motor undefined) for axis #2
 2QM 1 | set motor type to value of 1 (DC servo motor) for axis #2
 2QD | update programmable driver with latest settings for axis #2
 SM | save all controller settings to non-volatile memory

3-114 Section 3 – Remote Mode

QP quit program mode

 IMM PGM MIP
USAGE ♦

SYNTAX QP

PARAMETERS None

DESCRIPTION This command quits the controller from programming mode. All the commands

following this one will be executed immediately.

RETURNS none

REL. COMMANDS EX - execute stored program
 AP - abort stored program execution
 XX - erase program

EXAMPLE 3XX | clear program 3 from memory, if any
 3EP | activate program mode and enter following commands as
 | program 3
 •
 •
 •
 QP | end entering program and quit programming mode
 3EX | run stored program number 3

Section 3 – Remote Mode 3-115

QR reduce motor torque

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxQRnn1,nn2 or xxQR?

PARAMETERS
Description xx [int] - axis number
 nn1 [int] - delay period
 nn2 [float] - motor current reduction percentage

Range xx - 1 to MAX AXES
 nn1 - 0 to 60000
 nn2 - 0 to 100

Units xx - none
 nn1 - milliseconds
 nn2 - percent of max. motor current

Defaults xx missing: error 37, AXIS NUMBER MISSING
 missing parameter: error 38, COMMAND PARAMETER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command automatically reduces the specified step motor’s current (i.e.,

torque) output to the requested percentage nn2 after motion has stopped and the
specified time nn1 has expired. The purpose of this command is to help reduce
the motor heating typically generated by stepper motors. If xx is equal to 0, the
torque reduction parameters get applied to all axes.

 Note: This command does not affect DC servo motors and pulse stepper
motors.

RETURNS If “?” sign is issued along with command, the controller returns the torque

reduction settings for the specified axis.

REL. COMMANDS QM - set motor type
 QI - et motor current

EXAMPLE 2QR1000,50 | reduce motor #2 torque to 50%, 1000 msec after a move
 done
 2QR? | query motor #2 torque reduction settings
 1000,50 | controller returns 1000 msec and 50%

3-116 Section 3 – Remote Mode

QS set microstep factor

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxQSnn or xxQS?

PARAMETERS
Description xx [int] - axis number
 nn [int] - microstep value

Range xx - 1 to MAX AXES
 nn - 1 to 250 for step motors
 1 to 1000 for commutated step motors
 or ? to read current setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the microstep factor for a Newport Unidrive

compatible programmable driver with step motor axis. This command must be
followed by the QD update driver command to take affect.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS QD - update driver
 QI - set maximum motor current
 QT - set tachometer gain
 QG - set gear constant
 QV - set average motor voltage

EXAMPLE 2QS? | read microstep factor of axis # 2
 100 | controller returns a value of 100 for axis #2
 2QS 250 | set microstep factor to 250 for axis #2
 2QD | update programmable driver with latest settings for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-117

QT set tachometer gain

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxQTnn or xxQT?

PARAMETERS
Description xx [int] - axis number
 nn [float] - tachometer gain

Range xx - 1 to MAX AXES
 nn - 0 to 20
 or ? to read present setting

Units xx - none
 nn - Volts/Krpm

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the DC motor tachometer gain for a Newport

Unidrive compatible programmable driver axis.
This command should be used in conjunction with QG (gear constant) command.
This command must to be followed by the QD update driver command to take
affect.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS QD - update driver
 QS - set microstep factor
 QG - set gear constant
 QI - set motor maximum current
 QV - set average motor voltage

EXAMPLE 2QT? | read tachometer gain setting of axis # 2
 7.0 | controller returns a value of 7.0 V/Krpm for axis #2
 2QT 6.5 | set tachometer gain value of 6.5 V/Krpm for axis #2
 2QG 0.3937 | set gear constant to 0.3937 rev / unit for axis #2
 2QD | update programmable driver with latest settings for axis #2
 SM | save all controller settings to non-volatile memory

3-118 Section 3 – Remote Mode

QV set average motor voltage

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxQVnn or xxQV?

PARAMETERS
Description xx [int] - axis number
 nn [float] - motor voltage

Range xx - 1 to MAX AXES
 nn - 0 to maximum driver rating (see Specifications section)
 or ? to read present setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the average motor voltage output for a Newport

Unidrive compatible programmable driver axis. This command must to be
followed by the QD update driver command to take affect.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS QD - update driver
 QI - set maximum motor current
 QG - set gear constant
 QS - set microstep factor
 QT - set tachometer gain

EXAMPLE 2QV? | read average motor voltage setting of axis # 2
 48.0 | controller returns a value of 48Volts for axis #2
 2QV 12 | set average motor voltage to 12 Volts for axis #2
 2QD | update programmable driver with latest settings for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-119

 RQ generate service request (SRQ)

IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX RQnn

PARAMETERS
Description nn [int] - interrupt number

Range nn - 0 to 31

Units nn - none

Defaults nn missing: 0
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command generates an interrupt service request to the host computer. The

parameter nn is used to identify the RQ command which generated the interrupt.
Upon receiving the interrupt, the host computer interrupt service routine should
perform an IEEE 488 serial poll. If the interrupt was as a result of the RQ
command, then bit 6 of the response is 1 and the lower five bits equal the
parameter nn.

 This command can be used to notify the host computer of the progress or flow of

command execution in the motion controller.

RETURNS None

REL. COMMANDS SA - set device address

EXAMPLE 2PR200;2WS;1PR100;1WS;RQ3 | generate interrupt when RQ command is

| encountered and set bit 0 and 2

3-120 Section 3 – Remote Mode

RS reset the controller

IMM PGM MIP

USAGE ♦ ♦

SYNTAX RS

PARAMETERS None

DESCRIPTION This command is used to perform a hardware reset of the controller. It performs
the following preliminary tasks before resetting the controller:

1. Stop all the axes that are in motion. The deceleration value specified
using the command AG is used to stop the axes.

2. Wait for 500 ms to allow the axes to settle.
3. Disable all the axes by turning the power OFF.
4. Reset to the controller card.

Once the command to reset the controller is detected by the DSP, the controller
will stay in reset for a minimum of 200 ms. After the reset condition has
occurred (i.e., after the 200 ms reset time), the controller firmware reboots the
controller. At this point, all the parameters last saved to the non-volatile flash
memory on the controller will be restored. Furthermore, the controller will detect
any stages (ESP compatible or otherwise) and drivers connected to the controller.
This process can take anywhere up to 20 seconds depending upon the controller
configuration.

NOTE: This command is affective only when the watchdog timer is enabled
through appropriate jumper setting on the controller card (default factory setting
is "enabled"). The following figure illustrates the jumper settings to enable the
watchdog timer.

For ESP301 Motion Controllers

P5 (RS232)
P2

RETURNS None

REL. COMMANDS None

EXAMPLE RS | Reset the controller

Section 3 – Remote Mode 3-121

SA set device address

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX SAnn or SA?

PARAMETERS
Description nn [int] - address number

Range nn - 1 to 30

Units nn - none

Defaults nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set and report the device (i.e., ESP controller) address

for use with IEEE-488 or USB communications (if equipped).
 The address change takes affect immediately after the command is processed.

 Note:
 Use the SM command to save new address setting to non-volatile memory.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting.

REL. COMMANDS none

EXAMPLE SA 3 | set device address to 3

SA ? | read present device address setting
3 | controller returns device address #3

SM | save all settings to non-volatile memory

3-122 Section 3 – Remote Mode

SB set / get DIO port A, B bit status

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX SBnn or SB?

PARAMETERS
Description
 nn [int] - hardware limit configuration

Range
 nn - 0 to 0FFFFFFH (hexadecimal with leading zero(0))
 or ? to read current setting

Units
 nn - None

Defaults
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to either set all digital I/O (DIO) port A, B, and C logic

level or read its present status. Bits 0-7 correspond to port A, and bits 8-15 to port
B. Each 8-bit port can be set as either input or output with the BO command.

A DIO within a port configured as an input can only report its present HIGH or
LOW logic level. Whereas a DIO bit within a port configured as an output can
set(1) or clear(0) the corresponding DIO hardware to HIGH or LOW logic level.
Reading the status of a port configured as output returns its present output status.

NOTE: All direction bits are automatically zeroed, or cleared, after a system
reset. Therefore all DIO ports default to input by default.

NOTE: Each DIO bit has a pulled-up resistor to +5V. Therefore, all bits will be
at HIGH logic level if not connected to external circuit and configured as input.

BIT# VALUE DEFINITION

0 0 port A bit-0 at logic level 0 (LOW)
*0 1 port A bit-0 at logic level 1 (HIGH)
1 0 port A bit-1 at logic level 0 (LOW)

*1 1 port A bit-1 at logic level 1 (HIGH)
2 0 port A bit-2 at logic level 0 (LOW)

*2 1 port A bit-2 at logic level 1 (HIGH)
3 0 port A bit-3 at logic level 0 (LOW)

*3 1 port A bit-3 at logic level 1 (HIGH)
4 0 port A bit-4 at logic level 0 (LOW)

*4 1 port A bit-4 at logic level 1 (HIGH)
5 0 port A bit-5 at logic level 0 (LOW)

*5 1 port A bit-5 at logic level 1 (HIGH)

Section 3 – Remote Mode 3-123

6 0 port A bit-6 at logic level 0 (LOW)

*6 1 port A bit-6 at logic level 1 (HIGH)
7 0 port A bit-7 at logic level 0 (LOW)

*7 1 port A bit-7 at logic level 1 (HIGH)
 • • •

RETURNS If the “?” sign takes the place of nn value, this command reports the current
setting in hexadecimal notation.

REL. COMMANDS BO - set DIO port direction

EXAMPLE BO? | read DIO port direction configuration
 0H | controller returns a value of 0H (all ports are input)
 BO 1H | configure DIO port A as output
 SB 0FFH | set all port A DIO output HIGH

3-124 Section 3 – Remote Mode

SH set home preset position

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxSHnn or xxSH?

PARAMETERS
Description xx [int] - axis number

nn [float] - home preset position
Range xx - 1 to MAX AXES
 nn - any position within the travel limits
Units xx - none
 nn - defined motion units

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx01, PARAMETER OUT OF RANGE

DESCRIPTION This command defines the value that is loaded in the position counter when home

is found. The default value for all motion devices is 0. This means that unless a
new value is defined using this command, the home position will be set to 0
when a home search is initiated using the OR command or from the front panel
(if available).

Note:
The change takes effect only when a subsequent home search routine is
performed. To make the change permanent, use the SM command to save it in
the non-volatile memory.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting.

REL. COMMANDS DH - define home

EXAMPLE 3MO | turn axis #3 motor power ON

3SH75.0 | set axis #3 home position to 75.0 units
3OR1 | perform a home search on axis # 3
3MD? | query axis #3 motion status
1 | controller returns a value of 1, when motion is done
3TP | query axis #3 position
75.0 | controller returns a value of 75.0 units

Section 3 – Remote Mode 3-125

SI set master-slave jog velocity update interval

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX SInn or SI?

PARAMETERS
Description nn [int] - jog velocity update interval

Range nn - 1 to 1000

Units nn - milliseconds

Defaults nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the jog velocity update interval for slave axis. The jog

velocity of slave axis is computed once every interval using user specified
scaling coefficients and the master axis velocity at the time of computation.
Refer SK command to specify slave jog velocity scaling coefficients. Note that
appropriate trajectory mode has to be specified using TJ command before this
command becomes effective.

RETURNS If “?” sign is issued along with command, the controller returns slave axis
 jog velocity update interval.

REL. COMMANDS SS - define master-slave relationship
 SK - set slave axis jog velocity scaling coefficients

EXAMPLE 2SS1 | set axis 2 to be the slave of axis 1
 2SS? | query the master axis number for axis 2
 1 | controller returns a value of 1
 2TJ6 | set axis 2 trajectory mode to 6
 SI10 | set the jog velocity update interval of slave axis to 10 msec
 SI? | query the jog velocity update interval of slave axis
 10 | controller returns a value of 10
 SK0.5,0 | set the jog velocity scaling coefficients to 0.5 and 0
 SK? | query the jog velocity scaling coefficients
 0.5,0 | controller returns 0.5 and 0

3-126 Section 3 – Remote Mode

SK set master-slave jog velocity scaling coefficients

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX SKnn1, nn2 or SK?

PARAMETERS
Description nni [float] - jog velocity scaling coefficients

Range nni - none
Units nni - none

Defaults nni missing: error 38, COMMAND PARAMETER MISSING

DESCRIPTION This command sets the jog velocity scaling coefficients for slave axis. The jog

velocity of slave axis is computed once every interval using user specified
scaling coefficients and the master axis velocity at the time of computation. The
user specified coefficients are used as follows:

)sgn(2
mmms xxBxAx &&&& +=

 where is the jog velocity of the slave and is the velocity of the master
axis.

sx& mx&

 Refer SI command to specify slave jog velocity update interval.

 Note: Appropriate trajectory mode has to be specified using TJ command

before this command becomes effective.

RETURNS If “?” sign is issued along with command, the controller returns slave axis
 jog velocity scaling coefficients.

REL. COMMANDS SS - define master-slave relationship
 SI - set slave axis jog velocity update interval

EXAMPLE 2SS1 | set axis 2 to be the slave of axis 1
 2SS? | query the master axis number for axis 2
 1 | controller returns a value of 1
 2TJ6 | set axis 2 trajectory mode to 6
 SI10 | set the jog velocity update interval of slave axis to 10 msec
 SI? | query the jog velocity update interval of slave axis
 10 | controller returns a value of 10
 SK0.5,0 | set the jog velocity scaling coefficients to 0.5 and 0
 SK? | query the jog velocity scaling coefficients
 0.5,0 | controller returns 0.5 and 0

Section 3 – Remote Mode 3-127

SL set left travel limit

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxSLnn or xxSL?

PARAMETERS
Description xx [int] - axis number
 nn [float] - left (negative) software limit
Range xx - 1 to MAX AXES
 nn - -2e9 ∗ encoder resolution to 0
Units xx - none
 nn - predefined motion units

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command defines the value for the negative (left) software travel limit. It
 should be used to restrict travel in the negative direction to protect the motion
 device or its load. For instance, if traveling full range, a stage could push its load
 into an obstacle. To prevent this, the user can reduce the allowed travel by
 changing the software travel limit.

Since a motion device must be allowed to find its home position, the home
switch and/or sensor must be inside the travel limits. This means that both
positive and negative travel limits cannot be set on the same side of the home
position. A more obvious restriction is that the negative limit cannot be greater
than the positive limit. If any of these restrictions is not respected, the controller
will return PARAMETER OUT OF RANGE.

 Note:
 If the command is issued for an axis in motion, the new limit should not be set
 inside the current travel.

 Note:
 Be careful when using this command. The controller does not know the real
 hardware limits of the motion device. Always set the software limits inside the
 hardware limits (limit switches). In normal operation, a motion device should
 never hit a limit switch.

RETURNS If the “?” sign takes the place of nn value, this command reports the current
setting

REL. COMMANDS OR - search for home
 SR - set right software limits

EXAMPLE 1SL41.4 | set negative travel limit of axis #1 to 41.4 units

3-128 Section 3 – Remote Mode

SM save settings to non-volatile memory

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX SM

PARAMETERS none

DESCRIPTION This command is used to save system and axis configuration settings from RAM

to non-volatile flash memory. It should be used after modifying system and/or
axis parameters and settings to assure that the new data will not be lost when the
controller is powered off.

 Note:
 User programs created with EP command are automatically saved to non-

volatile memory.

RETURNS none

REL. COMMANDS none

EXAMPLE 3VA12.5 | set axis 3 velocity to 12.5 units/sec
 3AC50.0 | set axis 3 acceleration to 50 unit/sec2
 •
 •
 •
 SM | save changes to non-volatile memory

Section 3 – Remote Mode 3-129

SN set axis displacement units

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxSNnn or xxSN?

PARAMETERS
Description xx [int] - axis number
 nn [int] - displacement units

Range xx - 1 to MAX AXES
 nn - 0 to 10 where 0 = encoder count 6 = micro-inches
 1 = motor step 7 = degree
 2 = millimeter 8 = gradian
 3 = micrometer 9 = radian
 4 = inches 10 = milliradian
 5 = milli-inches 11 = microradian
 or ? to read present setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the displacement units for the for axis xx.
 Note:

The unit of measure as used with this controller is intended as a label only. It is
the user’s responsibility to convert and resend all affected parameters (e.g.,
velocity, acceleration, etc…) when switching from one unit of measure to
another.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS FR - set full-step resolution
 SU - set encoder resolution

EXAMPLE 2SN | read displacement unit setting of axis # 2
 2 | controller returns a value 2 (millimeter) for axis #2
 2SN 0 | set displacement unit to 0 (encoder count) for axis #2

3-130 Section 3 – Remote Mode

SR set right travel limit

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxSRnn or xxSR?

PARAMETERS
Description xx [int] - axis number
 nn [float] - right (positive) software limit
Range xx - 1 to MAX AXES
 nn - +2e9 ∗ encoder resolution to 0
Units xx - none
 nn - defined motion units
Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command defines the value for the positive (right) software travel limit. It
 should be used to restrict travel in the positive direction to protect the motion
 device or its load. For instance, if traveling full range, a stage could push its load
 into an obstacle. To prevent this, the user can reduce the allowed travel by
 changing the software travel limit.

Since a motion device must be allowed to find its home position, the home
switch and/or sensor must be inside the travel limits. This means that both
positive and negative travel limits cannot be set on the same side of the home
position. A more obvious restriction is that the negative limit cannot be greater
than the positive limit. If any of these restrictions is not respected, the controller
will return PARAMETER OUT OF RANGE

 Note:
 If the command is issued for an axis in motion, the new limit should not be set
 inside the current travel.

 Note:
 Be careful when using this command. The controller does not know the real
 hardware limits of the motion device. Always set the software limits inside the
 hardware limits (limit switches). In normal operation, a motion device should
 never hit a limit switch.

RETURNS If the “?” sign takes the place of nn value, this command reports the current
setting

REL. COMMANDS OR - search for home
 SL - set left software limit

EXAMPLE 1SR41.4 | set positive travel limit of axis #1 to 41.4 units

Section 3 – Remote Mode 3-131

SS define master-slave relationship
 IMM PGM MIP
USAGE ♦ ♦
SYNTAX xxSSnn or xxSS?
PARAMETERS
Description xx [int] - axis number to be defined as a slave
 nn [int] - axis number to be defined as a master

Range xx - 1 to MAX AXES
 nn - 1 to MAX AXES

Units xx - none
 xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command defines master-slave relationship between any two axes. A few

rules are in place for ease of use.
• The trajectory mode for slave has to be appropriately defined before that axis

follows master in a desired fashion.
• An axis cannot be assigned as its own slave if it is already in a trajectory

mode that is specific to master-slaving.
• A slave axis cannot be moved individually using PA or PR commands if its

trajectory mode is specific to master-slaving.

This command gets executed immediately, and can also be called from within a
program.

RETURNS If “?” sign is issued along with command, the controller returns master axis
number.

REL. COMMANDS TJ - set trajectory mode
 GR - set master-slave reduction ratio

EXAMPLE 2SS1 | set axis 2 to be the slave of axis 1
 2SS? | query the master axis number for axis 2
 1 | controller returns a value of 1
 2TJ5 | set axis 2 trajectory mode to 5
 2GR1.0 | set the reduction ratio of axis 2 to 1.0
 1MO | turn axis 1 motor power ON
 2MO | turn axis 2 motor power ON
 1PA10 | move axis 1 to absolute 10 units
 2PA20 | move axis 2 to absolute 10 units
 TB | read error messages
 232, 242000, AXIS-2 INVALID TRAJECTORY MODE FOR MOVING
 | controller returns appropriate error message

3-132 Section 3 – Remote Mode

ST stop motion

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxST

PARAMETERS
Description xx [int] - axis number

Range xx - 1 to MAX AXES

Units xx - none

Defaults xx out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command stops a motion in progress using deceleration rate programmed

with AG (set deceleration) command on the specified axes. If the ST command
is sent with no axis parameter, all axes are stopped.

RETURNS none

REL. COMMANDS AB - abort motion
 AG - set deceleration
 MF - motor power off

EXAMPLE 2PA40 | move axis # 2 to absolute position 40
 2ST | stop motion on axis # 2

Section 3 – Remote Mode 3-133

SU set encoder resolution

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxSUnn or xxSU?

PARAMETERS
Description xx [int] - axis number
 nn [float] - encoder resolution

Range xx - 1 to MAX AXES
 nn - 2e-9 to 2e+9 in user defined units
 or ? to read present setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the encoder resolution for axis xx.

 Note:
 The encoder resolution can only be changed when encoder feedback is

enabled. See ZB command.

RETURNS If “?” sign takes the place of nn value, this command reports the current setting

REL. COMMANDS FR - set full-step resolution
 SU - set encoder resolution
 QD - update driver
 ZB - set feedback configuration

EXAMPLE 2SU? | read encoder resolution setting of axis # 2
 0.0001 | controller returns a value of 0.0001 units for axis #2
 2SU0.0005 | set encoder resolution to 0.0005 units for axis #2
 2QD | update programmable driver with latest settings for axis #2
 SM | save all controller settings to non-volatile memory

3-134 Section 3 – Remote Mode

TB read error message

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX TB?

PARAMETERS questions mark (?)

Defaults
DESCRIPTION This command is used to read the error code, timestamp, and the associated

message.
The error code is one numerical value up to three(3) digits long. (see Appendix
for complete listing)
In general, non-axis specific errors numbers range from 1-99. Axis-1 specific
errors range from 100-199, Axis-2 errors range from 200-299 and so on.

The timestamp is in terms of servo cycle (400 µs) ticks accumulated since the
last System Reset, incrementing at the servo interrupt interval (400us default).
The message is a description of the error associated with it. All arguments are
separated by commas.

 Note:

Errors are maintained in a FIFO buffer ten(10) elements deep. When an error is
read using TB or TE, the controller returns the last error that occurred and the
error buffer is cleared by one(1) element. This means that an error can be read
only once, with either command.

RETURNS aa, bb, cc
 where: aa = error code cc = error message
 bb = timestamp (see Appendix for complete listing)

REL. COMMANDS TE - read error code

EXAMPLE TB? | read error message
 0, 451322, NO ERROR DETECTED

| controller returns no error
 8PA12.3 | move axis #8 to position 12.3
 TB? | read error message

9, 451339, AXIS NUMBER NOT AVAILABLE
| controller returns error code, timestamp, and description

Section 3 – Remote Mode 3-135

TE read error code

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX TE?

PARAMETERS questions mark (?)

Defaults timeout: error 2, RS-232 COMMUNICATION TIME-OUT

DESCRIPTION This command is used to read the error code.

The error code is one numerical value up to three digits long. (see Appendix for
complete listing)
In general, non-axis specific errors numbers range from 1-99. Axis-1 specific
errors range from 100-199, Axis-2 errors range from 200-299 and so on.

 Note:
Errors are maintained in a FIFO buffer ten(10) elements deep. When an error is
read using TB or TE, the controller returns the last error that occurred and the
error buffer is cleared by one(1) element. This means that an error can be read
only once, with either command.

RETURNS aa
 where: aa = error code number (see Appendix for complete listing)

REL. COMMANDS TB - read error message

EXAMPLE TE? | read error message
 0 | controller returns no error
 8PA12.3 | move axis #8 to position 12.3
 TE? | read error message

9 | controller returns error code 9 meaning incorrect axis number

3-136 Section 3 – Remote Mode

TJ set trajectory mode
 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxTJnn or xxTJ?

PARAMETERS
Description xx [int] - axis number
 nn [int] - home mode

Range xx - 1 to MAX AXES
 nn - 1 to 6 where
 1 = trapezoidal mode

 2 = s-curve mode
 3 = jog mode

4 = slave to master’s desired position (trajectory)
 5 = slave to master’s actual position (feedback)

 6 = slave to master’s actual velocity for jogging
Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING

 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

during motion: error xx26, PARAMETER CHANGE NOT ALLOWED
DURING MOTION

DESCRIPTION This command sets the trajectory mode nn on the axis specified by xx.

Changing trajectory during motion is not allowed. Change trajectory mode only
when the axis is not moving.

If the requested axis is member of a group, the controller returns error xx31,
“COMMAND NOT ALLOWED DUE TO GROUP ASSIGNMENT”.

For a detailed description of motion profiles see the Motion Control Tutorial
section.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS JK - set s-curve jerk rate
 GR - set master/slave gear ratio

EXAMPLE 1TJ? | report current trajectory mode setting on axis #1

1 | controller returns trajectory mode 1 (trapezoidal) for axis #1
1TJ2 | set trajectory mode on axis #1 to 2 (s-curve)

Section 3 – Remote Mode 3-137

TP read actual position

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxTP

PARAMETERS
Description xx [int] - axis number

Range xx - 1 to MAX AXES

Units xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command is used to read the actual position. It returns the instantaneous

real position of the specified axis.

RETURNS nn where: nn = actual position, in pre-defined units

REL. COMMANDS PA - move to an absolute position
 PR - move to a relative position

DP - read instantaneous desired position

 EXAMPLE 3TP | read real position on axis # 3

5.322 | controller returns real position 5.322 for axis # 3

3-138 Section 3 – Remote Mode

TS read controller status
 IMM PGM MIP

USAGE ♦ ♦

SYNTAX TS

PARAMETERS None

DESCRIPTION This command is used to read the controller status byte. The byte returned is in the form
of an ASCII character. The value of each bit in the status byte can be deduced after
converting the ASCII character into a binary value. Each bit of the status byte represents
a particular controller parameter, as described in the following table.
Note:
Please refer to the Appendix for a complete ASCII to binary conversion table.

INTERPRETATION OF LEFT MOST ASCII CHARACTER:

Meaning for Bit # Function

Bit LOW Bit HIGH
0 Axis #1 motor state Stationary In motion
1 Axis #2 motor state Stationary In motion
2 Axis #3 motor state Stationary In motion
3 Axis #4 motor state Stationary In motion
4 Motor power of at least one axis OFF ON
5 Reserved Default —
6 Reserved — Default
7 Reserved Default —

INTERPRETATION OF RIGHT MOST ASCII CHARACTER:

Note: This ASCII character is returned only if the motion controller supports more than four (4) axes.

Meaning for Bit # Function
Bit LOW Bit HIGH

0 Axis #5 motor state Stationary In motion
1 Axis #6 motor state Stationary In motion
2 Reserved Default —
3 Reserved Default —
4 Motor power of at least one axis OFF ON
5 Reserved Default —
6 Reserved — Default
7 Reserved Default —

RETURNS ASCII character representing the status byte.

REL. COMMANDS TX - read controller activity

EXAMPLE TS | read controller status
 [P | controller returns characters [and P indicating axes 1, 2 and 4 are

| in motion, and motor power of at least one axis is ON.

Section 3 – Remote Mode 3-139

TV read actual velocity

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxTV

PARAMETERS
Description xx [int] - axis number

Range xx - 1 to MAX AXES

Units xx - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

DESCRIPTION This command is used to read the actual velocity of an axis. The command can

be sent at any time but its real use is while motion is in progress.

RETURNS nn, where nn = actual velocity of the axis in pre-defined units.

REL. COMMANDS PA - move to an absolute position
 PR - move to a relative position

EXAMPLE 3TP? | read position on axis # 3
 5.32 | controller returns position 5.32 units for axis # 3
 3PR2.2 | start a relative motion of 2.2 units on axis # 3
 3DV | read desired velocity on axis #3
 0.2 | controller returns velocity 0.2 units/sec for axis #3
 3TV | read actual velocity on axis #3
 0.205 | controller returns velocity 0.205 units/sec for axis #3
 3DP? | read desired position on axis # 3
 7.52 | controller returns desired position 7.52 units for axis # 3

3-140 Section 3 – Remote Mode

TX read controller activity

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX TX

PARAMETERS None

DESCRIPTION This command is used to read the controller activity register. The byte returned

is in the form of an ASCII character. The value of each bit in the status byte can
be deduced after converting the ASCII character into a binary value. Each bit of
the status byte represents a particular parameter, as described in the following
table.

Note:
Please refer to the Appendix for a complete ASCII to binary conversion table.

Meaning for Bit # Function
Bit LOW Bit HIGH

0 At least one program is
executing NO YES

1 Wait command is executing NO YES
2 Manual jog mode is active NO YES
3 Local mode is inactive Default —

4 At least one trajectory is
executing NO YES

5 Reserved Default —
6 Reserved — Default
7 Reserved Default —

RETURNS ASCII character representing the status byte.

REL. COMMANDS TS - read controller status

EXAMPLE TX | read controller activity
 P | controller returns character P indicating at least one trajectory is

| executing

Section 3 – Remote Mode 3-141

UF update servo filter

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX UF

PARAMETERS None.

DESCRIPTION This command is used to make active the latest entered PID parameters. Any new

value for Kp, Ki, Kd and maximum following error are not being used in the PID
loop calculation until UF command is received. This assures that the parameters
are loaded simultaneously, without any transitional glitches in the loop.

 If the axis specifier xx is missing or set to 0 , the controller updates the filters for
 all axes. If xx is a number between 1 and 4, the controller updates only the filter
 for the specified axis.

RETURNS none

ERRORS none

REL. COMMANDS FE - set maximum following error
 KD - set derivative gain factor
 KI - set integral gain factor
 KP - set proportional gain factor

EXAMPLE 3KP0.05 | set proportional gain factor of axis # 3 to 0.05
 3KD0.07 | set derivative gain factor of axis # 3 to 0.07
 3UF | update servo loop of axis # 3 with the new parameters

3-142 Section 3 – Remote Mode

UH wait for DIO bit high

IMM PGM MIP
USAGE ♦

SYNTAX XxUH

PARAMETERS
Description xx [int] - DIO bit number

Range xx - 0 to 15

Units xx - none

Defaults xx missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command causes a program to wait until a selected I/O input bit becomes

high. It is level, not edge sensitive. This means that at the time of evaluation, if
the specified I/O bit xx is high already, the program will continue to execute
subsequent commands.

Note:
All DIO bits are pulled high on the board. Therefore, a missing signal will cause
the wait to complete and subsequent commands will continue to be executed.

RETURNS none

REL. COMMANDS UL - Wait for DIO bit low

EXAMPLE 1EP | Enter stored program #1
 1MO | Turn axis #1 motor power ON
 1MV+ | Move axis #1 indefinitely in positive direction

13UH | Wait for DIO bit #13 to go HIGH before executing any
subsequent commands

1ST | Stop axis #1
WT500 | Wait for 500 ms
1MV- | Move axis #1 indefinitely in negative direction
QP | Quit program mode

Section 3 – Remote Mode 3-143

UL wait for DIO bit low

IMM PGM MIP

USAGE ♦

SYNTAX XxUL

PARAMETERS
Description xx [int] - DIO bit number

Range xx - 0 to 15

Units xx - none

Defaults xx missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command causes a program to wait until a selected I/O input bit becomes

low. It is level, not edge sensitive. This means that at the time of evaluation, if
the specified I/O bit xx is low already, the program will continue to execute
subsequent commands.

RETURNS none

REL. COMMANDS UL - Wait for DIO bit low

EXAMPLE 1EP | Enter stored program #1
 1MO | Turn axis #1 motor power ON
 1MV+ | Move axis #1 indefinitely in positive direction

13UL | Wait for DIO bit #13 to go LOW before executing any
subsequent commands

1ST | Stop axis #1
WT500 | Wait for 500 ms
1MV- | Move axis #1 indefinitely in negative direction
QP | Quit program mode

3-144 Section 3 – Remote Mode

VA set velocity
 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxVAnn or xxVA?

PARAMETERS
Description xx [int] - axis number
 nn [float] - velocity value

Range xx - 1 to MAX AXES
 nn - 0 to maximum value allowed by VU command
 or ? to read current setting

Units xx - none
 nn - preset units / second

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx10, MAXIMUM VELOCITY EXCEEDED

DESCRIPTION This command is used to set the velocity value for an axis. Its execution is
 immediate, meaning that the velocity is changed when the command is
 processed, even while a motion is in progress.

It can be used as an immediate command or inside a program. If the requested axis is
member of a group, the commanded velocity becomes effective only after the axis is
removed from the group. (Refer the Advanced Capabilities section for detailed
description of grouping and related commands).

 Avoid changing the velocity during the acceleration or deceleration periods.
 For better predictable results, change velocity only when the axis is not
 moving or when it is moving with a constant speed.

RETURNS If the “?” sign takes the place of nn value, this command reports the current setting

REL. COMMANDS AC - set acceleration
 VU - set maximum velocity
 PA - execute an absolute motion
 PR - execute a relative motion

EXAMPLE 2VA? | read desired velocity of axis # 2
 10 | controller returns a velocity value of 10 units/s
 2PA15 | move to absolute position 15
 WT500 | wait for 500ms
 2VA4 | set axis # 2 velocity to 4 units/s
 2VA? | read velocity of axis # 2
 4 | controller returns a velocity value of 4 units/s

Section 3 – Remote Mode 3-145

VB set base velocity for step motors

IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxVBnn or xxVB?

PARAMETERS
Description xx [int] - axis number
 nn [float] - base velocity value

Range xx - 1 to MAX AXES
 nn - 0 to maximum value allowed by VU command
 or ? to read current setting
Units xx - none
 nn - preset units / second

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range:
 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx10, MAXIMUM VELOCITY EXCEEDED

error xx01, Axis-xx PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the base velocity, also referred to as start/stop

velocity value for a step motor driven axis. Its execution is immediate, meaning
that the velocity is changed when the command is processed, even while a
motion is in progress. It can be used as an immediate command or inside a
program.

Avoid changing the velocity during the acceleration or deceleration periods. For
better predictable results, change velocity only when the axis is not moving or
when it is moving with a constant speed.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS AC - set acceleration
 VA - set velocity
 VU - set maximum velocity
 PA - execute an absolute motion
 PR - execute a relative motion

EXAMPLE 2VB? | read desired base velocity of axis # 2
 5 | controller returns a velocity value of 5 units/s
 2VB10 | set axis # 2 base velocity to 10 units/s
 2VB? | read base velocity of axis # 2
 10 | controller returns a velocity value of 10 units/s

3-146 Section 3 – Remote Mode

VE read controller firmware version

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX VE ?

PARAMETERS none

Defaults timeout: error 2, RS-232 COMMUNICATION TIME-OUT

DESCRIPTION This command is used to read the controller type and version.

 Note:

Important information needed when asking for technical support for the motion
control system or when reporting a problem is the controller version. Use this
command to determine the controller type and in particular, the firmware version.

RETURNS ESP301 Version xx.yy
 where: xx.yy = version and release number

REL. COMMANDS none

EXAMPLE VE? | read controller firmware version
 ESP301 Version 3.0.1 6/1/99 | controller returns model ESP301
 | version 3.0 and release date 6/1/99

Section 3 – Remote Mode 3-147

VF set velocity feed-forward gain
 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxVFnn or xxVF?

PARAMETERS
Description xx [int] - axis number
 nn [float] - velocity feed-forward gain factor Vf

Range xx - 1 to MAX AXES
 nn - 0 to 2e9, or ? to read current setting
Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command sets the velocity feed-forward gain factor Vf. It is active for any

DC servo based motion device.
.

See the "Feed-Forward Loops" in Motion Control Tutorial section to
understand the basic principals of feed-forward.
Note:
The command can be sent at any time but it has no effect until the UF (update

 filter) is received.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS KI - set integral gain factor
 KS - set saturation gain factor
 KD - set derivative gain factor
 KP - set proportional gain factor
 AF - set acceleration feed-forward gain
 UF - update filter

EXAMPLE 3AF0.8 | set acceleration feed-forward gain factor for axis # 3 to 0.8
 3VF? | report present axis-3 velocity feedforward setting
 1.4 | controller returns a value of 1.4

3VF1.5 | set acceleration feed-forward gain factor for axis # 3 to 1.5
 3UF | update PID filter; only now the VF command takes effect

3-148 Section 3 – Remote Mode

VU set maximum velocity

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxVUnn or xxVU?

PARAMETERS
Description xx [int] - axis number
 nn [float] - velocity value

Range xx - to MAX AXES
 nn - 0 to 2e+9, or ? to read current setting

Units xx - none
 nn - predefined units / second

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx10, MAXIMUM VELOCITY EXCEEDED

error xx2, Axis-xx PARAMETER OUT OF RANGE

DESCRIPTION This command is used to set the maximum velocity value for an axis. This

command remains effective even if the requested axis is member of a group. In
this case an error message, "GROUP MAXIMUM VELOCITY EXCEEDED", is
generated if the commanded value is less than group velocity. (Refer to
Advanced Capabilities section for a detailed description of grouping and related
commands).

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting

REL. COMMANDS VA - set velocity
 PA - execute an absolute motion
 PR - execute a relative motion
 AG - set deceleration
 AC - set acceleration

EXAMPLE 2VU? | read maximum allowed velocity of axis # 2
 10 | controller returns a value of 10 units/s
 2VU8 | set axis # 2 maximum maximum to 8 units/s
 2VA6 | set axis #2 working velocity to 6 units/s

Section 3 – Remote Mode 3-149

WP wait for position

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxWPnn

PARAMETERS
Description xx [int] - axis number
 nn [float] - position value

Range xx - 1 to MAX AXES
 nn - starting position to destination of axis number xx

Units xx - none
 nn - predefined units

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command stops program execution until a user specified position is reached.

The program continues executing any subsequent commands only after axis xx
has reached position nn.

 Note:
 Ensure that position nn is within the travel range of axis xx. The controller

cannot always detect if a value is outside the travel range of an axis to flag an
error, especially while making coordinated motion of multiple axes.

 Wait commands are primarily intended for use in internal program execution or

in combination with the RQ command. If used in command mode, it is important
to note that input command processing is suspended until the wait condition has
been satisfied.

RETURNS None

REL. COMMANDS WT - wait
 WS - wait for motion stop

EXAMPLE 2PA-10; 2WS | move axis # 2 to position –10 units and wait for stop

2PA10; 2WP0; 3PA5 | move axis #2 to position 10 units, wait for axis #2 to
reach position 0 units and then move axis #3 to position
5 units

3-150 Section 3 – Remote Mode

WS wait for motion stop

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX xxWSnn

PARAMETERS
Description xx [int] - axis number
 nn [int] - delay after motion is complete

Range xx - 0 to MAX AXES
 nn - 0 to 60000
Units xx - none
 nn - milliseconds

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command stops the program execution until a motion is completed. The
 program is continued only after axis xx reaches its destination. If xx is not
 specified, the controller waits for all motion in progress to end. If nn is specified
 different than 0, the controller waits an additional nn milliseconds after the
 motion is complete and then executes the next commands.

Note:
Wait commands are primarily intended for use in internal program execution or
in combination with the RQ command. If used in command mode, it is important
to note that input command processing is suspended until the wait condition has
been satisfied.

RETURNS none

REL. COMMANDS WT - wait
 WP - wait for position

EXAMPLE 2PA10;2WS500;3PA5 | move axis # 2 to position 10 units, wait for axis # 2 to

| reach destination, wait an additional 500ms and then
| move axis # 3 to position 5 units

Section 3 – Remote Mode 3-151

WT wait

 IMM PGM MIP
USAGE ♦ ♦ ♦

SYNTAX WTnn

PARAMETERS
Description nn [int] - wait time (delay)

Range nn - 0 to 60000

Units nn - milliseconds

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command causes the controller to pause for a specified amount of time. This

means that the controller will wait nn milliseconds before executing the next
command.

 Note:

Even though this command can be executed in immediate mode, its real value is
as a flow control instruction inside programs.

Wait commands are primarily intended for use in internal program execution or
in combination with the RQ command. If used in command mode, it is important
to note that input command processing is suspended until the wait condition has
been satisfied.

RETURNS none

REL. COMMANDS WS - wait for stop
 WP - wait for position

EXAMPLE 2MO;WT400;2PA2.3 | turn axis motor ON, wait an additional
 | 400 ms and then move axis 2 to position 2.3 units

3-152 Section 3 – Remote Mode

XM read available memory

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX XM

PARAMETERS None

DESCRIPTION This command reports the amount of unused program memory. The controller

has 61440 bytes of non-volatile memory available for permanently storing
programs. This command reports the amount not used.

 Note:
 Available memory space is updated only after the stored program memory is

purged using XX command.

RETURNS Available storage space

REL. COMMANDS EP - enter program download mode
 EX - execute a stored program
 LP - list stored program
 XX - delete a stored program

EXAMPLE XM | read available memory

Available storage space = 61440 | controller reports available storage
space

Section 3 – Remote Mode 3-153

XX erase program

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxXX

PARAMETERS
Description xx [int] - program number

Range xx - 1 to 100

Units xx - none

Defaults xx missing: error 38, COMMAND PARAMETER MISSING
 out of range: error 7, PARAMETER OUT OF RANGE

DESCRIPTION This command makes the program xx loaded in controller’s non-volatile memory

unavailable to user. It does not delete the program from memory. Consequently,
the program space does not become available to user immediately after deleting
the program. It becomes available to user only after the entire stored program
memory is purged by issuing the command “0xx”.

 Note:
 Purging the stored program memory takes approximately 3 seconds for

completion.

RETURNS None

REL. COMMANDS EP - enter program download mode
 EX - execute a stored program
 LP - list stored program
 XM - read available memory

EXAMPLE 1XX | delete program #1
 XM | read available memory

Available storage space = 60228 | controller reports available storage space
 2XX | delete program #2
 XM | read available memory

Available storage space = 60228 | controller reports available storage space
 0XX | purge stored program memory
 XM | read available memory

Available storage space = 61440 | controller reports available storage space

3-154 Section 3 – Remote Mode

ZA set amplifier I/O configuration

IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxZAnn or xxZA?

PARAMETERS
Description xx [int] - axis number
 nn [int] - amplifier I/O configuration

Range xx - 1 to MAX AXES
 nn - 0 to 0FFFFH (hexadecimal with leading zero(0))
 or ? to read current setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE
 critical setting: error xx17, ESP CRITICAL SETTINGS ARE PROTECTED

during motion: error xx26, PARAMETER CHANGE NOT ALLOWED
DURING MOTION

DESCRIPTION This command is used to set the amplifier I/O polarity, fault checking, and event

handling for axis specified with xx.

NOTE: If bit-0 or both bits-1 and -2 are set to zero(0) then no action will be
taken by the controller.

NOTE: The controller always interprets the nn value as a hexadecimal number,
even when the letter "H" is not appended to the desired value. Since nn is a
hexadecimal number, it is possible that the most significant character (left most
character) is an alphabet (A—F) depending on the choice of values for various
bits. In order for the controller to distinguish between an ASCII command and
its value, it is recommended that the users always add a leading zero (0) to the nn
value. See table below for clarification:

Example:
Command Issued Controller Interpretation
1ZA123H nn = 123H = (0001 0010 0011)Binary
1ZA123 nn = 123H = (0001 0010 0011)Binary
1ZA0F25H nn = F25H = (1111 0010 0101) Binary
1ZAF25H Invalid command

Section 3 – Remote Mode 3-155

BIT
#

VALUE DEFINITION

0 0 disable amplifier fault input checking
*0 1 enable amplifier fault input checking
1 0 do not disable motor on amplifier fault event

*1 1 disable motor on amplifier fault event
*2 0 do not abort motion on amplifier fault event
2 1 abort motion on amplifier fault event
3 0 reserved
3 1 reserved
4 0 reserved
4 1 reserved
5 0 amplifier fault input active low

*5 1 amplifier fault input active high

*6 0 configure step motor control outputs for STEP /
DIRECTION

6 1 configure step motor control outputs for +STEP/-STEP
*7 0 configure STEP output as active low

7 1 configure STEP output as active high

8 0 configure DIRECTION output as active low for negative
move

*8 1 configure DIRECTION output as active high for negative
move

*9 0 do not invert servo DAC output polarity
9 1 invert servo DAC output polarity

*10 0 amplifier enable output active low

10 1 amplifier enable output active high

*11 0 +stepper motor winding is FULL
11 1 + stepper motor winding is HALF

 • • •
31 0 reserved
31 1 reserved

 * default setting
 Any change in motor winding takes affect only when the

controller is reset or power cycled. As a result, amplifier
I/O configuration must be saved to memory and controller
must be reset for this change to take affect.

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting in hexadecimal notation.

REL. COMMANDS ZB - set feedback configuration
 ZE - set e-stop configuration
 ZF - set following error configuration
 ZH - set hardware limit configuration
 ZS - set software limit configuration
 ZZ - set general system configuration

3-156 Section 3 – Remote Mode

EXAMPLE 2ZA? | read amplifier I/O configuration of axis # 2
 123H | controller returns a value of 123H for axis #2
 | 123H = (0001 0010 0011)Binary
 | Bits 0, 1, 5, 8 = 1. All other bits = 0
 2ZA 125H | set amplifier I/O configuration to 125H for axis #2
 | 125H = (0001 0010 0101)Binary
 | Bits 0, 2, 5, 8 = 1. All other bits = 0
 SM | save all controller settings to non-volatile memory

Please refer the table above to interpret the affect of these bit values.

Section 3 – Remote Mode 3-157

ZB set feedback configuration

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxZBnn or xxZB?

PARAMETERS
Description xx [int] - axis number
 nn [int] - feedback configuration

Range xx - 1 to MAX AXES
 nn - 0 to 0FFFFH (hexadecimal with leading zero(0))
 or ? to read current setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE
 critical setting: error xx17, ESP CRITICAL SETTINGS ARE PROTECTED

during motion: error xx26, PARAMETER CHANGE NOT ALLOWED
DURING MOTION

DESCRIPTION This command is used to set the feedback configuration , fault checking, and event

handling, as well as stepper closed-loop positioning for axis specified with xx.

NOTE: If bit-0 or both bits-1 and -2 are set to zero(0) then no action will be
taken by the controller.

NOTE: The controller always interprets the nn value as a hexadecimal number,
even when the letter "H" is not appended to the desired value. Since nn is a
hexadecimal number, it is possible that the most significant character (left most
character) is an alphabet (A—F) depending on the choice of values for various
bits. In order for the controller to distinguish between an ASCII command and
its value, it is recommended that the users always add a leading zero (0) to the nn
value. See table below for clarification:

Example:
Command Issued Controller Interpretation
1ZB123H nn = 123H = (0001 0010 0011)Binary
1ZB123 nn = 123H = (0001 0010 0011)Binary
1ZB0F25H nn = F25H = (1111 0010 0101) Binary
1ZBF25H Invalid command

3-158 Section 3 – Remote Mode

BIT# VALUE DEFINITION

*0 0 disable feedback error checking
0 1 enable feedback error checking

*1 0 do not disable motor on feedback error event
1 1 disable motor on feedback error event

*2 0 do not abort motion on feedback error event
2 1 abort motion on feedback error event

*3 0 Reserved
3 1 Reserved

*4 0 Reserved
4 1 Reserved

*5 0 do not invert encoder feedback polarity
5 1 invert encoder feedback polarity

*6 0 reserved
6 1 reserved

*7 0 reserved
7 1 reserved
8 0 do not use encoder feedback for positioning

*8 1 use encoder feedback for stepper positioning
9 0 disable stepper closed-loop positioning

*9 1 enable stepper closed-loop positioning
10 0 reserved
10 1 reserved

 • • •
31 0 reserved
31 1 reserved

 * default setting

RETURNS If the “?” sign takes the place of nn value, this command reports the current
setting in hexadecimal notation.

 REL. COMMANDS ZA - set amplifier I/O configuration
 ZE - set e-stop configuration
 ZF - set following error configuration
 ZH - set hardware limit configuration
 ZS - set software limit configuration
 ZZ - set general system configuration

 EXAMPLE 2ZB? | read amplifier I/O configuration of axis # 2
 100H | controller returns a value of 100H for axis #2
 2ZB 105H | set amplifier I/O configuration to 105H for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-159

ZE set e-stop configuration

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxZEnn or xxZE?

PARAMETERS
Description xx [int] - axis number
 nn [int] - e-stop configuration

Range xx - 1 to MAX AXES
 nn - 0 to 0FFFFH (hexadecimal with leading zero(0))
 or ? to read current setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING

 out of range: error xx17, ESP CRITICAL SETTINGS ARE PROTECTED

DESCRIPTION This command is used to set the emergency stop (e-stop) configuration , fault

checking, and event handling for axis specified with xx.

NOTE: If bit-0 or both bits-1 and -2 are set to zero(0) then no action will be
taken by the controller.

NOTE: The controller always interprets the nn value as a hexadecimal number,
even when the letter "H" is not appended to the desired value. Since nn is a
hexadecimal number, it is possible that the most significant character (left most
character) is an alphabet (A—F) depending on the choice of values for various
bits. In order for the controller to distinguish between an ASCII command and
its value, it is recommended that the users always add a leading zero (0) to the nn
value. See table below for clarification:

Example:
Command Issued Controller Interpretation
1ZE123H nn = 123H = (0001 0010 0011)Binary
1ZE123 nn = 123H = (0001 0010 0011)Binary
1ZE0F25H nn = F25H = (1111 0010 0101) Binary
1ZEF25H Invalid command

3-160 Section 3 – Remote Mode

BIT
#

VALUE DEFINITION

0 0 disable E-stop checking

*0 1 enable E-stop checking
*1 0 do not disable motor power on E-stop event

1 1 disable motor power on E-stop event
2 0 do not abort motion on E-stop event

*2 1 abort motion on E-stop event
3 0 reserved

3 1 reserved
4 0 reserved

4 1 reserved
5 0 reserved

5 1 reserved
6 0 reserved

6 1 reserved
7 0 reserved

7 1 reserved
 • • •

31 0 reserved

31 1 reserved
 * default setting

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting in hexadecimal notation.

REL. COMMANDS ZA - set amplifier I/O configuration
 ZB - set feedback configuration
 ZF - set following error configuration
 ZH - set hardware limit configuration
 ZS - set software limit configuration
 ZZ - set general system configuration

EXAMPLE 2ZE? | read e-stop configuration of axis # 2
 3H | controller returns a value of 3H for axis #2
 2ZE 5H | set e-stop configuration to 5H for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-161

ZF set following error configuration

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxZFnn or xxZF?

PARAMETERS
Description xx [int] - axis number
 nn [int] - following error configuration

Range xx - 1 to MAX AXES
 nn - 0 to 0FFFFH (hexadecimal with leading zero(0))
 or ? to read current setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE
 critical setting: error xx17, ESP CRITICAL SETTINGS ARE PROTECTED

DESCRIPTION This command is used to set the following error configuration , fault checking,

and event handling for axis specified with xx.

NOTE: If bit-0 or both bits-1 and -2 are set to zero(0) then no action will be
taken by the controller.

NOTE: The controller always interprets the nn value as a hexadecimal number,
even when the letter "H" is not appended to the desired value. Since nn is a
hexadecimal number, it is possible that the most significant character (left most
character) is an alphabet (A—F) depending on the choice of values for various
bits. In order for the controller to distinguish between an ASCII command and
its value, it is recommended that the users always add a leading zero (0) to the nn
value. See table below for clarification:

Example:
Command Issued Controller Interpretation
1ZF123H nn = 123H = (0001 0010 0011)Binary
1ZF123 nn = 123H = (0001 0010 0011)Binary
1ZF0F25H nn = F25H = (1111 0010 0101) Binary
1ZFF25H Invalid command

3-162 Section 3 – Remote Mode

BIT# VALUE DEFINITION

0 0 disable motor following error checking

*0 1 enable motor following error checking
1 0 do not disable motor power on following error event

*1 1 disable motor power on following error event
*2 0 do not abort motion on following error event

2 1 abort motion on following error event
3 0 reserved

3 1 reserved
4 0 reserved

4 1 reserved
5 0 reserved

5 1 reserved
6 0 reserved

6 1 reserved
7 0 reserved

7 1 reserved
 • • •

31 0 reserved

31 1 reserved
 * default setting

RETURNS If the “?” sign takes the place of nn value, this command reports the

current setting in hexadecimal notation.

 REL. COMMANDS ZA - set amplifier I/O configuration
 ZB - set feedback configuration
 ZE - set e-stop configuration
 ZH - set hardware limit configuration
 ZS - set software limit configuration
 ZZ - set general system configuration
 FE - set following error threshold

 EXAMPLE 2ZF? | read following error configuration of axis # 2
 3H | controller returns a value of 3H for axis #2
 2ZF 5H | set following error configuration to 5H for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-163

ZH set hardware limit configuration

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxZHnn or xxZH?

PARAMETERS
Description xx [int] - axis number
 nn [int] - hardware limit configuration

Range xx - 1 to MAX AXES
 nn - 0 to 0FFFFH (hexadecimal with leading zero(0))
 or ? to read current setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE
 critical setting: error xx17, ESP CRITICAL SETTINGS ARE PROTECTED

DESCRIPTION This command is used to set the hardware limit checking, polarity, and event

handling for axis specified with xx.

NOTE: If bit-0 or both bits-1 and -2 are set to zero(0) then no action will be
taken by the controller.

NOTE: The controller always interprets the nn value as a hexadecimal number,
even when the letter "H" is not appended to the desired value. Since nn is a
hexadecimal number, it is possible that the most significant character (left most
character) is an alphabet (A—F) depending on the choice of values for various
bits. In order for the controller to distinguish between an ASCII command and
its value, it is recommended that the users always add a leading zero (0) to the nn
value. See table below for clarification:

Example:
Command Issued Controller Interpretation
1ZH123H nn = 123H = (0001 0010 0011)Binary
1ZH123 nn = 123H = (0001 0010 0011)Binary
1ZH0F25H nn = F25H = (1111 0010 0101) Binary
1ZHF25H Invalid command

3-164 Section 3 – Remote Mode

BIT
#

VALUE DEFINITION

0 0 disable hardware travel limit error checking

*0 1 enable hardware travel limit error checking
*1 0 do not disable motor on hardware travel limit event

1 1 disable motor on hardware travel limit event
2 0 do not abort motion on hardware travel limit event

*2 1 abort motion on hardware travel limit event
3 0 reserved

3 1 reserved
4 0 reserved

4 1 reserved
5 0 hardware travel limit input active low

*5 1 hardware travel limit input active high

6 0 reserved

6 1 reserved
7 0 reserved

7 1 reserved
 • • •

31 0 reserved

31 1 reserved
 * default setting

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting in hexadecimal notation.

REL. COMMANDS ZA - set amplifier I/O configuration
 ZE - set e-stop configuration
 ZF - set following error configuration
 ZB - set feedback configuration
 ZS - set software limit configuration
 ZZ - set general system configuration

EXAMPLE 2ZH? | read hardware limit configuration of axis # 2
 25H | controller returns a value of 25H for axis #2
 2ZH 23H | set hardware limit configuration to 23H for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-165

ZS set software limit configuration

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX xxZSnn or xxZS?

PARAMETERS
Description xx [int] - axis number
 nn [int] - hardware limit configuration

Range xx - 1 to MAX AXES
 nn - 0 to 0FFFFH (hexadecimal with leading zero(0))
 or ? to read current setting

Units xx - none
 nn - none

Defaults xx missing: error 37, AXIS NUMBER MISSING
 out of range: error 9, AXIS NUMBER OUT OF RANGE

 nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE
 critical setting: error xx17, ESP CRITICAL SETTINGS ARE PROTECTED

DESCRIPTION This command is used to set the software limit checking and event handling for

axis specified with xx.

NOTE: If bit-0 or both bits-1 and -2 are set to zero(0) then no action will be
taken by the controller.

NOTE: The controller always interprets the nn value as a hexadecimal number,
even when the letter "H" is not appended to the desired value. Since nn is a
hexadecimal number, it is possible that the most significant character (left most
character) is an alphabet (A—F) depending on the choice of values for various
bits. In order for the controller to distinguish between an ASCII command and
its value, it is recommended that the users always add a leading zero (0) to the nn
value. See table below for clarification:

Example:
Command Issued Controller Interpretation
1ZS123H nn = 123H = (0001 0010 0011)Binary
1ZS123 nn = 123H = (0001 0010 0011)Binary
1ZS0F25H nn = F25H = (1111 0010 0101) Binary
1ZSF25H Invalid command

3-166 Section 3 – Remote Mode

BIT
#

VALUE DEFINITION

0 0 disable software travel limit error checking

*0 1 enable software travel limit error checking
*1 0 do not disable motor on software travel limit event

1 1 disable motor on software travel limit event
2 0 do not abort motion on software travel limit event

*2 1 abort motion on software travel limit event
3 0 reserved

3 1 reserved
4 0 reserved

4 1 reserved
5 0 reserved

5 1 reserved
6 0 reserved

6 1 reserved
7 0 reserved

7 1 reserved
 • • •

31 0 reserved

31 1 reserved
 * default setting

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting in hexadecimal notation.

REL. COMMANDS ZA - set amplifier I/O configuration
 ZE - set e-stop configuration
 ZF - set following error configuration
 ZB - set feedback configuration
 ZH - set hardware limit configuration
 ZZ - set general system configuration
 SL - set left limit
 SR - set right limit

EXAMPLE 2ZS? | read software limit configuration of axis # 2
 4H | controller returns a value of 4H for axis #2
 2ZS 5H | set software limit configuration to 5H for axis #2
 SM | save all controller settings to non-volatile memory

Section 3 – Remote Mode 3-167

ZU get ESP system configuration
 IMM PGM MIP
USAGE ♦ ♦

SYNTAX ZU

PARAMETERS None

DESCRIPTION This command is used to get the present ESP system stage/driver configuration.

After each system reset or initialization the ESP motion controller detects the
presence of Universal drivers and ESP-compatible stages connected.

BIT
#

VALUE DEFINITION

0 0 axis-1 universal driver not detected
0 1 axis-1 universal driver detected
1 0 axis-2 universal driver not detected
1 1 axis-2 universal driver detected
2 0 axis-3 universal driver not detected
2 1 axis-3 universal driver detected
3 0 axis-4 universal driver not detected
3 1 axis-4 universal driver detected
4 0 axis-5 universal driver not detected
4 1 axis-5 universal driver detected
5 0 axis-6 universal driver not detected
5 1 axis-6 universal driver detected
6 0 reserved
6 1 reserved
7 0 reserved
7 1 reserved
8 0 axis-1 ESP-compatible motorized positioner not detected
8 1 axis-1 ESP-compatible motorized positioner detected
9 0 axis-2 ESP-compatible motorized positioner not detected
9 1 axis-2 ESP-compatible motorized positioner detected

10 0 axis-3 ESP-compatible motorized positioner not detected
10 1 axis-3 ESP-compatible motorized positioner detected
11 0 axis-4 ESP-compatible motorized positioner not detected
11 1 axis-4 ESP-compatible motorized positioner detected
12 0 axis-5 ESP-compatible motorized positioner not detected
12 1 axis-5 ESP-compatible motorized positioner detected
13 0 axis-6 ESP-compatible motorized positioner not detected
13 1 axis-6 ESP-compatible motorized positioner detected
14 0 reserved
14 1 reserved
15 0 reserved
15 1 reserved

 • • •
31 0 reserved
31 1 reserved

3-168 Section 3 – Remote Mode

RETURNS This command reports the current setting in hexadecimal notation.

REL. COMMANDS ZA - set amplifier I/O configuration
 ZB - set feedback configuration
 ZE - set e-stop configuration
 ZF - set following error configuration
 ZH - set hardware limit configuration
 ZS - set software limit configuration
 ZZ - set system configuration

EXAMPLE ZU | read ESP system configuration
 150015H | controller returns a value of 150015H

Section 3 – Remote Mode 3-169

ZZ set system configuration

 IMM PGM MIP
USAGE ♦ ♦

SYNTAX ZZnn or ZZ?

PARAMETERS
Description nn [int] - system configuration

Range nn - 0 to 0FFFFH (hexadecimal with leading zero(0))
 or ? to read current setting

Units nn - none

Defaults nn missing: error 38, COMMAND PARAMETER MISSING
 out of range: error xx2, PARAMETER OUT OF RANGE

DESCRIPTION This command is used to configure system fault checking, event handling and

general setup for all axes.

NOTE: If bit-0 or both bits-1 and -2 are set to zero(0) then no action will be
taken by the controller.

NOTE: The controller always interprets the nn value as a hexadecimal number,
even when the letter "H" is not appended to the desired value. Since nn is a
hexadecimal number, it is possible that the most significant character (left most
character) is an alphabet (A—F) depending on the choice of values for various
bits. In order for the controller to distinguish between an ASCII command and
its value, it is recommended that the users always add a leading zero (0) to the nn
value. See table below for clarification:

Example:
Command Issued Controller Interpretation
1ZZ123H nn = 123H = (0001 0010 0011)Binary
1ZZ123 nn = 123H = (0001 0010 0011)Binary
1ZZ0F25H nn = F25H = (1111 0010 0101) Binary
1ZZF25H Invalid command

3-170 Section 3 – Remote Mode

BI
T#

VAL
UE

DEFINITION

0 0 disable 100-pin interlock error checking
*0 1 enable 100-pin interlock error checking
1 0 do not disable all axes on 100-pin interlock error event

*1 1 disable all axes on 100-pin interlock error event
2 0 reserved
2 1 reserved
3 0 reserved
3 1 reserved
4 0 configure interlock fault as active low

*4 1 configure interlock fault as active high

5 0 reserved
5 1 reserved
6 0 reserved
6 1 reserved

*7 0 route auxiliary I/O encoder signals to counter channels MAX
AXES + 1 and MAX AXES + 2

7 1 route axis 1 and 2 encoder feedback to counter channels MAX
AXES + 1 and MAX AXES + 2

8 0 unprotect ESP system-critical settings
*8 1 protect ESP system-critical settings
*9 0 Enable queue purge on time expiration
9 1 Disable queue purge on time expiration

*1
0

0 Do not display units along with certain responses

10 1 Display units along with certain responses
*1
1

0 Enable timeout during homing

11 1 Disable timeout during homing
 • • •

31 0 reserved
31 1 reserved

 * default setting

RETURNS If the “?” sign takes the place of nn value, this command reports the current

setting in hexadecimal notation.

REL. COMMANDS ZA - set amplifier I/O configuration
 ZB - set feedback configuration
 ZE - set e-stop configuration
 ZF - set following error configuration
 ZH - set hardware limit configuration
 ZS - set software limit configuration
 ZU - get ESP system configuration

EXAMPLE ZZ? | read system configuration
 113H | controller returns a value of 113H
 ZZ 13H | set system configuration to 13H

Section 3 – Remote Mode 3-171

3-172 Section 3 – Remote Mode

Section 4 – Advanced Capabilities 4-1

Section 4 – Advanced Capabilities

4.1 Grouping

4.1.1 Introduction – Advanced Capabilities
Coordinated motion of multiple axes is required to produce a desired
contour in a multi-dimensional space. For instance, if we want to move
from one point to another along a line or along a circle, or a
combination of both line and circle, we require coordinated motion of
multiple axes. One way to facilitate such coordinated motion is
"grouping" the axes involved in producing the desired motion. This is
akin to defining the coordinate system in which the desired contour is
being made.

Coordinated motion on a 2-D plane, therefore, requires a group
comprised of any two axes, while a similar motion in a 3-D space
requires a group consisting of any three axes. For sake of simplicity,
all further discussion of coordinated motion will be restricted to a 2-D
plane.

The procedure for defining a group and all the group parameters
required for making coordinated motion is described in Section 4.1.3
discusses the commands that actually make the coordinated motion.
The procedure for making "long" moves or contours that involve a
combination of circular and linear moves is described in Section 4.1.4.
Miscellaneous grouping commands are discussed in Section 4.1.5.

4.1.2 Defining a Group and Group Parameters
This subsection discusses the method for defining a group and all the
group parameters.

4.1.2.1 Creating a Group
The ASCII command used to create a new group is HN. For instance,
the command 1HN2, 3 assigns axis numbers 2 and 3 to group number
1. One such group must be defined first before those axes can be
moved in a coordinated fashion. A group can comprise of axes
anywhere from one to three.

If a group has only one axis assigned to it, a linear motion of the group
is similar to moving that axis from one point to another. Circular
motion of a group with only one axis cannot be made.

If a group has more than two axes assigned to it, circular motion of the
group is made using the first two axes in the group.

The order in which axes are assigned to a group is very important. This
is because it specifies the frame of reference in which coordinated
motion of axes takes place. For instance, the command 1HN2, 3
assigns axis numbers 2 and 3 to group number 1, where axis #2 is
equivalent to X-axis and axis #3 is equivalent to Y-axis in a traditional
Cartesian coordinate system. Reversing the order of axes (E.G., 1HN3,
2) reverses the axis assignment.

A few rules that are in place for easy management of group are as
follows:
• An axis cannot be a member of different groups at the same time.
• An axis cannot be assigned more than once in a group.
• A group has to be deleted before axes assigned to it can be

changed.
• An axis assigned to a group cannot be moved individually using

commands such as PA and PR. Use group linear move commands
instead.

Refer to the description of this command in the commands section (See
Section 3: Remote Mode) for correct syntax, parameter ranges, etc.

4.1.2.2 Defining Group Parameters
Group parameters such as velocity, acceleration, deceleration, jerk, and
e-stop deceleration must be defined for every group following the
creation of that group. These parameters are used to produce the
desired coordinated motion of the group. They override any original
values specified for individual axes. The axes' original values are
restored when the group to which they have been assigned is deleted.
Refer to the description of HV, HA, HD, HJ, and HE commands in
the commands section (See Section 3: Remote Mode) for correct
syntax, parameter ranges, etc.

4.1.3 Making Linear and Circular Moves
This subsection discusses the method for making linear and circular
moves of groups. While coordinated motion of axes with different
motor types and different encoder resolutions is supported, it is
assumed that all axes have the same units of measure.

4-2 Section 4 – Advanced Capabilities

4.1.3.1 Making a Linear Move
Once a group has been defined and all group parameters have been
specified, the ASCII command HL is used to move the group from an
initial position to a final position along the line. The current position of
axes is the initial position of linear move. The desired final position is
specified along with this command.

This command makes all axes assigned to the group move with
predefined group (tangential) velocity, acceleration and deceleration
along a line. A trapezoidal velocity profile is employed when group
jerk is set to zero. Otherwise, an S-curve velocity profile is employed.

The linear move is a true linear interpolation, meaning:

)(
)(

)()(

0

0

00

xx
yy

m

xxmyy

f

f

−

−
=

−=−

where: X0 and Y0 represent initial position of the group.
 Xf and Yf represent desired final position of the group.

4.1.3.2 Making a Circular Move
Once a group has been defined and all group parameters have been
specified, the ASCII command HC can be used to move the group
from an initial position to a final position along a circle. The current
position of axes is the initial position of circular move. The final
position of move is calculated based on the desired center of circle and
sweep angle specified along with this command. All sweep angles are
measured in degrees. The sign of angles follow the trigonometric
convention: positive angles are measured counterclockwise.

This command makes all axes assigned to the group move with
predefined group (tangential) velocity, acceleration and deceleration
along a circle. A trapezoid velocity profile is employed to produce the
desired motion.

The circular move is a true arc of a circle, meaning:

Section 4 – Advanced Capabilities 4-3

cff

cff

cmdf

cmdf

c

c

cc

yaxisry
xaxisrx

axis

axis

axis

axis
xx
yy

a

yyxxr

+∗=

+∗=

+=

+=

−=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

−+−=

])3#[cos(
])2#[cos(

]3#[

]2#[
2

]3#[

]2#[
)(
)(

2tan

)()(

0

0

0

0

0

0

2
0

2
0

θ

θ

θθθ

θθθ

πθθ

θθ

θ

where: X0 and Y0 represent initial position of the group.
 Xc and Yc represent desired center position of the circular
 move.
 Xf and Yf represent calculated final position of the group.
 R is radius of the circle.
 θ0 is the base initial angle of an axis.
 θ0 is the final angle of an axis, which is dependant on the
 sweep angle, θcmd

Both HL and HC can initiate the desired motion if they are received
while the group is holding position. On the other hand, if they are
received while a group move is in progress, the new commands get
queued into a "via-point" buffer. The queued commands are executed
on a FIFO basis when the move already in progress has reached its
destination. The group does not come to a stop at the end of last move.
Instead, there will be s smooth transition to the new move command,
just as if it were one compound move (combination of multiple
moves). The next section details the procedure for making contours or
"long" moves using "via-point" buffers.

Refer to the description of HL and HC commands in the commands
section (See Section 3: Remote Mode) for correct syntax, parameter
ranges, etc.

4.1.4 Making Contours
This subsection discusses the method for making contours. Contouring
is the process of making complex trajectories or "long" moves that
may involve linear and circular move segments.

4-4 Section 4 – Advanced Capabilities

These move segments can be sequenced in any order. Arcs can be
followed by arcs or lines, and lines by arcs or other lines as shown in
the following figures. Since there is no pre-processing of move
segments involved in making a contour, the user must ensure that there
is no change in tangential velocity at the transition from one move to
another. If this constraint is not satisfied, the transition from one move
segment to another may cause excessive accelerations and shocks that
could damage the stages.

Figure 4.1: A contour with multiple circular moves

Circular move #1

Circular move #2

Circular move #3

Position of axis #1

Po
si

tio
n

of
 a

xi
s #

2

Start

Stop

Figure 4.2: A contour with multiple linear and circular moves

Linear moves

Circular moves

Position of axis #1

Po
si

tio
n

of
 a

xi
s #

2

In order to store the multiple move segment commands needed to
make a contour, we make use of a "via point" buffer. This "via point"
buffer contains group move commands essential to make a new move
segment upon completion of the move segment currently in progress.
The new move commands are pulled out of the buffer on a FIFO basis.
The "via point" buffer can hold a maximum of 10 group move
commands. If more than 10 group move commands are issued by a
user, the excess commands are flow-controlled by the firmware.

Section 4 – Advanced Capabilities 4-5

This mechanism will block the portal through which the commands
were issued until all the commands issued have been executed.

It is, therefore, recommended that the user take advantage of ASCII
command, HQ which tells the number of commands that can be put in
the "via point" buffer at any given time. This allows a user to control
the flow of commands manually, while ensuring the availability of that
portal for other commands such as HP, TP, etc.

The trajectory generator checks if the "via point" buffer has a new
target position (i.e., any new move segments pending?) while the
current move is in progress. If "via point" buffer is empty, the group
comes to a stop upon completion of current move segment. Otherwise,
it begins a new move segment without stopping after completing the
current move. The group transitions from current move segment to a
new move segment smoothly if the tangential velocity at the transition
is ensured to be constant.

The ASCII command HQ is used to query the available "via point"
buffer space. The commands HL and HC are used to queue linear
move or circular move commands into the "via point" buffer. Refer to
the description of these commands in the commands section (See
Section 3: Remote Mode) for correct syntax, parameter ranges, etc.

Figure 4.3: Block Diagram of Via Point Data Handling by Command Processor

Move In Progress?

New group move command

Are there 10
move commands in

via point buffer?

Yes

Command flow control

Yes

No
Queue the move command

in via point buffer

Initiate the moveNo

4-6 Section 4 – Advanced Capabilities

Figure 4.4: Block Diagram of Via Point Data Handling by Trajectory Generator

Is there a move
command pending in the

via point buffer?

Do not bring the current move
to a halt when target is reached

Current move
target reached?

Process current move
commandMove In Progress? Yes

Yes

No

Pull out the top most move
command in the via point

buffer and process it

Yes

Process new move
command

No

Bring the current move to a halt
when target is reached

No

Begin

4.1.5 Miscellaneous Commands
The following commands are available to operate on a group of axes
simultaneously:
• HO and HF: These commands are used to turn ON and turn OFF

the power to all axes in a group respectively. The axes assigned to
a group can be powered ON or OFF individually using MO and
MF commands also. A group is considered to be ON if all axes
assigned to that group are ON.

• HP: This command is used to read the actual position of all axes in
a group.

• HS: This command is used to stop the group motion.
• HW: This command is used to wait for the group motion to stop

and a user settable delay period thereafter.
• HX: This command is used to delete a group.
• HZ: This command is used to read the size or the number of axes

assigned to group.

4.2 Slaving a Stage to Joystick or a Different Stage

4.2.1 Introduction – Slaving a Stage
ESP301 motion controller allow three different methods in which a
slave axis can respond to a master axis. They are:

1. Slave to master's desired position (trajectory).
2. Slave to master's actual position (feedback).
3. Slave to master's actual velocity for jogging.

Section 4 – Advanced Capabilities 4-7

The first two methods may be used when absolute or relative move
commands can be issued to the master. This is the situation when both
master and slave axes are driven by valid motor types. The third
method may be used when move commands cannot be issued to the
master. This is the situation when the slave axis is driven by a valid
motor type, but the master, such as a joystick, is not.

In any case, a series of preliminary commands have to be issued before
the desired master-slave response is obtained. These include defining
master-slave relationship, appropriate constants and trajectory mode.

The next section outlines the steps to be taken for a slave axis to follow
master's position. The subsequent section outlines the steps to be taken
for a slave axis to follow master's velocity. The final section outlines
the steps to be taken to jog an axis based on inputs from a digital
joystick.

4.2.2 Slave to a Different Stage
The following steps may be taken for a slave axis to follow master's
position. This mode may be chosen exclusively when absolute or
relative move commands can be issued to the master.

Steps Move
Command

Action by Move Command

1. Define master-slave
relationship

2SS1 Axis #2 is the slave of axis #1

2. Defines master-slave
reduction ratio

2GR0.5 Master's position is scaled by 0.5
to obtain slave's position

3. Define slave axis
trajectory mode

2TJ4 (or 5) Set slave axis trajectory mode

4. Define master axis
trajectory mode

1TJ1 (or 2) Set master axis trajectory mode

5. Issue move commands to
master axis

1PA10
1PR10

Move master to absolute 10 units.
Move master by relative 10 units.

Table 4.1: Slave to a Different Stage Steps

4.2.3 Slave to a Joystick

If the slave axis is required to jog based on a DIO bit status (such as
through joystick), follow these steps:

Steps Move
Command

Action by Move Command

1. Assign DIO bits for
jogging slave axis

2BP0, 1 Jog axis #2 in negative direction if
DIO bit #0 is low. Jog axis #2 in
positive direction if DIO bit #1 is
low.

2. Enable DIO bits for jog
mode

2BQ1

3. Define slave axis jog
velocity update interval

2SI100 Update slave axis jog velocity
every 100 milliseconds

4. Define slave axis scaling 2SK0.5, 0 Specify scaling coefficients

4-8 Section 4 – Advanced Capabilities

coefficients
5. Define slave axis
trajectory mode

2TJ6 Set slave axis trajectory mode

6. Change DIO bit value
physically

Table 4.2: Slave to a Joystick Steps

Refer to the description of the ASCII commands in Section 3: Remote
Mode, for additional description, correct syntax, parameter ranges, etc.

4.3 Closed Loop Stepper Motor Positioning

4.3.1 Introduction – Closed Loop Stepper
Most of the electro-mechanical systems are subjected to phenomena
such as backlash and friction.

Due to such physical attributes, a significant position error can be
generated when systems are moved from one position to another by
stepper motors without any closed loop control mechanism. This error
can be further accentuated by micro-stepping and non-collection of
encoders (necessary to have closed loop control) and motors. The
ESP301 motion controller supports closed loop positioning of stepper
motors to eliminate such errors.

The next subsection details the implementation of this feature in the
ESP301.

4.3.2 Feature Implementation
While closed loop control of stepper motors can be done during
tracking as well as regulation, ESP301 controllers' closed loop
stepping feature is effective only during regulation, i.e., desired motion
is completed and the motor is holding position. This was done in order
to avoid tuning of control gains such as proportional (Kp), integral
(Ki), derivative (Kd) gains, etc. Users need to only enable the feature
and define two (2) parameters – desired deadband and closed loop
update interval.

The following block diagram illustrates this feature. When the desired
motion is completed, the controller calculates position error and
evaluates if the error is within the user-specified deadband. If it is, no
further corrective actions are commanded. On the other hand, if the
error is larger than the desired value, the controller starts the closed
loop update interval timer and issues commands to make necessary
corrections.

Section 4 – Advanced Capabilities 4-9

It then waits for the timer to reset before checking the position error
again. This process is repeated until the position error reduces to the
desired value (deadband). The corrective actions taken by the
controller to reduce positioning error are dependent upon the way in
which the stepper motors are controlled: digital (pulse generation) or
analog (sinusoidal commutation).

In case of digitally controlled stepper motors, new corrective move
commands are internally issued by the controller. In the case of
commutated stepper motors, the electrical angle is adjusted.

F

Figure 4.5: Block Diagram of Closed Loop Stepper Motor Positioning

The following steps (See Table 4.3) may be followed to setup the
closed loop stepper motor positioning.

Steps ASCII
Command

Action by Controller

1. Set feedback
configuration.

1ZB300 Enable encoder feedback and
closed loop positioning of
stepper motors for axis #1.

2. Specify deadband value. 1DB1 Set deadband value for axis 31
to 1 encoder count.

3. Specify closed loop update 1CL50 Set closed loop update interval

Desired
motion

completed?

Start closed loop
update interval

timer

Yes
Is actual

position within desired
deadband?

Motion doneYes

No

Make desired
correction

Wait for timer to
reset

Exit closed loop
stepper positioning

Start closed loop
stepper positioning

No

4-10 Section 4 – Advanced Capabilities

interval. for axis #1 to 50 milliseconds.

Table 4.3: An Example of Closed Loop Stepper Motor Positioning Setup

Commands related to closed loop stepper positioning are listed in
Table 4.4 (refer to Section 3: Remote Mode, for additional details):

Command Description

ZB Set feedback configuration.

DB Specify deadband value.

CL Specify closed loop update interval.

Table 4.4: Closed Loop Stepper Positioning Commands

4.4 Synchronize Motion to External and Internal Events

4.4.1 Introduction – Synchronize Motion
Certain applications require the use of inputs from an external source
to command the motion controller to perform certain tasks. These tasks
can be to either initiate motion of desired axes (written in a user's
stored program) or to inhibit motion of desired axes or, more simply,
to just monitor the motion status of these axes. The ESP301 motion
controller addresses these issues by taking advantage of the digital I/O
interface available on the controller.

The 24 digital I/O bits are divided into three (3) ports: A, B, and C
(ESP301 motion controllers has access to only ports A and B). Port A
covers DIO bits 0 – 7, port B covers bits 8 – 15 and port C covers bits
16 – 23.

The direction of each port can be setup to be either input or output. If a
port is configured to be an input, the DIO bits that belong to that port
can only report the state – HIGH or LOW logic level – of the
corresponding DIO hardware. On the other hand, if the port is
configured to be an output, the DIO bits in that port can be used to
either set or clear the state of the corresponding hardware. Each DIO
bit has a pull-up resistor to +5V. As a result, all bits will be at HIGH
logic if not connected to external circuit and configured as input.
Furthermore, the direction of all the ports is set to input by default
following a controller reset.

The next section details the way in which these DIO bits can be used to
initiate the motion of desired axes through stored programs. The
subsequent sections outline the way to inhibit the motion of desired
axes and to monitor the motion status of these axes using DIO bits.

Section 4 – Advanced Capabilities 4-11

4.4.2 Using DIO to Execute Stored Programs
ESP series of motion controllers can synchronize the initiation of any
motion profile to external events. In order to accomplish this task,
users must write their desired motion profile as a stored program and
assign this stored program to a desired DIO bit.

The direction of the DIO port bit belongs to must then be set to "input"
in order for the controller to detect the external event. Once these
preliminaries are completed, the controller will execute the user
specified stored program whenever it detects a change in the state –
HIGH to LOW logic level – of the corresponding DIO hardware.
Please review the examples below for further clarifications.

Example 1:
EP ABS0MM | Define stored program called "Abs0mm"
1MO; 2MO | Turn axes 1,2 ON
1TJ1; 2TJ1 | Set trajectory mode for axes 1,2 to TRAPEZOID
1PA0; 2PA0 | Move axes 1,2 to absolute 0 units
1WS100; 2WS100 | Wait for axes 1,2 motion to complete
QP | End of program
0BG ABS0MM | Assign DIO #0 to run stored program called
 | "Abs0mm"
BO 04H | 04H = (0100)Binary
 | Set DIO ports A, B to input and port C to output
 | i.e., set bits 0 – 15 to input and 16 – 23 to output

After the above commands are sent to the controller, the controller will
execute the stored program called "Abs0mm" when DIO bit #0
changes its state from HIGH to LOW logic level.

Example 2:
EP CYC2MM | Define stored program called "Cyc2mm"
1MO; 2MO | Turn axes 1,2 ON
1TJ1; 2TJ1 | Set trajectory mode for axes 1,2 to TRAPEZOID
1PA0; 2PA0 | Move axes 1,2 to absolute 0 units
1WS100; 2WS100 | Wait for axes 1,2 motion to complete
DL LOOP | Define a label called "LOOP"
1PR2; 2PR2 | Move axes 1,2 by relative 2 units
1WS100; 2WS100 | Wait for axes 1,2 motion to complete
1PR-2; 2PR-2 | Move axes 1,2 by relative –2 units
1WS100; 2WS100 | Wait for axes 1,2 motion to complete
JL LOOP,10 | Jump to label called "LOOP" 10 times
QP | End of program
1BGCYC2MM | Assign DIO #1 to run stored program called
 | "Cyc2mm"

4-12 Section 4 – Advanced Capabilities

BO 04H | 04H = (0100) Binary
 | Set DIO ports A, B to input and port C to output
 | i.e., set bits 0 – 15 to input and 16 – 23 to output

After the above commands are sent to the controller, the controller will
execute "Cyc2mm" stored program when DIO bit #1 changes its state
from HIGH to LOW logic level.

4.4.3 Using DIO to Inhibit Motion
The ESP301 motion controller can inhibit the motion of any axis in
response to external events. In order to accomplish this task, users
must define the DIO bit to be employed to inhibit the motion of a
desired axis and the logic state in which that bit should be in order to
inhibit motion. Once this done, the feature has to be enabled.
Furthermore, the direction of the DIO port this DIO bit belongs to
must be set to "input" in order for the controller to detect the external
event.

At this point, if the selected axis is already in motion, and DIO bit is
asserted, E-stop is executed per E-stop configuration (Refer "ZE"
command for further details). If the axis is not moving, any new move
commands are refused as long as the DIO bit is asserted. In either case,
"AXIS-XX DIGITAL I/O INTERLOCK DETECTED" error is
generated, where XX is the axis whose motion is inhibited through
DIO. Please review the example below for further clarifications.

Example 3:
2BK1,1 | Use DIO bit #1 to inhibit motion of axis #2. This DIO bit
 | should be HIGH when axis #2 motion is inhibited
2BL1 | Enable inhibition of motion using DIO bits for axis #2
BO 04H | 04H = (0100)Binary
 | Set DIO ports A,B to input
 | i.e., set bits 0 – 15 to input and 16 – 23 to output

After the above commands are sent to the controller, the controller will
inhibit the motion of axis #2 when DIO bit is at a HIGH logical level,
and generate appropriate error message.

4.4.4 Using DIO to Monitor Motion Status
User's applications can monitor motion status – desired axis is in
motion or standstill – through ESP motion controller's DIO. This status
bit can in turn be used to drive external processes such as turning
on/off a mechanical brake, for instance. In order to accomplish this
task, users must define the DIO bit to be employed to monitor the
motion status of a desired axis and the logic state in which that bit
should be in when the axis is not in motion. Once this is done, the
feature has to be enabled. Furthermore, the direction of the DIO port

Section 4 – Advanced Capabilities 4-13

4-14 Section 4 – Advanced Capabilities

this DIO bit belongs to must be set to "output" in order for the
controller to report the motion status.

At this point, if the selected axis is not in motion, the DIO bit changes
its state to the level specified as described earlier. Please review the
example below for further clarifications.

Example 3:
2BM9,1 | Use DIO bit #9 to indicate motion status of axis #2. This DIO
 | bit will be set to HIGH when axis #2 is not in motion
2BN1 | Enable notification of motion status using DIO for axis #2
BO 06H | 06H = (0110)Binary
 | Set DIO port A, to input and ports B, C to output
 | i.e., set bits 0 – 7 to input and 8 – 23 to output

After the above commands are sent to the controller, the controller will
set DIO bit #9 to a HIGH logical level when axis #2 is not in motion.

Commands related to utilizing DIO for initiating/inhibiting motion of
desired axis and notifying motion status of these axes are listed in the
table below (refer to Section 3: Remote Mode, for additional details):

Command Description

BG Assign DIO bits to execute stored programs

BK Assign DIO bits to inhibit motion

BL Enable DIO bits to inhibit motion

BM Assign DIO bits to notify motion status

BN Enable DIO bits to notify motion status

BO Set DIO port A, B direction

Table 4.5: Commands to Synchronize Motion to External Events

Section 5 – Motion Control Tutorial

5.1 Motion Systems

A schematic of a typical motion control system is shown in Figure 5.1.

Figure 5.1: Typical Motion Control Systems

Its major components are:

Controller
An electronic device that receives motion commands from an operator
directly or via a computer, verifies the real motion device position and
generates the necessary control signals.

Driver
An electronic device that converts the control signals to the correct
format and power needed to drive the motors.

Section 6 – Servo Tuning 6-1

Motion Device
An electro-mechanical device that can move a load with the necessary
specifications.

Cables
Needed to interconnect the other motion control components.

If the user is like most motion control users, they started by selecting a
motion device that matches certain specifications needed for an
application. Next, the user should choose a controller that can satisfy the
motion characteristics required. The changes are that the user is less
interested in how the components look or what their individual specs are,
but want to be sure that together they perform reliably according to their
needs.

We mentioned this to make a point. A component is only as good as the
system lets (or helps) it to be.

For this reason, when discussing a particular system performance
specification, we will also mention which components affect
performance the most and, if appropriate, which components improve it.

5.2 Specification Definitions

People mean different things when referring to the same parameter
name. To establish some common ground for motion control
terminology, here are some general guidelines for the interpretation of
motion control terms and specifications.

• As mentioned earlier, most motion control performance
specifications should be considered system specifications.

• When not otherwise specified, all error-related specifications refer to
the position error.

• The servo loop feedback is position-based. All other velocity,
acceleration, error, etc. parameters are derived from the position
feedback and the internal clock.

• To measure the absolute position, we need a reference, a measuring
device, which is significantly more accurate than the device tested.
In our case, dealing with fractions of microns (0.1 μm and less), even
a standard laser interferometer becomes unsatisfactory.

For this reason, all factory measurements are made using a number
of high precision interferometers, connected to a computerized test
station.

• To avoid unnecessary confusion and to easily understand and
troubleshoot a problem, special attention must be paid to avoid

5-2 Section 5 – Motion Control Tutorial

bundling discrete errors in one general term. Depending on the
application, some discrete errors are not significant. Grouping them
in one general parameter will only complicate the understanding of
the system performance in certain applications.

5.2.1 Following Error
The Following Error is not a specifications parameter but, because it is at
the heart of the servo algorithm calculations and of other parameter
definitions, it deserves our attention.

As will be described later in Section 5.3: Control Loops, a major part of
the servo controller's task is to make sure that the actual motion device
follows as close as possible an ideal trajectory in time. The user can
imagine having an imaginary (ideal) motion device that executes exactly
the motion profile they are requesting. In reality, the real motion device
will find itself deviating from this ideal trajectory. Since most of the time
the real motion device is trailing the ideal one, the instantaneous error is
called Following Error.

To summarize, the Following Error is the instantaneous difference
between the actual position as reported by the position feedback device
and the ideal position, as seen by the controller. A negative following
error means that the load is trailing the ideal motion device.

5.2.2 Error
Error has the same definition as the Following Error with the exception
that the ideal trajectory is not compared to the position feedback device
(encoder) but to an external precision-measuring device.

In other words, the Following Error is the instantaneous error perceived
by the controller while the Error is the one perceived by the user.

5.2.3 Accuracy
The accuracy of a system is probably the most common parameter users
want to know. Unfortunately, due to its perceived simplicity, it is also
the easiest to misinterpret.

The Accuracy is a static measure of a point-to-point positioning error.
Starting from a reference point, the user should command the controller
to move a certain distance. When the motion is completed, the user
should measure the actual distance traveled with an external precision-
measuring device. The difference (the Error) represents the positioning
Accuracy for that particular motion.

Because every application is different, the user needs to know the errors
for all possible motions. Since this is practically impossible, an
acceptable compromise is to perform the following test.

Starting from one end of travel, the user can make small incremental
moves and at every stop, the user should record the position Error. The

Section 5 – Motion Control Tutorial 5-3

user performs this operation for the entire nominal travel range. When
finished, the Error data is plotted on a graph similar to Figure 5.2.

Figure 5.2: Position Error Test

A
B Position

max. error

Error

0

The difference between the highest and the lowest points on the graph is
the maximum possible Error that the motion device can have. This
worst-case number is reported as the positioning Accuracy. It guaranties
the user that for any application, the positioning error will not be greater
than this value.

5.2.4 Local Accuracy
For some applications, it is important to know not just the positioning
Accuracy over the entire travel but also over a small distance. To
illustrate this case, Figure 5.3a and Figure 5.3b shows two extreme
cases.

A B
Position

max. error
Error

0

Figure 5.3a: High Accuracy for Small Motions

5-4 Section 5 – Motion Control Tutorial

Figure 5.3b: Low Accuracy for Small Motions

A
B

Position

max. error

Error

0

Both error plots from Figure 5.3a and Figure 5.3b have a similar
maximum Error. But, if the user compares the maximum Error for small
distances, the system in Figure 5.3b shows significantly larger values.

For applications requiring high accuracy for small motions, the system in
Figure 5.3a is definitely preferred.

"Local Error" is a relative term that depends on the application; usually
no Local Error value is given with the system specifications. The user
should study the error plot supplied with the motion device and
determine the approximate maximum Local Error for the specific
application.

5.2.5 Resolution
Resolution is the smallest motion that the controller attempts to make.
For all DC motor and most all standard stepper motor driven stages
supported by the ESP301, this is also the resolution of the encoder.

Keeping in mind that the servo loop is a digital loop, the Resolution can
be also viewed as the smallest position increment that the controller can
handle.

5.2.6 Minimum Incremental Motion
The Minimum Incremental Motion is the smallest motion that a device
can reliably make, measured with an external precision-measuring
device. The controller can, for instance, execute a motion equal to the
Resolution (one encoder count) but in reality, the load may not move at
all. The cause for this is in the mechanics.

Load

Motor/EncoderElasticity

Stiction

Figure 5.4: Effect of Stiction and Elasticity on Small Motions

Section 5 – Motion Control Tutorial 5-5

Figure 5.4 shows how excessive stiction and elasticity between the
encoder and the load can cause the motion device to deviate from ideal
motion when executing small motions.

The effect of these two factors has a random nature. Sometimes, for a
small motion step of the motor, the load may not move at all. Other
times, the accumulated energy in the spring will cause the load to jump a
larger distance. The error plot will be similar to Figure 5.5.

Error(motion
increments)

–1

1

Position

Motion steps

Figure 5.5: Error Plot

Once the Maximum Incremental Motion is defined, the next task is to
quantify it. This more difficult for two reasons: one is its random nature
and the other is in defining what a completed motion represents.

Assume that the user has a motion device with a 1 μm resolution. If
every time the user commands a 1 μm motion the measured error is
never greater than 2%, the user will probably be very satisfied and
declare that the Minimum Incremental Motion is better than 1 μm.

If, on the other hand, the measured motion is sometimes as small as 0.1
μm (a 90% error), the user could not say that 1 μm is a reliable motion
step. The difficulty is in drawing the line between acceptable and
unacceptable errors when performing a small motion step. The most
common value for the maximum acceptable error for small motions is
20%, but each application ultimately has its own standard.

One way to solve the problem is to take a large number of measurements
(a few hundred at minimum) for each motion step size and present them
in a format that an operator can use to determine the Minimum
Incremental Motion by its own standard.

Figure 5.6: Error vs. Motion Step Size

Motion step size (in resolution increments)

Relative error

100%

80%

60%

40%

20%

1 2 3 4 5 6 7 8 9 10 11

5-6 Section 5 – Motion Control Tutorial

Figure 5.6 shows an example of such a plot. The graph represents the
maximum relative error for different motion step sizes. In this example,
the Minimum Incremental Motion that can be reliably performed with a
maximum of 20% error is one equivalent to 4 resolution (encoder)
increments.

5.2.7 Repeatability
Repeatability is the positioning variation when executing the same
motion profile. Assuming that the user has a motion sequence that stops
at a number of different locations, the Repeatability is the maximum
position variation of all targets when the same motion sequence is
repeated a large number of times. It is a relative, not absolute, error
between identical motions.

5.2.8 Backlash (Hysteresis)

For all practical purposes, Hysteresis and Backlash have the same
meaning for typical motion control systems; the error caused by
approaching a point from a different direction. The difference is that
Hysteresis refers to the compliance of the mechanical components, while
Backlash represents the "play", or looseness, in the mechanical drive
train.

All parameters discussed up to now that involve the positioning Error
assumed that all motions were performed in the same direction. If the
user tries to measure the positioning error of a certain target
(destination), approaching the destination from different directions could
make a significant difference.

In generating the plot in Figure 5.2 we said that the motion device will
make a large number of incremental moves, from one end of travel to the
other. If the user commands the motion device to move back and stop at
the same locations to take a position error measurement, the user would
expect to get an identical plot, superimposed on the first one. In reality,
the result could be similar to Figure 5.7.

Figure 5.7: Hysteresis Plot

+
Error

Position

0

Hysteresis

–

The error plot in reverse direction is identical with the first one but
seems to be shifted down by a constant error. This constant error is the
Hysteresis of the system.

Section 5 – Motion Control Tutorial 5-7

Real
position

Trajectory (ideal position)

ideal plot

real plot

Figure 5.8: Real vs. Ideal Position

To justify a little more why we call this Hysteresis, lets do the same
graph in a different format (Figure 5.8). Plotting the real versus the ideal
position will give the user a familiar hysteresis shape.

5.2.9 Pitch, Roll and Yaw
These are the most common angular error parameters for linear
translation stages. They are pure mechanical errors and represent the
rotational error of a stage carriage around the three axes. A perfect stage
should not rotate around any of the axes, thus the Pitch, Roll and Yaw
should be zero.

The commonly used representation of the three errors is shown in
Figure 5.9. Pitch is rotation around the Y axis, Roll is rotation around
the X axis, and Yaw is rotation around the Z axis.

Pitch

Yaw

Roll
X Z Y

Figure 5.9: Pitch, Roll and Yaw Motion Axes

The problem with this definition is that, though correct, it is difficult to
remember. A more graphical representation is presented in Figure 5.10.
Imagine a tiny carriage driven by a giant lead screw. When the carriage
rolls sideways on the lead screw pitch, we call that Pitch. And, when the
carriage deviates left or right from the straight direction (on an
imaginary Y trajectory), we call it Yaw.

5-8 Section 5 – Motion Control Tutorial

Figure 5.10: Pitch, Yaw and Roll Motion Axes

Screw
Pitch

Roll

Pitch

Yaw

5.2.10 Wobble
This parameter applies only to rotary stages. It represents the deviation
of the axis of rotation during motion. A simple form of Wobble is a
constant one, where the rotating axis generates a circle (Figure 5.11).

Figure 5.11: Wobble Generates a Circle

A real rotary stage may have a more complex Wobble, where the axis of
rotation follows a complicated trajectory. This type of error is caused by
the imperfections of stage’s bearing way machining and/or ball bearings.

5.2.11 Load Capacity
There are two types of loads that are of interest for motion control
applications: static and dynamic loads.

The static Load Capacity represents the amount of load that can be
placed on a stage without damaging or excessively deforming it.
Determining the Load Capacity of a stage for a particular application is
more complicated than it may first appear. The stage orientation and the
distance from the load to the carriage play a significant role. For a
detailed description on how to calculate the static Load Capacity, please
consult the motion control catalog tutorial section.

The dynamic Load Capacity refers to the motor's effort to move the load.
The first parameter to determine is how much load the stage can push or

Section 5 – Motion Control Tutorial 5-9

pull. In some cases the two values could be different due to internal
mechanical construction.

The second type of dynamic Load Capacity refers to the maximum load
that the stage could move with the nominal acceleration. This parameter
is more difficult to specify because it involves defining an acceptable
following error during acceleration.

5.2.12 Maximum Velocity
The Maximum Velocity that could be used in a motion control system is
determined by both motion device and driver. Usually it represents a
lower value than the motor or driver is capable of. In most cases,
including the ESP301, the default Maximum Velocity may be increased.
The hardware and firmware are tuned for a particular maximum velocity
that cannot be exceeded.

5.2.13 Minimum Velocity
The Minimum Velocity usable with a motion device depends on the
motion control system but also on the acceptable velocity regulation.
First, the controller sets the slowest rate of motion increments it can
make. The encoder resolution determines the motion increment size and
then, the application sets a limit on the velocity ripple.

To illustrate this, take the example of a linear stage with a resolution of
0.1 μm. If the user sets the velocity to 0.5 μm/sec, the stage will move 5
encoder counts on one second.

But, a properly tuned servo loop could move the stage 0.1 μm in about
20 ms. The position and velocity plots are illustrated in Figure 5.12.

Figure 5.12: Position, Velocity and Average Velocity

1s

positionvelocityaverage
velocity

The average velocity is low but the velocity ripple is very high.
Depending on the application, this may be acceptable or not. With
increasing velocity, the ripple decreases and the velocity becomes
smoother.

This example is truer in the case of a stepper motor driven stage. The
typical noise comes from a very fast transition from one step position to
another. The velocity ripple in that case is significantly higher.

5-10 Section 5 – Motion Control Tutorial

In the case of a DC motor, adjusting the PID parameters to get a softer
response will reduce the velocity ripple but care must be taken not to
negatively affect other desirable motion characteristics.

5.2.14 Velocity Regulation
In some applications, for example scanning, it is important for the
velocity to be very constant. In reality, there are a number of factors
besides the controller that affect velocity.

As described in the Minimum Velocity definition, the speed plays a
significant role in the amount of ripple generated, especially at low
values. Even if the controller does a perfect job by running with zero
following error, imperfections in the mechanics (friction, variation,
transmission ripple, etc.) will generate some velocity ripple that can be
translated to Velocity Regulation problems.

Depending on the specific application, one motor technology can be
preferred over the other.

As far as the controller is concerned, the stepper motor version is the
ideal case for a good average Velocity Regulation because the motor
inherently follows precisely the desired trajectory. The only problem is
the ripple caused by the actual stepping process.

The best a DC motor controller can do is to approach the stepper motor's
performance in average Velocity regulation, but it has the advantage of
significantly reduced velocity ripple, inherently and through PID tuning.
If the DC motor implements a velocity closed loop through the use of a
tachometer, the overall servo performance increases and one of the
biggest beneficiary is the Velocity Regulation.

5.2.15 Maximum Acceleration
The maximum Acceleration is a complex parameter that depends as
much on the motion control system as it does on application
requirements. For stepper motors, the main concern is not to lose steps
(or synchronization) during the acceleration. Besides the motor and
driver performance, the load inertia plays a significant role.

For DC motor systems the situation is different. If the size of the
following error is of no concern during the acceleration, high Maximum
Acceleration values can be entered. The motion device will move with
the highest natural acceleration it can (determined by the motor, driver,
load inertia, etc) and the errors will consist of just a temporary larger
following error and a velocity overshoot.

In any case, special consideration should be given when setting the
acceleration. Through in most cases no harm will be done in setting a
high acceleration value, avoid doing so if the application does not

Section 5 – Motion Control Tutorial 5-11

require it. The driver, motor, motion device and load undergo maximum
stress during high acceleration.

5.2.16 Combined Parameters
Very often a user looks at an application and concludes that they need a
certain overall accuracy. This usually means that the user is combining a
number of individual terms (error parameters) into a single one. Some of
these combined parameters even have their own name, even though not
all people mean the same thing by them: Absolute Accuracy, Bi-
directional Repeatability, etc. The problem with these generalizations is
that, unless the term is well defined and the testing closely simulates the
application, the numbers could be of little value.

The best approach is to carefully study the application, extract from the
specification sheet the applicable discrete error parameters and combine
them (usually add them) to get the worst-case general error applicable to
the specific case. This method not only offers a more accurate value but
also gives a better understanding of the motion control system
performance and helps pinpoint problems.

Also, due to integrated nature of the ESP301 motion controller, many
basic errors can be significantly corrected by another component of the
loop. Backlash, Accuracy and Velocity Regulation are just a few
examples where the controller can improve motion device performance.

5.3 Control Loops

When talking about motion control systems, one of the most important
questions is the type of servo loop implemented. The first major
distinction is between open and closed loop. Of course, this is of
particular interest when driving stepper motors. As far as the DC servo
loop, the PID type is by far the most widely used.

The ESP301 implements a PID servo loop with velocity and acceleration
feed-forward.

The basic diagram of a servo loop is shown in Figure 5.13. Besides the
command interpreter, the main two parts of a motion controller are the
trajectory generator and the servo controller. The first generates the
desired trajectory and the second one controls the motor to follow it as
closely as possible.

5-12 Section 5 – Motion Control Tutorial

Figure 5.13: Servo Loop

5.3.1 PID Servo Loops
The PID term comes from the proportional, integral and derivative gain
factors that are at the basis of the control loop calculation. The common
equation given for it is:

Kp • e + Ki e dt + Kd • de

 dt

Command
Interpreter

Trajectory
Generator

Motion Controller

Servo
Controller

Driver Motor

Encoder

where: Kp = Proportional gain factor
 KI = integral gain factor
 Kd = derivative gain factor
 e = instantaneous following factor

The program for most users is to get a feeling for this formula, especially
when trying to tune the PID loop. Tuning the PID means changing its
three gain factors to obtain a certain system response, task quite difficult
to achieve without some understanding of its behavior of servo loops.

The following paragraphs explain the PID components and their
operation.

P Loop
Let’s start with the simplest type of closed loop, the P (proportional)
loop. The diagram in Figure 5.14 shows its configuration.

Every servo cycle (400 µs), the actual position, as reported by the
encoder, is compared to the desired position generated by the trajectory
generator. The difference e is the positioning error (the following error).
Amplifying it (multiplying it by Kp) generates a control signal that,
converted to an analog signal, is sent to the motor driver.

There are a few conclusions that could be drawn from studying this
circuit:

• The motor control signal, thus the motor voltage, is proportional to
the following error.

• There must be a following error in order to drive the motor.
• Higher velocities need higher motor voltages and thus higher

following errors.

Section 5 – Motion Control Tutorial 5-13

• At stop, small errors cannot be corrected if they don't generate

enough voltage for the motor to overcome friction and stiction.
• Increasing the Kp gain reduces the necessary following error but too

much of it will generate instabilities and oscillations.

eTrajectory
Generator

Motion Controller

Servo
Controller

Driver
Motor

Encoder

 Kp

Figure 5.14: P Loop

PI Loop
To eliminate the error at stop and during long constant velocity motions
(usually called steady-state error), an integral term can be added to the
loop. This term integrates (adds) the error every servo cycle (400 µs) and
the value, multiplied by the Ki gain factor, is added to the control signal
(Figure 5.15).

Trajectory
Generator

Motion Controller

Servo Controller

Driver
Motor

Encoder

 Kp

 Ki ∫ e

e

Figure 5.15: PI Loop

The result is that the integral term will increase until it drives the motor
by itself, reducing the following error to zero. At stop, this has the very
desirable effect of driving the positioning error to zero. During a long
constant velocity motion it also brings the following error to zero, an
important feature for some applications.

Unfortunately, the integral term also has a negative side, a severe de-
stabilizing effect on the servo loop. In the real world, a simple PI Loop is
usually undesirable.

5-14 Section 5 – Motion Control Tutorial

PID Loop
The third term of the PID Loop is the derivative term. It is defined as the
difference between the following error of the current servo cycle (400
µs) and of the previous one. If the following error does not change, the
derivative term is zero.

Figure 5.16 sows the PID servo loop diagram. The derivative term is
added to the proportional and integral one. All three process the
following error in their own way and, added together, form the control
signal.

The derivative term adds a damping effect that prevents oscillations and
position overshoot.

Figure 5.16: PID Loop

Trajectory
Generator

Motion Controller

Servo Controller

Driver
Motor

Encoder

 Kp

 Ki ∫ e

 Kdde
dt

e

5.3.2 Feed-Forward Loops
As described in the previous paragraph, the main driving force in a PID
loop is the proportional term. The other two correct static and dynamic
errors associated with the closed loop.

Taking a closer look at the desired and actual motion parameters and at
the characteristics of the DC motors, some interesting observations can
be made. For a constant load, the velocity of a DC motor is
approximately proportional with the voltage. This means that for a
trapezoidal velocity profile, for instance, the motor voltage will have
also a trapezoidal shape (Figure 5.17).

The second observation is that the desired velocity is calculated by the
trajectory generator and is known ahead of time. The obvious conclusion
is that we could take this velocity information, scale it by Kvff factor and
feed it to the motor driver. If the scaling is done properly, the right
amount of voltage is sent to the motor to get the desired velocities,
without the need for a closed loop.

Section 5 – Motion Control Tutorial 5-15

Because the signal is derived from the velocity profile and it is being
sent directly to motor driver, the procedure is called velocity feed-
forward.

Of course, this looks like an open loop, and it is (Figure 5.18). But,
adding this signal to the closed loop has the effect of significantly
reducing the "work" the PID has to do, thus reducing the overall
following error. The PID now has to correct only for the residual error
left over by the feed-forward signal.

Figure 5.17: Trapezoidal Velocity Profile

Time

Desired Velocity

Motor Voltage

Trajectory
Generator

Motion Controller

Servo Controller

Driver

Motor

Encoder

 Kp

 Ki ∫ e

 Kd Kvff de
dt

e

Figure 5.18: PID Loop with Feed-Forward

There is another special note that has to be made about the feed-forward
method. The velocity is approximately proportional to the voltage and
only for constant loads, but this true only if the driver is a simple voltage
amplifier or current (torque) driver. A special case is when the driver has
its own velocity feedback loop from a tachometer (Figure 5.19).

The tachometer is a device that outputs a voltage proportional with the
velocity. Using its signal, the driver can maintain the velocity to be
proportional to the control signal.

5-16 Section 5 – Motion Control Tutorial

If such a driver is used with a velocity feed-forward algorithm, by
properly tuning the Kvff parameter, the feed-forward signal could
perform an excellent job, leaving very little for the PID loop to do.

Trajectory
Generator

Motion Controller

Servo Controller

Driver

Motor

Tachometer

Encoder

 Kp

 Ki ∫ e

 Kd Kvff de
dt

e

Figure 5.19: Tachometer-Driven PIDF Loop

5.4 Motion Profiles

When talking about motion commands we refer to certain strings sent to
a motion controller that will initiate a certain action, usually a motion.
There are a number of common motion commands that are identified by
name. The following paragraphs describe a few of them.

5.4.1 Move
A move is a point-to-point motion. On execution of a move motion
command, the motion device moves from the current position to a
desired destination. The destination can be specified either as an absolute
position or as a relative distance from the current position.

When executing a move command, the motion device will accelerate
until the velocity reaches a pre-defined value. Then at the proper time, it
will start decelerating so that when the motor stops, the device is at the
correct position. The velocity plot of this type of motion will have a
trapezoidal shape (Figure 5.20). For this reason, this type of motion is
called a trapezoidal motion.

Section 5 – Motion Control Tutorial 5-17

Desired Velocity

Time

Figure 5.20: Trapezoidal Motion Profile

The position and acceleration profiles relative to the velocity are shown
in Figure 5.21.

Position

Desired Velocity

Time

Acceleration

Figure 5.21: Position and Acceleration Profiles

Besides the destination, the acceleration and the velocity of the motion
(the constant portion of it) can be set by the user before every move
command. Advanced controllers like the ESP301 allow the user to
change them even during the motion.

5.4.2 Jog
When setting up an application, it is often necessary to move stages
manually while observing motion. The easy way to do this without
resorting to specialized input devices such as joysticks or track-wheels is
to use simple push-button switches. This type of motion is called a jog.
When a jog button is pressed the selected axis starts moving with a pre-
defined velocity. The motion continues only while the button is pressed
and stops immediately after its release.

The ESP301 offers two jog speeds. Both high and low jog speeds are
user programmable. The jog acceleration is also ten times smaller than
the programmed maximum acceleration values.

5-18 Section 5 – Motion Control Tutorial

5.4.3 Home Search

Home search is a specific motion routine that is useful for most types of
applications. Its goal is to find a specific point in travel relative to the
mounting base of the motion device very accurately and repeatable. The
need for this absolute reference point is twofold. First, in many
applications it is important to know the exact position in space, even
after a power-off cycle. Secondly, to protect the motion device from
hitting a travel obstruction set by the application (or its own travel
limits), the controller uses programmable software limits. To be efficient
though, the software limits must be placed accurately in space before
running the application.

To achieve this precise position referencing, the ESP301 motion
controller executes a unique sequence of moves.

First, let’s look at the hardware required to determine the position of a
motion device. The most common (and the one supported by the
ESP301) are incremental encoders. By definition, these are encoders that
can tell only relative moves, not absolute position. The controller keeps
track of position by incrementing or decrementing a dedicated counter
according to the information received from the encoder. Since there is no
absolute position information, position "zero" is where the controller was
powered on (and the position counter reset).

To determine an absolute position, the controller must find a "switch"
that is unique to the entire travel, called a home switch or origin switch.
An important requisition is that this switch must be located with the
same accuracy as the encoder pulses.

If the motion device is using a linear scale as position encoder, the home
switch is usually placed on the same scale and read with the same
accuracy.

If, on the other hand, a rotary encoder is used, the problem becomes
more complicated. To have the same accuracy, a mark on the encoder
disk could be used (called index pulse) but because it repeats itself every
revolution, it does not define a unique point over the entire travel.

An origin switch, on the other hand, placed in the travel of the motion
device is unique but not accurate (repeatable) enough. The solution is to
use both, following a search algorithm.

A home switch (Figure 5.22) separates the entire travel in two areas: one
for which it has a high level and one for which is low. The most
important part of it is the transition between the two areas. Also, looking
at the origin switch level, the controller knows on which side of the
transition it currently is and which way to move to find it.

Section 5 – Motion Control Tutorial 5-19

origin switch

encoder
index pulse

Figure 5.22: Home (Origin) Switch and Encoder Index Pulse

The task of the home search routine is to identify one unique index pulse
as the absolute position reference. This is done by the first finding the
home switch transition and then the very first index pulse (Figure 5.23).

So far, we can label the two motion segments D and E. During D the
controller is looking for the origin switch transition and during E for the
index pulse. To guarantee the best accuracy possible, both D and E
segments are performed at a very low speed and without a stop in-
between. Also, during E the display update is suppressed to eliminate
any unnecessary overhead.

origin switch

ED
motion

encoder
index pulse

Figure 5.23: Slow-Speed Home (Origin) Switch Search

The routine described above could work but has one problem. Using the
low speeds, it could take a very long time if the motion device happens
to start from the opposite end of travel. To speed things up, we can have
the motion device move fast in the vicinity of the home switch and then
perform the two slow motions, D and E. The new sequence is shown in
Figure 5.24.

origin switch

ED

C

encoder
index pulse

B

motion

Figure 5.24: High/Low-Speed Home (Origin) Switch Search

5-20 Section 5 – Motion Control Tutorial

Motion segment B is performed at high speed, with the pre-programmed
home search speed. When the home switch transition is encountered, the
motion device stops (with an overshoot), reverses direction and looks for
it again, this time with half the velocity (segment C).

Once found, it stops again with an overshoot, reverses direction and
executes D and E with one tenth of the programmed home search speed.

In the case when the motion device starts from the other side of the
home switch transition, the routine will look like Figure 5.25.

origin switch

ED

C
motion

encoder
index pulse

A
B

Figure 5.25: Home (Origin) Search from Opposite Direction

The ESP301 moves at high speed up to the home switch transition
(segment A), and then executes B, C, D and E.

All home search routines are run so that the last segment, E, is
performed in the position direction of travel.

CAUTION

The home search routine is very important for the positioning accuracy of the
entire system and it requires full attention from the controller. Do not interrupt or

send other commands during its execution, unless it is for emergency purposes.

5.5 Encoder

PID closed-loop motion control requires a position sensor. The most
widely used technology by far, are incremental encoders.

The main characteristic of an incremental encoder is that it has a 2-bit
gray code output, more commonly known as quadrature output
(Figure 5.26).

Section 5 – Motion Control Tutorial 5-21

A

B

1 2 3 4

Figure 5.26: Encoder Quadrature Output

The output has two signals, commonly known as channel A and channel
B. Some encoders have analog outputs (sine – cosine signals), but the
digital type are more widely used. Both channels have a 50% duty cycle
and are out of phase by 90°. Using both channels and an appropriate
decoder, a motion controller can identify four different points within one
encoder cycle. This type of decoding is called X4 (or quadrature
decoding), meaning that the encoder resolution is multiplied by 4. For
example, and encoder with 10 μm phase period can offer a 2.5 μm
resolution when used with a X4 type decoder.

Physically, an encoder has two parts: a scale and a read head. The scale
is an array of precision placed marks that are read by the head. The most
commonly used encoders, optical encoders, have a scale made out of a
series of transparent and opaque lines placed on a glass substrate or
etched in a thin metal sheet (Figure 5.27).

Figure 5.27: Optical Encoder Scale

5-22 Section 5 – Motion Control Tutorial

The encoder read head has three major components: a light source, a
mask and a detector (Figure 5.28). The mask is a small scale-like piece,
having identically spaced transparent and opaque lines.

Figure 5.28: Optical Encoder Read Head

Combining the scale with the read head, when one moves relative to
another, the light will pass through where the transparent areas line up or
blocked when they do not line up (Figure 5.29).

The detector signal is similar to a sine wave. Converting it to a digital
waveform, the user will get the desired encoder signal. But, this is only
one phase, only half of the signal needed to get position information.
The second channel is obtained the same way but from a mask that is
placed 90% out of phase relative to the first one (Figure 5.30).

Figure 5.29: Single-Channel Optical Encoder Scale and Read Head Assembly

There are two basic types of encoders: linear and rotary. The linear
encoders, also called linear scales, are used to measure linear motion
directly. This means that the physical resolution of the scale will be the
actual positioning resolution. This is their main drawback since

Section 5 – Motion Control Tutorial 5-23

technological limitations prevent them from having better resolutions
than a few microns. To get higher resolutions in linear scales, a special
delicate circuitry must be added, called scale interpolator.

Other technologies like interferometry or halography can be used but
they are significantly more expansive and need more space.

Figure 5.30: Two-Channel Optical Encoder Scale and Read Head Assembly

The most popular encoders are rotary. Using gear reduction between the
encoder and the load, significant resolution increases can be obtained at
low cost. But the price paid for this added resolution is higher backlash.

In some cases, rotary encoders offer high resolution without the backlash
penalty. For instance, a linear translation stage with a rotary encoder on
the lead screw can easily achieve 1μm resolution with negligible
backlash.

NOTE

For rotary stages, a rotary encoder measures the output angle directly. In this
case, the encoder placed on the rotating platform has the same advantages and

disadvantages of the linear scales.

5.6 Motors

There are many different types of electrical motors, each one being best
suitable for certain kind of applications. The ESP301 supports two of the
most popular types: stepper motors and DC motors.

5-24 Section 5 – Motion Control Tutorial

Other technologies like interferometry or halography can be used but
they are significantly more expansive and need more space.

Another way to characterize motors is by the type of motion they
provide. The most common ones are rotary but in some applications,
linear motors are preferred.

5.6.1 Stepper Motors
The main characteristic of a stepper motor is that each motion cycle has
a number of stable positions. This means that, if current is applied to one
of its windings (called phases), the rotor will try to find one of these
stable points and stay there. In order to make a motion, another phase
must be energized which, in turn, will find a new stable point, thus
making a small incremental move – a step.

Figure 5.31 shows the basics of a stepper motor. When the winding is
energized, the magnetic flux will turn the rotor until the rotor and stator
teeth line up. This true of the rotor core is made out of soft iron.
Regardless of the current polarity, the stator will try to pull-in the closest
rotor tooth.

Figure 5.31: Stepper Motor Operation

But, if the rotor is a permanent magnet, depending on the current
polarity, the stator will pull or push the rotor tooth. This is a major
distinction between two different stepper motor technologies: variable
reluctance and permanent magnet motors. The variable reluctance
motors are usually small, low cost, large step angle stepper motors. The
permanent magnet technology is used for larger, high precision motors.

The stepper motor advances to a new stable position by means of several
stator phases that have the teeth slightly offset from each other. To
illustrate this, Figure 5.32 shows a stepper motor with four phases and,
to make it easier to follow, it is drawn in a linear fashion (as a linear
stepper motor).

A B C D A

Figure 5.32: Four-Phase Stepper Motor

Section 5 – Motion Control Tutorial 5-25

The four phases, from A to D, are energized one at a time (phase A is
shown twice). The rotor teeth line up with the first energized phase, A. If
the current to phase A is turned off and B is energized next, the closest
rotor tooth to phase B will be pulled in and the motor moves one step
forward.

If, on the other hand, the next energized phase is D, the closest rotor
tooth is in the opposite direction, thus making the motor to move in
reverse.

Phase C cannot be energized immediately after A because it is exactly
between two teeth, so the direction of movement is indeterminate.

To move in one direction, the current in the four phases must have the
following timing diagram (Figure 5.33).

 A

B

C

D

Figure 5.33: Phase Timing Diagram

One phase is energized after another, in a sequence. To advance one full
rotor tooth the user needs to make a complete cycle of four steps. To
make a full revolution, the user needs a number of steps four times the
number of rotor teeth. These steps are called full steps. They are the
largest motion increment the stepper motor can make. Running the
motor in this mode is called full-stepping.

What happens if the user energizes two neighboring phases
simultaneously (Figure 5.34).

A B C D A

Figure 5.34: Energizing Two Phases Simultaneously

Both phases will pull equally on the motor will move the rotor only half
of the full step. If the phases are always energized two at a time, the
motor still makes full steps. But, if the user alternates one and two
phases being activated simultaneously, the result is that the motor will
move only half a step at a time. This method of driving a stepper motor
is called half-stepping. The advantage is that we can get double the
resolution from the same motor with very little effect on the driver's side.
The timing diagram for half-stepping is shown in Figure 5.35.

5-26 Section 5 – Motion Control Tutorial

A

1 2 3 4 5 6 7 8

B

C

D

Figure 5.35: Timing Diagram, Half-Stepping Motor

Now, what happens if we energize the same two phases simultaneously
but with different currents? For example, lets say that phase A has the
full current and phase B only half. This means that phase A will pull the
rotor tooth twice as strongly as B does. The rotor tooth will stop closer to
A, somewhere between the full step and the half step positions (Figure
5.36).

Figure 5.36: Energizing Two Phases with Different Intensities

A B C D A

The conclusion is that, varying the ratio between the currents of the two
phases, the user can position the rotor anywhere between the two full
step locations. To do so, the user needs to drive the motor with analog
signals, similar to Figure 5.37.

 A

B

C

D

Figure 5.37: Timing Diagram, Continuous Motion (Ideal)

But a stepper motor should be stepping. The controller needs to move it
in certain known increments. The solution is to take the halh-sine waves
and digitize them so that for every step command, the currents change to
some new pre-defined levels, causing the motor to advance one small
step (Figure 5.38).

Section 5 – Motion Control Tutorial 5-27

A

B

C

D

Figure 5.38: Timing Diagram, Mini-Stepping

This driving method is called mini-stepping or micro-stepping. For each
step command, the motor will move only a fraction of the full-step.
Motion steps are smaller so the motion resolution is increased and the
motion ripple (noise) is decreased.

However, mini-stepping comes at a price. First, the driver electronics are
significantly more complicated. Secondly, the holding torque or one step
is reduced by the mini-stepping factor. In other words, for a x10 mini-
stepping, it takes only 1/10 of the full-step holding torque to cause the
motor to have a positioning error equivalent to one step (a mini-step).

To clarify a little what this means, lets take a look at the torque produced
by a stepper motor. For simplicity, lets consider the case of a single
phase being energized (Figure 5.39).

Once the closest rotor tooth has been pulled in, assuming that the user
doesn't have any external load, the motor does not develop any torque.
This is a stable point.

If external forces try to move the rotor (Figure 5.40), the magnetic flux
will counter this effect. The more teeth misalignment exists, the larger
the generated torque.

Figure 5.39: Single Phase Energization

Figure 5.40: External Force Applied

5-28 Section 5 – Motion Control Tutorial

If the misalignment keeps increasing, at some point, the torque peaks
and then starts diminishing again such that, when the stator is exactly
between the rotor teeth, the torque becomes zero again (Figure 5.41).

This is an unstable point and any misalignment or external force will
cause the motor to move one way or another. Jumping from one stable
point to another is called missing steps, one of the most critiqued
characteristics of stepper motors.

The torque diagram versus teeth misalignment is shown in Figure 5.42.
The maximum torque is obtained at one quarter of the tooth spacing,
which is equivalent to one full step.

Figure 5.41: Unstable Point

Torque

Figure 5.42: Torque and Tooth Alignment

This torque diagram is accurate even when the motor is driven with half-
, mini-, or micro-steps. The maximum torque is still one full step away
from the stable (desired) position.

5.6.1.1 Stepper Motor Types
To simplify the explanation, the examples above are based on a variable
reluctance stepper motor. The main characteristic of these motors is that
their rotors have no permanent magnets. The variable reluctance motors
are easy and inexpensive to make but suffer from higher inefficiency and
require a unipolar driver. They are used in low cost, low power
applications.

Permanent magnet motors have each "tooth" made out of a permanent
magnet, each one having alternate polarity. They are more efficient but
the step size is very large due to the physical size of the pole "teeth".
They are also being used in low cost and, in particular, miniature
applications.

The most common type of stepper motor is the Hybrid stepper motor. It
is the fine "teeth" and stepping angle of a variable reluctance motor and

Section 5 – Motion Control Tutorial 5-29

the efficiency of the permanent magnet motor. The rotor is made out of
one or more stacks that consist of a pair of magnetically opposite
polarized sections. These motors offer the best combination of efficiency
and fine stepping angles and can be driven by both unipolar and bipolar
drivers.

Advantages
Stepper motors are primarily intended to be used for low cost
microprocessor controlled positioning applications. Due to some of their
inherent characteristics, they are preferred in many industrial and
laboratory applications. Some of their main advantages are:
• Low cost full-step, open loop implementation
• No servo tuning required
• Good position lock-in
• No encoder necessary
• Easy velocity control
• Retains some holding torque even with power off
• No wearing or arcing commutators
• Preferred for vacuum and explosive environments.

Disadvantages
Some of the main disadvantages of the stepper motors are:
• Could loose steps (synchronization) in open loop operation
• Requires current (dissipates energy) even at stop
• Generates higher heat levels than other types of motors
• Moves from one step to another are made with sudden motions
• Large velocity ripples, especially at low speeds, causing noise and

possible resonances
• Load torque must be significantly lower than the motor holding

torque to prevent stalling and missing steps
• Limited high speed.

5.6.2 DC Motors
A DC motor is similar to a permanent magnet stepper motor with an
added internal phase commutator (Figure 5.43).

N

S

A B C D E

Figure 5.43: DC Motor

Applying current to phase B pulls in the rotor pole. If, as soon as the
pole gets there, the current is switched to the next phase C, the rotor will
not stop but continue moving to the next target.

5-30 Section 5 – Motion Control Tutorial

Repeating the current switching process will keep the motor moving
continuously. The only way to stop a DC motor is not to apply any
current to its windings. Due to the permanent magnets, reversing the
current polarity will cause the motor to move in the opposite direction.

Of course, there is a lot more to the DC motor theory but this description
gives the user a general idea on how they work.

A few other characteristics to keep in mind are:
• For a constant load, the velocity is approximately proportional to the

voltage applied to the motor
• For accurate positioning, DC motors need a position feed-back

device.
• Constant current generates approximately constant torque
• If DC motors are tuned externally (manually, etc.) they act as

generators.

Advantages
DC motors are preferred in many applications for the following reasons:
• Smooth, ripple-free motion at any speed
• High torque per volume
• No risk of loosing position (in a closed loop)
• Higher power efficiency than stepper motors
• No current requirement at stop
• Higher speeds can be obtained than with other types of motors.

Disadvantages
Some of the DC motor's disadvantages are:
• Requires a position feedback encoder and servo loop controller
• Requires servo loop tuning
• Commutator may wear out in time
• Not suitable for high vacuum application due to the commutator

arcing
• Hardware and setup are more costly than for an open loop stepper

motor (full stepping).

5.7 Drivers

Motor divers must not be overlooked when judging a motion control
system. They represent an important part of the loop that in many cases
could increase or reduce the overall performance.

The ESP301 is an integrated controller and driver. The controller part is
common for any configuration but the driver section must have the
correct hardware for each motor driven. The driver hardware is one
driver card per axis that installs easily in the rear of the controller. Each

Section 5 – Motion Control Tutorial 5-31

card has an end-plate with the 25 pin D-Sub motor connector and an
identifying label. Always make sure that the motor specified on the
driver card label matches the label on the motion device.

There are important advantages to having an integrated controller/driver.
Besides reducing space and cost, integration also offers tighter
coordination between the two units so that the controller can more easily
monitor and control the driver's operation.

Driver types and techniques vary widely. In the following paragraphs,
we will discuss only those implemented in the ESP301.

5.7.1 Stepper Motor Drivers
Driving a stepper motor may look simple at first place. For a motor with
four phases, the most widely used type, the user will need only four
switches (transistors), controlled directly by a CPU (Figure 5.44).

This driver works fine for simple, low performance applications. But, if
high speeds are required, having to switch the current fast in inductive
loads becomes a problem. When voltage is applied to a winding, the
current (and thus the torque) approaches its normal value exponentially
(Figure 5.45).

Figure 5.44: Simple Stepper Motor Driver

When the pulse rate is flat, the current does not have time to reach the
desired value before it is turned off and the total torque generated is only
a fraction of the nominal one (Figure 5.46).

How fast the current reaches its nominal value depends on three factors:
the winding's inductance, resistance and the voltage applied to it.

The inductance cannot be reduced. But the voltage can be temporarily
increased to bring the current to its desired level faster. The most widely
used technique is a high voltage chopper.

Current

Figure 5.45: Current Build-up in Phase

5-32 Section 5 – Motion Control Tutorial

When the pulse rate is fast, the current does not have time to reach the
desired value before it is turned off and the total torque generated is only
a fraction of the nominal one (Figure 5.46).

How fast the current reaches its nominal value depends on three factors:
the winding's inductance, resistance and the voltage applied.

The inductance cannot be reduced. But the voltage can be temporarily
increased to bring the current to its desired level faster. The most widely
used technique is a high voltage chopper.

 Phase ON nominal current

Figure 5.46: Effect of a Short ON Time on Current

If, for instance, a stepper motor requiring only 3V to reach the nominal
current is connected momentarily to 30V, it will reach the same current
on only 1/10 of the time (Figure 5.47).

Phase ON

nominal current

Figure 5.47: Motor Pulse with High Voltage Chopper

Once the desired current value is reached, a chopper circuit activates to
keep the current close to the nominal value.

5.7.2 Unipolar – Bipolar Drivers
In the examples described in Section 5.7.1: Stepper Motor Drivers, each
phase has its own commutator (transistor) to control the current that
flows through it. Having one end permanently connected to the power
source, the current will flow through each phase always in the same
direction. For this reason, these types of drivers are called Unipolar.

On the other hand, Figure 5.48 shows a Bipolar Driver built in a dual
H-bridge configuration. The name "H-Bridge" comes from the topology
of the transistors controlling one load (coil). In this case, by turning on

Section 5 – Motion Control Tutorial 5-33

diagonally transistors (1-4 or 2-3), the current could be made to flow
either way through the coil. This means that the driver can control not
just the intensity of the magnetic field generated by the stator, but also
its polarity. Implicitly, the only stepper motors that can be used with
such a driver are the ones with polarized rotors, the Permanent Magnet,
and the Hybrid types.

The question that arises from the driver configuration is how to connect
a four phase stepper motor to a driver that drives only two coils. This
could be accomplished in three different ways, each one with its own
advantages and disadvantages:

1. Use only two adjacent phases (e.g., phase #1 and #2).
• Advantage – simplicity
• Disadvantage – lower efficiency since only half the windings are

being used.

2. Connect the two opposing phases (1-3 and 2-4) in series.
• Advantage – the motor does not require more than the nominal

current.
• Disadvantage – the driver will see twice the nominal motor

inductance that will reduce the motor's torque performance at
higher speeds.

3. Connect the two opposing phases (1-3 and 2-4) in parallel.
• Advantage – the motor inductance does not increase, allowing it

to perform well at higher speeds.
• Disadvantage – requires the driver to supply twice the motor's

nominal current.

2 4 6 8

1 3 5 7

±

–

Figure 5.48: Dual H-Bridge Driver

5.7.3 DC Motor Drivers
There are three major categories of DC motor drivers. The simplest one
is a voltage amplifier (Figure 5.49).

5-34 Section 5 – Motion Control Tutorial

Figure 5.49: DC Motor Voltage Amplifier

M

E

Incontrol signal

±10V

The driver amplifies the standard ±10 V control signal to cover the
motor's nominal voltage range while also supplying the motor's nominal
current.

This type of driver is used mostly in low cost applications where
following error is not a great concern. The controller does all the work in
trying to minimize the following error but load variations make this task
very difficult.

The second type of DC motor driver is the current driver, also called a
torque driver (Figure 5.50).

In this case, the control signal voltage defines the motor current. The
driver constantly measures the motor current and always keeps it
proportional to the input voltage. This type of driver is usually preferred
over the previous one in digital control loops, offering a stiffer response
and thus reduces the dynamic following error.

M

E

Incontrol signal

±10V

Figure 5.50: DC Motor Current Driver

But, when the highest possible performance is required, the best choice
is always the velocity feedback driver. This type of driver requires a
tachometer, an expensive and sometimes difficult to add device (Figure
5.51).

Section 5 – Motion Control Tutorial 5-35

M

T

E

V = velocity

control signal

±10V

Figure 5.51: DC Motor Velocity Feedback Driver

The tachometer, connected to the motor's rotor, outputs a voltage
directly proportional with the motor velocity. The circuit compares this
voltage with the control signal and drives the motor so that the two are
always equal. This creates a second closed loop, a velocity loop.
Motions performed with such a driver are very smooth at high and low
speeds and has a similar dynamic following error.

 General purpose velocity feedback drivers have usually two
adjustments: tachometer gain and compensation (Figure 5.52).

M

T

E

V = velocity

control signal

±10V

tach. gain

compensation

Figure 5.52: DC Motor Tachometer Gain and Compensation

The tachometer gain is used to set the ratio between the control voltage
and the velocity. The compensation adjustment reduces the bandwidth of
the amplifier to avoid oscillations of the closed loop.

5.7.3.1 PWM Drivers
Even though linear amplifiers are simpler and cleaner (do not generate
noise), their low efficiency makes them impractical to be used with
medium and larger motors. The most common types of DC drivers use
some kind of PWM (Pulse-Width Modulation) techniques to control the
current and/or voltage applied to the motor. This allows for a more
efficient and compact driver design.

5-36 Section 5 – Motion Control Tutorial

Section 6 – Servo Tuning

6.1 Tuning Principles

The ESP301 controller uses a PID servo loop with feed-forward.
Servo tuning sets the Kp, Ki, and Kd, and feed-forward parameters of
the digital PID algorithm, also called the PID filter.

Tuning PID parameters requires a reasonable amount of closed-loop
system understanding. First review the Control Loops paragraph in
the Motion Control Tutorial Section. If needed, consult additional
servo control theory books.

Start the tuning process using the default values supplied with the
stage. These values are usually very conservative, favoring safe and
oscillation-free operation. To achieve the best dynamic performance
possible, the system must be tuned for the specific application. Load,
acceleration, stage orientation, and performance requirements all
affect how the servo loop should be tuned.

6.2 Tuning Procedures

Servo tuning is usually performed to achieve better motion
performance (such as reducing the following error statically and/or
dynamically) or because the system is malfunctioning (oscillating
and/or shutting off due to excessive following error).

Acceleration plays a significant role in the magnitudes of the
following error and overshoot, especially at start and stop. Rapid
velocity changes represent very high acceleration, causing large
following errors and overshoot. Use the smallest acceleration the
application can tolerate to reduce overshoot and make tuning the PID
filter easier.

Appendix A – Error Messages A-1

NOTE

In the following descriptions, it is assumed that a software utility is being used
to capture the response of the servo loop during a motion step command, and

to visualize the results.

6.2.1 Hardware and Software Requirements
Hardware Requirements
Tuning is best accomplished when the system response can be
measured. This can be done with external monitoring devices but can
introduce errors.

The ESP301 controller avoids this problem by providing an internal
tune capability. When tune mode is activated, the controller records a
number of different parameters. The parameters can include real
instantaneous position, desired position, desired velocity, desired
acceleration, DAC output value, etc.

The sample interval can be set to one servo cycle (400 µs) or any
multiple of it and the total number of samples can be up to 1000
points.

This is a powerful feature that the user can take advantage of to get
maximum performance out of the motion system.

Software Requirements
Users can write their own application(s) or use the ESP-tune-exe
Windows utility.

Please refer to the description of ASCII command, "DC", to setup
data acquisition.

6.2.2 Correcting Axis Oscillation
There are three parameters that can cause oscillation. The most likely
to induce oscillation is Ki, followed by Kp and Kd. Start by setting
Ki to zero and reducing Kp and Kd by 50%.

If oscillation does not stop, reduce Kp again.

When the axis stops oscillating, system response is probably very
soft. The following error may be quite large during motion and non-
zero at stop. Continue tuning the PID with the procedures described in
the next paragraph.

6.2.3 Correcting Following Error

6-2 Section 6 – Servo Tuning

If the system is stable and the user wants to improve performance,
start with the current PID parameters. The goal is to reduce following
error during motion and to eliminate it at stop.

Guidelines for further tuning (based on performance starting point and
desired outcome) are provided in the following paragraphs.

Following Error Too Large
This is the case of a soft PID loop caused by low values for Kp and
Kd. It is especially common after performing the procedures
described in paragraph 6.2.2.

First increase Kp by a factor of 1.5 to 2. Repeat this operation while
monitoring the following error until it starts to exhibit excessive
ringing characteristics (more than 3 cycles after stop). To reduce
ringing, add some damping by increasing the Kd parameter.

Increase it by a factor of 2 while monitoring the following error. As
Kd is increased, overshoot and ringing will decrease almost to zero.

NOTE

Remember that if acceleration is set too high, overshoot cannot be completely
eliminated with Kd.

If Kd is further increased, at some point oscillation will reappear,
usually at a higher frequency. Avoid this by keeping Kd at a high
enough value, but not so high as to re-introduce oscillation.

Increase Kp successively by approximately 20% until signs of
excessive ringing appear again.

Alternately increase Kd and Kp until Kd cannot eliminate overshoot
and ringing at stop. This indicates Kp is larger than its optional value
and should be reduced. At this point, the PID loop is very tight.

Ultimately, optimal values for Kp and Kd depend on the stiffness of
the loop and how much ringing the application can tolerate.

NOTE

The tighter the loop, the greater the risk of instability and oscillation when load
conditions change.

Section 6 – Servo Tuning 6-3

Errors At Stop (Not In Position)
If you are satisfied with the dynamic response of the PID loop but the
stage does not always stop accurately, modify the integral gain factor
Ki. As described in the Motion Control Tutorial section, the Ki factor
of the PID works to reduce following error to near zero.
Unfortunately it can also contribute to oscillation and overshoot.
Change this parameter carefully, and if possible, in conjunction with
Kd.

Start with the integral limit (IL) set to a high value and Ki value at
least two orders of magnitude smaller than Kp. Increase its value by
50% at a time and monitor overshoot and final position at stop.

If intolerable overshoot develops, increase the Kd factor. Continue
increasing Ki, IL and Kd alternatively until an acceptable loop
response is obtained. If oscillation develops, immediately reduce Ki
and IL.

Remember that any finite value for Ki will eventually reduce the error
at stop. It is simply a matter of how much time is acceptable for the
application. In most cases it is preferable to wait a few extra
milliseconds to get to the stop in position rather than have overshoot
or run the risk of oscillations.

Following Error During Motion
This is caused by a Ki, and IL value that is too low. Follow the
procedures in the previous paragraph, keeping in mind that it is
desirable to increase the integral gain factor as little as possible.

6.2.4 Points to Remember
• Use the Windows-based "ESP_tune.exe" utility to change PID

parameters and to visualize the effect. Compare the results and
parameters used with the previous iteration.

• The ESP301 controller uses a servo loop based on the PID with
velocity and acceleration feed-forward algorithm.

• Use the lowest acceleration the application can tolerate. Lower
acceleration generates less overshoot.

• Use the default values provided with the system for all standard
motion devices as a starting point.

• Use the minimum value for Ki, and IL that gives acceptable
performance. The integral gain factor can cause overshoot and
oscillations.

A summary of servo parameter functions is listed in Table 6.2.1.

6-4 Section 6 – Servo Tuning

Parameter Function Value Set Too Low Value Set Too High
Kp Determines

stiffness of servo
loop.

Servo loop too soft
with high following
errors

Servo loop too tight
and/or causing
oscillation

Kd Main damping
factor, used to
eliminate
oscillation

Uncompensated
oscillation caused
by other parameters
being high

Higher-frequency
oscillation and/or
audible noise in the
motor caused by large
ripple in the motor
voltage

Ki Reduces following
error during long
motions and at stop

Stage does not reach
or stay at the desired
stop position

Oscillations at lower
frequency and higher
amplitude

Vff Reduces following
error during the
constant velocity
phase of a motion

Negative following
error during the
constant velocity
phase of a motion.
Stage lags the
desired trajectory.

Positive following
error during the
constant velocity
phase of a motion.
Stage is ahead of the
desired trajectory.

Aff Reduces following
error during the
acceleration and
deceleration phases
of a motion

Negative following
error during the
acceleration phase
of a motion. Stage
lags the desired
trajectory.

Position following
error during the
acceleration phase of
a motion. Stage is
ahead of the desired
trajectory.

Table 6.1: Servo Parameter Functions

Section 6 – Servo Tuning 6-5

6-6 Section 6 – Servo Tuning

This page is intentionally left blank

Appendix A – Error Messages

The ESP301 controller has an elaborate command interpreter and
system monitor. Every command is analyzed for syntax and correct
format after it is received. The result of the analysis is stored in an
output buffer in plain English. During moves and while idle, system
inputs are monitored and any change is reported to the user via the
output buffer. To read the contents of the output buffer, send the
command TB (tell buffer).

For more compact error messages, use the TE command. The ESP301
controller response to this command is a one byte; binary coded error
number, e.g., 33.

For the sake of convenience, error messages are divided into two
categories – non-axis specific error messages and axis specific error
messages. Below is a list of all possible ESP301 controller error
messages that are not axis specific:

0 NO ERROR DETECTED
No errors exist in the output buffer.

1 PCI COMMUNICATION TIME-OUT
A communication transfer was initiated through PCI bus interface and
was never completed.

2 Reserved for future use

3 Reserved for future use

4 EMERGENCY SOP ACTIVATED
An emergency stop was executed because the motion controller
received a '#' character or "STOP ALL AXES" button was pressed.

5 Reserved for future use

6 COMMAND DOES NOT EXIST
The issued command does not exist. Check the Command Syntax.

7 PARAMETER OUT OF RANGE
The specified parameter is out of range. Refer to the description of
issued command for valid parameter range.

Appendix A – Error Messages A-1

8 CABLE INTERLOCK ERROR
The 100-pin cable between motion controller board and driver is
disconnected.

9 AXIS NUMBER OUT OF RANGE
The specified axis number is out of range. Refer to the description of
issued command for valid axis number range.

10 Reserved for future use

11 Reserved for future use

12 Reserved for future use

13 GROUP NUMBER MISSING
Group number is not specified. The issued command requires a valid
group number. Refer to the description of issued command for valid
group number range.

14 GROUP NUMBER OUT OF RANGE
The specified group number is out of range. Refer to the description
of issued command for valid group number range.

15 GROUP NUMBER NOT ASSIGNED
The specified group has not been assigned. Refer to the description of
HN command to create a new group with this group number.

16 GROUP NUMBER ALREADY ASSIGNED
The specified group number has already been assigned. Refer to the
description of HB command to query the list of group numbers
already assigned.

17 GROUP AXIS OUT OF RANGE
At least one of the axis numbers specified to be a member of this
group is out of range. Refer to the description of HN command for
valid range of axis numbers that can be assigned to a group.

18 GROUP AXIS ALREADY ASSIGNED
At least one of the axis numbers specified to be a member of this
group is already a member of a different group.

19 GROUP AXIS DUPLICATED
At least one of the axis numbers is specified to be a member of this
group more than once.

20 DATA ACQUISITION IS BUSY
Data acquisition is not yet complete.

A-2 Appendix A – Error Messages

21 DATA ACQUISITION SETUP ERROR
An error occurred during data acquisition setup. Ensure that data
acquisition is disabled and all parameters are within valid range
before issuing the command. Refer to the command description for
valid range of parameters.

22 DATA ACQUISITION NOT ENABLED
Data acquisition is not yet enabled.

23 SERVO CYCLE (400 µS) TICK FAILURE
There was a failure to increment the servo tick in the Interrupt Service
Routine (ISR) that manages motion control.

24 Reserved for future use

25 DOWNLOAD IN PROGRESS
Firmware download is in progress.

26 STORED PROGRAM NOT STARTED
An attempt was made to execute a stored program and the program
could not be started.

27 COMMAND NOT ALLOWED
The issued command is not valid in the context in which it was
issued.

28 STORED PROGRAM FLASH AREA FULL
The flash area reserved for stored programs is full.

29 GROUP PARAMETER MISSING
At least one parameter is missing. Refer to the description of issued
command for valid number of parameters.

30 GROUP PARAMETER OUT OF RANGE
The specified group parameters is out of range. Refer to the
description of issued command for valid range of parameter.

31 GROUP MAXIMUM VELOCITY EXCEEDED
The specified group velocity exceeds the minimum of the maximum
velocities of members of this group. Refer to the description of HV
command for more details.

32 GROUP MAXIMUM ACCELERATION EXCEEDED
The specified group acceleration exceeds the minimum of the
maximum acceleration of members of this group. Refer to the
description of HA command for more details.

Appendix A – Error Messages A-3

33 GROUP MAXIMUM DECELERATION EXCEEDED
The specified group deceleration exceeds the minimum of the
maximum decelerations of members of this group. Refer to the
description of HD command for more details.

34 GROUP MOVE NOT ALLOWED DURING MOTION
Cannot make a coordinated move when one of the members of the
group is being "homed".

35 PROGRAM NOT FOUND
The issued command could not be executed because the stored
program requested is not available.

36 Reserved for future use

37 AXIS NUMBER MISSING
Axis number not specified. The issued command requires a valid axis
number. Refer to the description of issued command for valid axis
number range.

38 COMMAND PARAMETER MISSING
At least one parameter associated with this command is missing.
Refer to the description of issued command for valid number of
parameters.

39 PROGRAM LABEL NOT FOUND
The issued command could not be executed because the requested
label within a stored program is not available.

40 LAST COMMAND CANNOT BE REPEATED
An attempt was made to repeat the last (previous) commanded by just
sending a carriage return. This feature is not allowed for commands
that carry strings in addition to the two-letter ASCII mnemonic. Issue
the last command again.

41 MAX NUMBER OF LABELS PER PROGRAM
EXCEEDED

The number of labels used in the stored program exceeds the allowed
value.

Below is a list of all possible error messages that are axis specific.
Here, "x" represents the axis number.

x00 MOTOR TYPE NOT DEFINED
A valid motor type was not defined for the requested axis. Refer to
the description of QM command to define a motor type.

A-4 Appendix A – Error Messages

x01 PARAMETER OUT OF RANGE
The specified parameter is out of range. Refer to the description of
issued command for valid parameter range.

x02 AMPLIFIER FAULT DETECTED
There was an amplifier fault condition.

x03 FOLLOWING ERROR THRESHOLD EXCEEDED
The real position of specified axis was lagging the desired position by
more encoder counts than specified with the FE command. Refer to
the description of ZF command to configure the motion controller
tasks upon encountering a following error.

x04 POSITIVE HARDWARE LIMIT DETECTED
The motion controller sensed a high level at its positive travel limit
input. Refer to the description of ZH command to configure the
motion controller tasks upon encountering a hardware limit.

x05 NEGATIVE HARDWARE LIMIT DETECTED
The motion controller sensed a high level at its negative travel limit
input. Refer to the description of ZH command to configure the
motion controller tasks upon encountering a hardware limit.

x06 POSITIVE SOFTWARE LIMIT DETECTED
The motion controller sensed that the axis has reached positive
software travel limit. Refer to the description of SR command to
specify the desired positive software travel limit. Also, refer to thew
description of ZS command to configure the motion controller tasks
upon encountering a software limit.

x07 NEGATIVE SOFTWARE LIMIT DETECTED
The motion controller sensed that the axis has reached negative
software travel limit. Refer to the description of SL command to
specify the desired negative software travel limit. Also, refer to the
description of ZS command to configure the motion controller tasks
upon encountering a software limit.

x08 MOTOR / STAGE NOT CONNECTED
The specified axis is not connected to the driver.

x09 FEEDBACK SIGNAL FAULT DETECTED
There was a feedback signal fault condition. Ensure that the encoder
feedback is relatively noise free.

Appendix A – Error Messages A-5

x10 MAXIMUM VELOCITY EXCEEDED
The specified axis velocity exceeds maximum velocity allowed for
the axis. Refer to the description of VU command or set maximum
velocity for the axis.

x11 MAXIMUM ACCELERATION EXCEEDED
The specified axis acceleration exceeds maximum acceleration
allowed for the axis. Refer to the description of AU command to
query or set maximum acceleration or deceleration for the axis.

x12 Reserved for future use

x13 MOTOR NOT ENABLED
A command was issued to move an axis that was not powered ON.
Refer to the description of MO and MF commands to turn the power
to an axis ON or OFF respectively.

x14 Reserved for future use

x15 MAXIMUM JERK EXCEEDED
The specified axis jerk exceeds maximum jerk allowed for the axis.
Refer to the description of JK command for valid jerk range.

x16 MAXIMUM DAC OFFSET EXCEEDED
The specified axis DAC offset exceeds maximum value allowed for
the axis. Refer to the description of issued command for valid range.

x17 ESP CRITICAL SETTINGS ARE PROTECTED
An attempt was made to modify parameters that are specific to smart
stages or "Unidriver".

x18 ESP STAGE DEVICE ERROR
An error occurred while reading a smart stage.

x19 ESP STAGE DATA INVALID
Smart stage data is invalid.

x20 HOMING ABORTED
Axis home search was aborted. This message is obtained when home
search was not completed either due to an axis not being enabled or
due to the occurrence of a fault condition. Refer to the description of
OR command for information related to locating the home position of
an axis.

A-6 Appendix A – Error Messages

x21 MOTOR CURRENT NOT DEFINED
Maximum current for the motor is not specified. Refer to the
description of QI command to query or set the maximum motor
current for an axis.

x22 UNIDRIVE COMMUNICATIONS ERROR
There was no communication between motion controller and the
Unidriver.

x23 UNIDRIVE NOT DETECTED
Unidrive could not be detected by the motion controller.

x24 SPEED OUT OF RANGE
The specified home search speed is out of range. Refer to the
description of OH command for valid home search speed range.

x25 INVALID TRAJECTORY MASTER AXIS
The specified trajectory mode in not valid for a master axis. Refer to
the description if TJ command to specify a valid trajectory mode for a
master axis.

x26 PARAMETER CHARGE NOT ALLOWED
The specified parameter cannot be changed while the axis is in
motion. Wait until the axis motion is complete, and issue this
command again. Refer to the description of MD command to
determine if motion is done.

x27 INVALID TRAJECTORY MODE FOR HOMING
The specified trajectory mode is not valid for locating the home
position of the axis. Refer to the description of TJ command to
specify a valid trajectory mode for locating the home position of this
axis.

x28 INVALID ENCODER STEP RATIO
The specified full step resolution is invalid. Refer to the description of
FR command for valid range of full step resolution.

x29 DIGITAL I/O INTERLOCK DETECTED
A DIO interlock was asserted.

x30 COMMAND NOT ALLOWED DURING HOMING
The command issued was not executed because locating the home
position of this axis is in progress. Refer to the description of the
issued command for further details.

Appendix A – Error Messages A-7

A-8 Appendix A – Error Messages

x31 COMMAND NOT ALLOWED DUE TO GROUP
 ASSIGNMENT
The specified command was not executed because this axis is member
of a group. Refer to the description of issued command for further
details.

x32 INVALID TRAJECTORY MODE FOR MOVING
The specified trajectory mode is invalid to make absolute or relative
moves. Refer to the description of PA and PR commands for valid
trajectory modes to initiate motion.

Appendix B – Trouble-Shooting /
Maintenance

There are no user-serviceable parts or user adjustments to be made to
the ESP301 controller/driver.

WARNING

Procedures are to be performed only by qualified service personnel. Qualified
service personnel should be aware of the shock hazards involved when

instrument covers are removed and should observe the following precautions
before proceeding.

• Turn off power switch and unplug the unit from its power source
• Disconnect cables if their function is not understood
• Remove jewelry from hands and wrist
• Expect hazardous voltages to be present in any unknown circuits.

CAUTION

Verify proper alignment before inserting connectors.

Refer to Appendix H, Factory Service, for information about repair or
other hardware corrective action.

Appendix B – Trouble-Shooting and Maintenance B-1

B.1 Trouble-Shooting Guide

A list of the most common problems and their corrective actions is
provided in Table B.1. Use it as a reference but remember that a
perceived error is open to an operator error or has some other simple
solution.

PROBLEM CAUSE CORRECTIVE ACTION
Power switch is
turned off.

Turn on the main power switch
located on the front panel.

No electrical power Verify with an adequate tester or
another electrical device (lamp,
etc.) that power is present in the
outlet. If not, contact an
electrician to correct the problem.

Display does not
come on.

Power cord not
plugged in.

Plug the power cord in the
appropriate outlet. Observe all
caution notes and procedures
described in the System Setup
section.

Bad connection. Turn power off and verify the
motion device connection.

Bad component/ step/
cable

Turn power off and swap the
motor cable with another axis (if
cables are identical) to locate the
problem. Contact Newport for
cable replacement or motion
device service.

Error message or
physically present
stage is declared
unconnected.

Safety control
connector on the rear
of the ESP301 is
missing.

Plug connector in. If the
connector was lost, you can either
build one as shown in System
Setup in Appendix C.1.8, or call
Newport for a replacement.

Red LED above
STOP ALL button
remains on.

Power button on the
display does not
appear when motor
power button is
pressed.

Verify that the motion device is
connected.

Motor can not be
turned on.

Table B.1: Trouble-Shooting Guide Descriptions

PROBLEM CAUSE CORRECTIVE ACTION
Verify that all setup parameters
correspond to the actual motion
device installed.

Excessive following
error.

Wrong setup, load
specification
exceeded.

Verify that the load specifications
for the motion device are not
being exceeded.

B-2 Appendix B – Trouble-Shooting and Maintenance

Incorrect connection. Verify that the motion device is

connected to the correct driver
card, as specified by the labels.

Axis does not move.

Incorrect parameters. Verify that the motion device is
connected to the correct driver
card, as specified by the labels.

Incorrect connection. Verify that the motion device is
connected to the correct driver
card, as specified by the labels.

System performance
below

Incorrect parameters. Verify that all relevant parameters
(PID, velocity, etc.) are set
properly.

Software travel limit The software limit (See SL
command) if the specified
direction was reached. If limits
are set correctly, do not try to
move past them.

Move command not
executed.

Incorrect parameters Verify that all relevant parameters
(PID, velocity, etc.) are set

Faulty origin or index
signals.

Carefully observe and record the
motion sequence by watching
manual knob rotation, if available.
With the information collected,
call Newport for assistance.

Wrong line
terminator.

Make sure that the computer and
the controller use the same line
terminator.

No remote
communication,
wrong
communication port.

Verify that the controller is set to
communicate on the right port,
RS-232 or IEEE488.

Home search not
completed.

Wrong
communication
parameters.

Verify that all communication
parameters match between the
computer and the controller.

Table B.1: Trouble-Shooting Guide Descriptions (Continued)

NOTE

Many problems are detected by the controller and reported on the display
and/or in the error register. Consult Appendix A, Error Messages, for a

complete list and description.

Appendix B – Trouble-Shooting and Maintenance B-3

B.2 Cleaning

Clean the exterior metallic surfaces of the ESP301 with water and a
clean, lint-free cloth. Clean external cable surfaces with alcohol, using
a clean, lint-free cloth.

WARNING

Power-down all equipment before cleaning.

CAUTION

Do not expose connectors, fans, LEDs, or switches to alcohol or water.

B-4 Appendix B – Trouble-Shooting and Maintenance

Appendix C – Connector Pin Assignments

C.1 ESP301 Rear Panel

C.1.1 GPIO Connector (37-Pin D-Sub)
This connector is dedicated to the digital I/O ports. All I/O are pulled
up to +5V DC with 4.7KΩ resistors. Maximum sink or source current
is 32 mA (bits). Connector pin-outs are listed in Table C.1, and
functionally described in the following paragraphs.

C.1.2 Signal Descriptions (Digital I/O, 37-Pin, JP4 Connector)
+5V, 100mA (maximum)
+5V supply

+15V, 25mA (maximum)
+15V supply

Digital I/O
The digital I/O can be programmed to be either input or output (in 8-
bit blocks) via software.

DGND
Digital Ground used for all digital signals.

Pin # Description
1 +15V, 25mA
2 +15V, 25mA
3 +5V, 100mA
4 Digital Input/Output 1
5 Digital Input/Output 2
6 Digital Input/Output 3
7 Digital Input/Output 4
8 Digital Input/Output 5
9 Digital Input/Output 6
10 Digital Input/Output 7
11 Digital Input/Output 8
12 Digital Input/Output 9
13 Digital Input/Output 10
14 Digital Input/Output 11
15 Digital Input/Output 12

Table C.1: Digital Connector Pin-Outs

Appendix C – Connector Pin Assignments C-1

Pin # Description
16 Digital Input/Output 13
17 Digital Input/Output 14
18 Digital Input/Output 15
19 Digital Input/Output 16
20 DGND
21 DGND
22 DGND
23 DGND
24 DGND
25 DGND
26 DGND
27 DGND
28 DGND
29 DGND
30 DGND
31 DGND
32 DGND
33 DGND
34 DGND
35 DGND
36 DGND
37 DGND

Table C.1: Digital Connector Pin-Outs (Continued)

C.1.3 Motor Driver Card (25-Pin) I/O Connector
This connector interfaces an ESP301 driver card to motorized stages.
Cabling to the connector is provided with the applicable stage.
Connector pin-outs are listed in Table C.2.

Pins 2 Phase Stepper Motor DC Motor
1 Stepper Phase 1 N/C
2 Stepper Phase 1 N/C
3 Stepper Phase 2 N/C
4 Stepper Phase 2 N/C
5 Stepper Phase 3 DC Motor Phase (+)
6 Stepper Phase 3 DC Motor Phase (+)
7 Stepper Phase 4 DC Motor Phase (-)
8 Stepper Phase 4 DC Motor Phase (-)
9 Common Phase 3,4 N/C
10 N/C N/C
11 Common Phase 1,2 N/C
12 N/C N/C
13 Home Signal Home Signal
14 Shield Ground Shield Ground
15 Encoder Index (+) Encoder Index (+)
16 Limit Ground Limit Ground
17 Travel Limit (-) Input Travel Limit (+) Input
18 Travel Limit (-) Input Travel Limit (-) Input
19 Encoder Channel A (+) Encoder Channel A (+)

Table C.2: Driver Card Connector Pin-Outs

C-2 Appendix C – Connector Pin Assignments

Pins 2 Phase Stepper Motor DC Motor
20 Encoder Channel B (+) Encoder Channel B (+)
21 Encoder Supply: +5V Encoder Supply: +5V
22 Encoder Ground Encoder Ground
23 Encoder Channel A (-) Encoder Channel A (-)
24 Encoder Channel B (-) Encoder Channel B (-)
25 Encoder Index (-) Encoder Index (-)

Table C.2: Driver Card Connector Pin-Outs (Continued)

C.1.4 Signal Descriptions (Motor Driver Card, 25-Pin I/O
Connector)
DC Motor Phase(+) Output
This output must be connected to the positive lead of the DC motor.
The voltage seen at this pin is pulse-width modulated with a
maximum amplitude of 48V DC.

DC Motor Phase(-) Output
This output must be connected to the negative lead of the DC motor.
The voltage seen at this pin is pulse-width modulated with a
maximum amplitude of 48V DC.

Stepper Motor Phase 1 Output
This output must be connected to Winding A+ lead of a two-phase
stepper motor. The voltage seen at this pin is pulse-width modulated
with a maximum amplitude of 48V DC.

Stepper Motor Phase 2 Output
This output must be connected to Winding A- lead of a two-phase
stepper motor. The voltage seen at this pin is pulse-width modulated
with a maximum amplitude of 48V DC.

Stepper Motor Phase 3 Output
This output must be connected to Winding B+ lead of a two-phase
stepper motor. The voltage seen at this pin is pulse-width modulated
with a maximum amplitude of 48V DC.

Stepper Motor Phase 4 Output
This output must be connected to Winding B- lead of a two-phase
stepper motor. The voltage seen at this pin is pulse-width modulated
with a maximum amplitude of 48V DC.

Common Phase 3,4
This output can be connected to the center tab of Winding B of a two-
phase stepper motor. The voltage seen at this pin is pulse-width
modulated with maximum amplitude of 48V DC.

Appendix C – Connector Pin Assignments C-3

Common Phase 1,2
This output can be connected to the center tab of Winding B of a two-
phase stepper motor. The voltage seen at this pin is pulse-width
modulated with a maximum amplitude of 48V DC.

Travel Limit(+) Input
This input is pulled-up to +5V with a 4.7KΩ resistor by the controller
and represents the stage negative direction hardware travel limit. The
active true state is user-configurable. (default is active HIGH).

Travel Limit(-) Input
This input is pulled-up to +5V with a 4.7KΩ resistor by the controller
and represents the stage negative direction hardware travel limit. The
active true state is user-configurable (default is active HIGH).

Encoder A(+) Input
The A(+) input is pulled-up to +5V with a 1KΩ resistor. The signal is
buffered with a 26LS32 differential receiver. The A(+) encoder
encoded signal originates from the stage position feedback circuitry
and is used for position tracking.

Encoder A(-) Input
The A(-) input is pulled-up to +5V and pulled down to ground with
1KΩ resistors. This facilitates both single- and double-ended signal
handling into a 26LS32 differential receiver. The A(-) encoder
encoded signal originates from the stage position feedback circuitry
and is used for position tracking.

Encoder B(+) Input
The B(+) input is pulled-up to +5V with a 1KΩ resistor. The signal is
buffered with a 26LS32 differential receiver. The B(+) encoder
encoded signal originates from the stage position feedback circuitry
and is used for position tracking.

Encoder B(-) Input
The B(-) input is pulled-up to +5V and pulled down to ground with
1KΩ resistors. This facilitates both single- and double-ended signal
handling into a 26LS32 differential receiver. The B(-) encoder
encoded signal originates from the stage position feedback circuitry
and is used for position tracking.

Encoder Ground
Ground reference for encoder feedback.

C-4 Appendix C – Connector Pin Assignments

Home Input
This input is pulled-up to +5V with a 1KΩ resistor by the controller.
The Home signal originates from the stage and is used for homing the
stage to a repeatable location.

Index(+) Input
The (+) Index input is pulled-up to +5V with a 1KΩ resistor by the
controller and is buffered with a 26LS32 differential receiver. The (+)
Index signal originates from the stage and is used for homing the
stage to a repeatable location.

Index(-) Input
The (-) Index input is pulled-up to +5V and pulled down to ground
with 1KΩ resistors by the controller. This facilitates both single- and
double-ended signal handling into a 26LS32 differential receiver. The
(-) Index signal originates from the stage and is used for homing the
stage to a repeatable location.

Encoder Supply: +5V, 250mA (Maximum)
A +5V DC supply is available from the ESP301. This supply is
provided for stage home, index, travel limit, and encoder feedback
circuitry.

Limit Ground
Ground for stage travel limit signals. Limit ground is combined with
digital ground at the controller side.

Shield Ground
Motor cable shield ground.

Appendix C – Connector Pin Assignments C-5

C.1.5 IEEE488 Interface Connector (24 Pin)

The IEEE488 Interface Connector has a standard configuration, as
shown in Table C.3.

Description Pin # Pin # Description
DIO1 1 13 DIO5
DIO2 2 14 DIO6
DIO3 3 15 DIO7
DIO4 4 16 DIO8
EOI 5 17 REN
DAV 6 18 GND
NRFD 7 19 GND
NDAC 8 20 GND
IFC 9 21 GND
SRQ 10 22 GND
ATN 11 23 GND
SIELD 12 24 SIGNAL GND

Table C.3: IEEE488 Interface Connector

C.1.6 RS-232C Interface Connector (9-Pin D-Sub)
The RS-232C interface uses a 9-pin sub-F connector. The back panel
connector pin-out is shown in Figure C.1.

 Pin No. Description
 1 -- DCD
 2 -- TXD
 3 -- RXD
 4 -- DTR
 5 -- GRD
 6 -- DSR
 7 -- RTS
 8 -- CTS
 9 -- RI

Figure C.1: RS-232C Connector Pin-Out

C.1.7 RS-232C Interface Cable
Figure C.2 shows a simple straight through, pin-to-pin cable with 9
conductors that can be used to connect to a standard 9 pin RS232
host.

 Pin No. Pin No.
 1 -- 1
 2 -- 2
 3 -- 3
 4 -- 4
 5 -- 5
 6 -- 6
 7 -- 7

C-6 Appendix C – Connector Pin Assignments

 8 -- 8
 9 -- 9
9-Pin D-Sub 9-Pin D-Sub
Male Connector Female Connector
on Controller Side on Computer Side

Figure C.2: Conductor, pin-to-pin RS-232C interface cable

C.1.8 USB Interface Connector (4-Pin Type B)

The RS-232C interface uses a 9-pin sub-F connector. The back panel
connector pin-out is shown in Figure C.3.

 Pin No. Description
 1 -- N/C
 2 -- Data -
 3 -- Data +
 4 -- Ground

Figure C.3: RS-232C Connector Pin-Out

C.1.9 USB Interface Cable

Figure C.4 shows a simple straight through, pin-to-pin cable with 4
conductors that can be used to connect to a standard 4 pin USB Type
A host. The ESP301 has a Type B USB connector.

 Pin No. Name Pin No.
 1 ------------ VCC -------- 1
 2 ------------ D- -------- 2
 3 ------------ D+ -------- 3
 4 ------------ GND -------- 4

Figure C.4: Conductor, pin-to-pin USB interface cable

C.1.10 Motor Interlock Connector (BNC)
This connector is provided for the wiring of one or more remote
Emergency Stop switches. They will have the same effect as the front
panel MOTOR ON/OFF button.

The switch has to be normally closed for operation. If more than one
switch is installed, they should be connected in series. The minimum
rating for the switches should be 50mA at 5V.

The ESP301 is supplied with a dust cap that automatically provides
the proper connection for operation if no switch is connected

(See Figure C.3).

 Pin # Description
Center Pin Input Emergency Stop must always be

Appendix C – Connector Pin Assignments C-7

 connected to the shell (GND) during normal
 controller operation. An open circuit is

equivalent to pressing MOTOR ON/OFF on
the front panel.

Connector Shield Provides GND for switch

Connector (BNC) with
Dust Cap

Figure C.3: Motor Interlock Connector (BNC) with dust cap

C-8 Appendix C – Connector Pin Assignments

Appendix D – Binary Conversion Table

Some of the status reporting commands return an ASCII character
that must be converted to binary. To aid with the conversion process,
the following table converts all character used and some other
common ASCII symbols to decimal and binary. To also help in
working with the I/O port related commands, the table is extended to
a full byte, all 256 values.

Number
(decimal)

ASCII
Code

Binary
Code

0 Null 00000000
1 Soh 00000001
2 Stx 00000010
3 Etx 00000011
4 Eot 00000100
5 Enq 00000101
6 Ack 00000110
7 Bel 00000111
8 Bs 00001000
9 Tab 00001001

10 Lf 00001010
11 Vt 00001011
12 Ff 00001100
13 Cr 00001101
14 So 00001110
15 Si 00001111
16 Dle 00010000
17 Dc1 00010001
18 Dc2 00010010
19 Dc3 00010011
20 Dc4 00010100
21 Nak 00010101
22 Syn 00010110
23 Eth 00010111
24 Can 00011000
25 Em 00011001
26 Eof 00011010
27 Esc 00011011
28 Fs 00011100
29 Gs 00011101
30 Rs 00011110

Table D.1: Binary Conversion Table (using decimal and ASCII codes)

Appendix D – Binary Conversion Table D-1

Number
(decimal)

ASCII
Code

Binary
Code

31 Us 00011111
32 Space 00100000
33 ! 00100001
34 " 00100010
35 # 00100011
36 $ 00100100
37 % 00100101
38 & 00100110
39 ' 00100111
40 (00101000
41) 00101001
42 * 00101010
43 + 00101011
44 , 00101100
45 - 00101101
46 . 00101110
47 / 00101111
48 0 00110000
49 1 00110001
50 2 00110010
51 3 00110011
52 4 00110100
53 5 00110101
54 6 00110110
55 7 00110111
56 8 00111000
57 9 00111001
58 : 00111010
59 ; 00111011
60 < 00111100
61 = 00111101
62 > 00111110
63 ? 00111111
64 @ 01000000
65 A 01000001
66 B 01000010
67 C 01000011
68 D 01000100
69 E 01000101
70 F 01000110
71 G 01000111
72 H 01001000
73 I 01001001
74 J 01001010
75 K 01001011
76 L 01001100
77 M 01001101
78 N 01001110
79 O 01001111

Table D.1: Binary Conversion Table (using decimal and ASCII Codes) (Continued)

D-2 Appendix D – Binary Conversion Table

Number
(decimal)

ASCII
Code

Binary
Code

80 P 01010000
81 Q 01010001
82 R 01010010
83 S 01010011
84 T 01010100
85 U 01010101
86 V 01010110
87 W 01010111
88 X 01011000
89 Y 01011001
90 Z 01011010
91 [01011011
92 \ 01011100
93] 01011101
94 ^ 01011110
95 _ 01011111
96 ' 01100000
97 A 01100001
98 B 01100010
99 C 01100011

100 D 01100100
101 E 01100101
102 F 01100110
103 G 01100111
104 H 01101000
105 I 01101001
106 J 01101010
107 K 01101011
108 L 01101100
109 M 01101101
110 N 01101110
111 O 01101111
112 P 01110000
113 Q 01110001
114 R 01110010
115 S 01110011
116 T 01110100
117 U 01110101
118 V 01110110
119 W 01110111
120 X 01111000
121 Y 01111001
122 Z 01111010
123 { 01111011
124 | 01111100
125 } 01111101
126 ~ 01111110
127 01111111
128 10000000

Table D.1: Binary Conversion Table (using decimal and ASCII codes) (Continued)

Appendix D – Binary Conversion Table D-3

Number
(decimal)

ASCII
Code

Binary
Code

129 10000001
130 10000010
131 10000011
132 10000100
133 10000101
134 10000110
135 10000111
136 10001000
137 10001001
138 10001010
139 10001011
140 10001100
141 10001101
142 10001110
143 10001111
144 10010000
145 10010001
146 10010010
147 10010011
148 10010100
149 10010101
150 10010110
151 10010111
152 10011000
153 10011001
154 10011010
155 10011011
156 10011100
157 10011101
158 10011110
159 10011111
160 10100000
161 10100001
162 10100010
163 10100011
164 10100100
165 10100101
166 10100110
167 10100111
168 10101000
169 10101001
170 10101010
171 10101011
172 10101100
173 10101101
174 10101110
175 10101111
176 10110000
177 10110001

Table D.1: Binary Conversion Table (Using decimal and ASCII codes) (Continued)

D-4 Appendix D – Binary Conversion Table

Number
(decimal)

ASCII
Code

Binary
Code

178 10110010
179 10110011
180 10110100
181 10110101
182 10110110
183 10110111
184 10111000
185 10111001
186 10111010
187 10111011
188 10111100
189 10111101
190 10111110
191 10111111
192 11000000
193 11000001
194 11000010
195 11000011
196 11000100
197 11000101
198 11000110
199 11000111
200 11001000
201 11001001
202 11001010
203 11001011
204 11001100
205 11001101
206 11001110
207 11001111
208 11010000
209 11010001
210 11010010
211 11010011
212 11010100
213 11010101
214 11010110
215 11010111
216 11011000
217 11011001
218 11011010
219 11011011
220 11011100
221 11011101
222 11011110
223 11011111
224 11100000
225 11100001
226 11100010

Table D.1: Binary Conversion Table (using decimal and ASCII codes) (Continued)

Appendix D – Binary Conversion Table D-5

D-6 Appendix D – Binary Conversion Table

Number
(decimal)

ASCII
Code

Binary
Code

227 11100011
228 11100100
229 11100101
230 11100110
231 11100111
232 11101000
233 11101001
234 11101010
235 11101011
236 11101100
237 11101101
238 11101110
239 11101111
240 11110000
241 11110001
242 11110010
243 11110011
244 11110100
245 11110101
246 11110110
247 11110111
248 11111000
249 11111001
250 11111010
251 11111011
252 11111100
253 11111101
254 11111110
255 11111111

Table D.1: Binary Conversion Table (using decimal and ASCII codes) (Continued)

Appendix E – System Upgrades

The modular design of the ESP301 makes it easy for qualified
individuals to upgrade the unit in the field. Upgrade kits to add more
axis, IEEE488 are available upon request. Call Newport support for
details.

This section describes how to upgrade an ESP301 from 2 to 3 axes.
Other axes upgrades can be performed accordingly.

WARNING

Opening or removing covers will expose you to hazardous voltages.

Refer all servicing internal to this controller enclosure to qualified service
personnel who should observe the following precautions before proceeding:

• Turn power OFF and unplug the unit from its power source
• Disconnect all cables
• Remove any jewelry from hands and wrists
• Use only insulated hand tools
• Maintain grounding by wearing a wrist strap attached to instrument

chassis.

CAUTION

The ESP contains static sensitive devices. Exercise appropriate caution when
handling ESP301 boards, cables and other internal components.

CAUTION

Do not install anything into your ESP301 except items provided by Newport
specifically for installation into the ESP301.

Appendix E – System Upgrades E-1

E.1 Adding Axes

1. Turn the power off and unplug the power cord from the controller.
Disconnect all cables from the controller.

2. Remove the 2 screws as shown below. See Figure E.1, which
shows how to remove the cover.

Rear Panel

Top Cover

Remove the 2 screws, slide the cover off. Pull
the cover in the direction of the rear panel

Figure E.1: Removal of the Top Cover

3. Carefully remove the top cover.

4. Insert the driver module for the respective axis. The connector of
the driver module is keyed to prevent insertion with improper
polarity. Make sure the keys line up properly before you try to
insert the module (See Figure E.2).

5. Attach the driver panel to the rear panel of the unit with the two
supplied screws.

6. Re-install the top cover.

The unit is now ready for use.

E-2 Appendix E – System Upgrades

Figure E.2: Interior of the unit explaining the connectors Front Panel

Axis 1 Axis 2 Axis 3

IEEE-488 Driver Module

E.2 Adding IEEE488

1. Follow steps 1 – 3 adding axes.

2. Insert the IEEE-488 driver module in the connector. The
connector of the module is keyed to prevent insertion with
improper polarity. Make sure the keys line up properly before you
try to insert the module.

3. Attach the IEEE-488 panel to the rear panel of the unit with the
two supplied screws.

4. Re-install the top cover.

The unit is now ready for use.

Appendix E – System Upgrades E-3

E-4 Appendix E – System Upgrades

Appendix F – ESP Configuration Logic

Each time a stage or stages are disconnected/re-connected, or a
system is powered down and then powered back up, the ESP301
controller card verifies the type of stage(s) present and re-configures
its own flash memory if necessary (i.e., new stage). The controller
card in the ESP301 system configuration, the stage motor and the
current type are defined, the controller card will configure the specific
axis. Specific ESP logic is shown in Figure F.1.

Appendix F – ESP Configuration Logic F-1

 Yes

F-2 Appendix F – ESP Configuration Logic

Start

Is An ESP
Stage Present? Was An

ESP Stage
Present?

Was Same
ESP Stage
Present?

Is A Non-
ESP Stage
Present?

Copy ESP
Stage Data to
Controller
Flash
Memory

Erase Controller Flash
Memory and Load Default

Parameters

No Yes

Yes No

No
Yes

Yes

Is Drive
Axis

Present?

Yes
Is Motor
Type &
Current

Defined?

No

End

Configure Stage
Axis

No

Figure F.1: Configuration Logic

Appendix G – Programming Non-ESP
Compatible Stages

Newport positioners, or stages, with integrated configuration memory
devices are said to be "ESP Compatible". It is not necessary to
manually enter individual stage parameters (E.G., motor current,
maximum velocity, etc.) with an ESP compatible stage. All necessary
configuration settings will be automatically loaded after system reset
with ESP compatible positioners.

When a positioner is said to be ESP incompatible, all that really
means is that it does not have the integrated memory device that
allows for automatic configuration. Therefore, it will have to be
configured manually – as is customary with all non-ESP controllers.

There are two (2) basic levels of positioner configuration. The first
level assumes that the stage is Newport controller compatible. That is
to say that hardware travel limits, encoder feedback counting, etc…
are designed to operate with Newport controllers. In this case only a
certain amount of commands are necessary to setup the axis before
moving the stage. The second level is when a stage is not a standard
Newport stage and various compatibility issues need to be addressed.
This scenario requires additional command configurations.

The following are examples of how to configure an ESP controller
axis for a standard Newport stage that is not equipped with the "ESP
Compatible" memory device (i.e., level 1):

Example #1: DC Servo on axis 1

1qm1 //set motor type to DC servo
1qi0.15 //set motor maximum current to 0.15 amps
1qv30 //set motor voltage to 30 volts
1sn7 //set user units to degrees
1su0.005 //set resolution to 0.005 degrees
1vu15 //set maximum velocity to 15 deg/sec
1va7 //set working velocity to 7 deg/sec
1oh7 //set homing speed to 7 deg/sec
1jh7 //set jog high speed to 7 deg/sec
1jw1 //set jog low speed to 1 deg/sec
1au40 //set maximum acceleration to 40 deg/sec2

Appendix G – Programming Non-ESP Compatible Stages G-1

G-2 Appendix G – Programming Non-ESP Compatible Stages

1ac20 //set working acceleration to 20 deg/sec2
1ag25 //set deceleration to 25 deg/sec2
1fe0.5 //set following error threshold to 0.5 deg
1kp600 //set PID proportional gain to 600
1kd600 //set PID derivative gain to 600
1ki350 //set PID integral gain to 350
1ks300 //set PID integral saturation gain to 300
1tj1 //set trajectory mode to trapezoidal
1qd //update motor driver configuration
sm //save configuration to non-volatile memory

Example #2: Stepper stage on axis 1

1qm3 //set motor type to commutated stepper
 (ESP301 only)
1qi 1 //set motor maximum current to 1 amp
1qv30 //set motor voltage to 30 volts
1sn2 //set user units to millimeters
1su0.001 //set resolution to 1 micron
1fr0.01 //set stepper motor full step resolution to 10 micron
1qs100 //set micro-stepping resolution to 100x
1vu20 //set maximum velocity to 20 mm/sec
1va10 //set working velocity to 10 mm/sec
1jh10 //set jog high velocity to 10 mm/sec
1jw1 //set jog low velocity to 1 mm/sec
1oh10 //set Homing velocity to 10 mm/sec
1au50 //set maximum acceleration to 50 mm/sec2
1 ac 50 //set acceleration to 30 mm/sec2
1ag30 //set deceleration to 30 mm/sec2
1fe1 //set following error threshold to 1 mm
1tj1 //set trajectory mode to trapezoidal
1qd //update motor driver configuration
sm //save configuration to non-volatile memory

The following commands should be reviewed for proper axis
compatibility when connecting to a non-Newport stage – assuming
that it is electrically compatible with the controller (1.e., level 2):

ZA //set amplifier configuration
ZB //set feedback configuration
ZH //set hardware limit configuration

Appendix H – Factory Service

This section contains information regarding factory service for the
ESP301 motion controller. The user should not attempt any
maintenance or service of the system or optional equipment beyond
the procedures outlined in the Trouble-Shooting appendix of this
manual. Any problem that cannot be resolved should be referred to
Newport Corporation. For service, contact information is listed in
Table H-1 below.

Telephone 1-800-222-6440

__

Fax 1-949-253-1479

Email rma.service@newport.com

__

Web Page URL www.newport.com/servicesupport/

__
Table H-1: Technical Customer Support Contacts

Contact Newport to obtain information about factory service.
Telephone contact number(s) are provided on the Service Form (see
next page). Please have the following information available:

• Equipment model number (ESP301)
• Equipment serial number (for the ESP301)
• Distribution revision number from a floppy disk
• Problem description (document using the Service Form, following

page)

If the instrument is to be returned for repair, you will be given a
Return Authorization Number that should be referenced in your
shipping documentation. Complete a copy of the Service Form on the
next page and include it with your shipment.

Appendix H – Factory Service H-1

http://www.newport.com/servicesupport/template.aspx?id=208&sec=125&chap=9&lang=1033

Newport Corporation
U.S.A. Office: 800-222-6440

FAX: 949/253-1479

Name _______________________________ Return Authorization #__________________
(Please obtain RA# prior to return of item)

Company __
 (Please obtain RA # prior to return of item)

Address ________________________________ ____________________Date _________________

Country _______________________ Phone Number ______________________________________

P.O. Number ___________________ FAX Number _______________________________________

Item(s) Being Returned:

Model # _______________________ Serial # __________________________

Description ___

Reason for return of goods (please list any specific problems):

H-2 Appendix H – Factory Service

Newport Corporation

Worldwide Headquarters

1791 Deere Avenue
Irvine, CA 92606

(In U.S.): 800-222-6440

Tel: 949-863-3144
Fax: 949-253-1680

Internet: sales@newport.com

Visit Newport Online at: www.newport.com

	EDH:

