Operation Manual

MontBlanc Series

Stepping Motor Controller

Model SC-200
SC-400
SC-800

- Thank you for purchasing this product.
- Before use, be sure to read this "Operation Manual" carefully for correct operations. Keep this Operation Manual in a convenient place so that it can be referred to at any time when in doubt.

Pioneering the door to the future with a commitment to technology

KOHZU Precision Co., Ltd.

Precautions in Use

Symbol Identifications

This symbol indicates that there are descriptions that call attention (including warnings to the user).
Make sure to read the descriptions when reading this manual.

This symbol indicates prohibitive activities. Make sure to read the descriptions when reading this manual.

This symbol indicates descriptions as reference or remarks.
(

Table of Content/Index

Table of Content

Precautions in use
Table of Content/ Index

1. Introduction

1-1. Features of the Product

- Outside of Product Range

1-2. Product Configuration
1-3. Positioning Method (Driving Method)
2. Installation and Preparation

2-1. Proceeding with Installation
and Preparation
2-2. Attachment and Options
2-3. How to Connect Cables

3. Functions

3-1. Speed Setting
3-2. Trapezoidal Drive and S-Shaped Drive
3-3. Origin Returning
3-3-1. Details of Method
3-4. Limit Stop
3-5. Feedback
3-5-1. Feedback
3-5-2. Setting of Feedback
3-5-3. Details of Functions
3-5-4. Feedback Procedures
4. Part Names and Functions

4-1. Front Panel
4-2. Rear Panel
4-3. DIP Switch
5. Manual Operations

5-1. Description
5-2. Turning on Power
5-3. Joystick Operations
5-4. Origin Return
5-5. Absolute Position Moving
5-6. Relative Position Moving
5-7. Change in Displayed Value
5-8. System Setting
5-8-1. System Setting List
5-9. Display of Position
5-10. Encoder Setting (Feedback)
6. Remote Control

6-1. Remote Control
6-1-1. Transmission and Reception
6-1-2. Remote Control Procedures
6-1-3. Command Format
6-1-4. Response
6-1-5. Characters Used
6-2. List of Command
6-3. Details of Command
6-4. Error Code7. Internal Motor Driver92
7-1. Driver Specifications
7-2. Arrangement of Driver
7-3. Adjustment of Driver
Setting of Micro Step Division
Number
Setting of Drive Current
Setting of Current-Down
7-4. Voltage Change of Sensor Power Source
7-5. Change in Encoder Input System
8. Maintenance and After-Service97
8-1. Before you judge as failure
8-2. Maintenance of Product
8-2-1. Maintenance of Controller
8-2-2. Maintenance of Stage
8 -3. Contact
8-4. Warranty and After-Service
9. Specification104
9-1. General Specifications
9-2. Performance Specifications
9-3. Connector
9-3-1. Motor Connecting Connector
9-3-2. RS-232C Connector
9-3-3. GP-IB Connector
9-4. Exterior Dimensions
10. Attached CD-R108
10-1. Configuration
10-2. Sample software
History of Change109
Appendix
Section for Recording
Change Check Sheet
11. Supplement/Added Functions

1. Introduction

1-1. Features of the Product

Thank you for purchasing our motor controller SC Series
The SC Series comprise extremely high cost performance products realizing a low price while featuring remarkable functions in comparison with conventional motor controllers.

- Completely responsive to our motor drive precision stage $<$ MontBlanc Series $>$
- Micro step driver allowing for 250 splits at maximum is equipped as standard equipment
- Realizes smooth drive by S-shape drive
- Feedback control by encoder input is equipped as standard
- In conformity with EIA standards. Allows for integration with cabinet rack.
- Analog type joystick with excellent operability is equipped as standard.

Outside of product range: The product does not offer the following items.

- The SC-200/400 and SC-800 cannot drive motors other than a 5-phase stepping motor.
- Not compatible with motors with an electromagnetic brake.
- No program function equipped. Automatic operation should be performed on the personal computer side.
- Not compatible with remote controls (sequencer connection, etc.,) other than RS-232C and GP-IB communications.

1-2. Product Configuration

Product configuration of the motor controller SC Series is as follows.

1-3. Positioning Method (Driving Method)

The SC Series allows for positioning control by the following methods.

| Moves toward the designated direction from the present position by a set
 Relative Position
 Movement
 Palue.
 Absolute Position
 Movement | Moves to the designated position.
 Jog Movement (Only For
 Manual Operation) |
| :---: | :--- | :--- |
| Origin Resent position | |

2. Installation and Preparation

2-1. Proceeding with Installation and Preparation

Install the product in the following order.

Connect cables in a condition where the power is OFF.

In a case of communications control, carry out communications setting for this device and the host computer. (4-3. "DIP switch")

Check all connections and then turn on the power.

Operating preparations completed

Immediately contact the purchasing source or our sales department if any attachment is lost.

Do not install in a high temperature, low temperature or high humid location, or where noise frequently occurs.
\rightarrow "Driver Adjustment"
※ Our products are normally adjusted in accordance with customer use objectives prior to shipment. This adjustment is required if you attempt to change settings, or if this controller is shipped without stages.
\rightarrow "Origin Returning"
※ Our products are normally adjusted in accordance with customer use objectives prior to shipment.

\triangle
Make sure to check that the power switch is OFF.
Power cables, stage connections and communications cables are connected.

Refer to "6. Remote Control".

If you notice abnormalities such as an abnormal noise or smell, immediately turn off the power and investigate the cause.

2-2. Attachment and Options

The following items are attached to the products as attachments. Make sure to check that all items are included. Immediately contact us if any lost, or any attachments broken.
(1) Power cord (3P)
(2) Gender changer for RS-232C connector
(3) CD-R (including Operating Manual and sample software)

Communications cables such as stage connecting cables and RS-232C/GP-IB are not included. Separately purchase the stage connecting cable. Additionally, for the communications cable, commercially available cables can be used, therefore, customers are advised to purchase in advance.

In order to save paper resources, a printed Operating Manual is not included. Print the file inside the CD-R if necessary.

The file of the Operating Manual is an Acrobat (PDF) format.
In order to view the PDF format file, Adobe Reader of Adobe Systems Inc. is required. Adobe Reader is not included in this CD-R.

2-3. How to Connect Cables

When pulling out or plugging in all cables such as the power cord, stage connecting cable and communications cable, carry out connections in a state where the power is disconnected.

3. Functions

3-1. Speed Setting

3-1-1. Speed Table

In the SC controllers, speed setting in a range from 1 to 4,095,500PPS for 1 PPS unit can be carried out, however, adopt a method for selecting a setting from the ten stages of the Speed Table in order to easily perform speed setting since there are typically many cases where fine speed setting is not required.
($※$ Setting for 1 PPS unit can be performed. \rightarrow Refer to Table No. 0 below.)
Speed can be designated for each axis. Speed when driving with a joystick during manual operation corresponds to Table No. 10 and 11.

	- Speed Table					Setting Examples
	Speed Table No.	Start speed	Maximum speed	Accelerating time	Decelerating time	
	0	500	5000	24	24	No. 1 Axis Speed Setting = 1
	1	500	2000	20	20	
	2	500	3000	24	24	
	3	500	4000	28	28	No. 2 Axis Speed Setting $=3$
	4	500	5000	32	32	
	5	500	6000	36	36	
	6	500	7000	40	40	
	7	500	8000	44	44	
	8	500	9000	48	48	
	9	500	10000	52	52	
	10	10	8000	50	15	Joystick High Speed
	11	10	200	1	1	
	Values in th	bove table	re default v	lues.		Joystick Low Speed

3-1-2. Speed Change in Manual Operation

During manual operation, select the table on the panel screen before driving.

The speed table may not be selected depending on the screen.
On the absolute position moving operation screen, move the cursor to the right end (position on the "SP*" character) and press the key to switch the speed table (it cannot be switched when the cursor is on the coordinate value position).

3-1-3. Speed Change in Remote Operation

In remote operation, designate the table No. in each movement command.

3-1-4. Reference and Change of Values in Speed Table

Values in the speed table can be referenced and changed with RTB and WTB commands. For details, refer to the explanation for respective commands of RTB and WTB.

1	500	2000	24	24
2	Speed table			
3				
1				
10				
11	10			
12				

3-1-5. Table No. 0

When attempting to perform fine setting for speed and accelerating and decelerating time, select the table No.0. The Table No. 0 can be normally changed with the ASI command during remote operations, or with SYS setting during manual operation.

3-1-6. Table No. 10 and No. 11

With the Table No. 10 and No.11, speed setting in jog movement by the joystick can be performed. No. 10 is for a setting at a high speed (screen display: PSP-Hi) and No. 11 is for a setting at a low speed (screen display: PSP-Lo).

3-2. Trapezoidal Drive and S-Shaped Drive

When moving an object, it cannot be suddenly moved at a high speed because of inertial force. In general, a stepping motor can also start from a low speed, gradually accelerate and reach a high speed.

High Speed

The SC-200/400/800 internally calculate the ratio of acceleration and deceleration and automatically perform a sequence of accelerating and decelerating movements by setting low speed (start speed) and high speed (accelerating time or accelerating STEP and decelerating time or decelerating STEP) (in asymmetric drive).

Trapezoidal Drive and Asymmetric Trapezoidal Drive
A method to increase and decrease acceleration and deceleration at a constant acceleration and deceleration ratio is called a trapezoidal drive.
With these products, asymmetric trapezoidal drive to accelerate and decelerate at different settings is available.

S-Shaped Drive And Asymmetric S-Shaped Drive

S-shaped drive is a method to realize smooth movement by accelerating and decelerating with a quadric curve.

Asymmetric S-shaped Drive
(Acceleration \neq Deceleration)

3-3. Origin Returning

In the SC Series, 14 types of origin returning methods according to the combination of sensors in the positioning device to be used can be selected.

Sensor Configuration

Method	Sensor Configuration	
1	S1,S3	Returning direction is determined and origin is detected with zone sensor.
2	S3	Edge of the zone sensor is set to be the origin position.
3	S1,S2,L-	ORG (S1) located in NORG (S2) is origin position.
4	S2,L-	One sensor located in moving zone is set to be the origin position.
5	S1,L+	Origin sensor in proximity of CW limit is set to be the origin position.
6	S1,L-	Origin sensor in proximity of CCW limit is set to be the origin position.
7	L+	Edge of CW limit is set to be the origin position.
8	L-	Edge of CCW limit is set to be the origin position.
9	S1	Only origin sensor is used.
10	Non	Present position is set to be the origin position.
11	S1,L+	After the origin position is detected by method 5, and moved by the set amount, this position is set to be the origin.
12	S1,L-	After the origin position is detected by method 6, and moved by the set amount, this position is set to be the origin.
13	L+	After the origin position is detected by method 7, and moved by the set amount, this position is set to be the origin.
14	L-	After the origin position is detected by method 7, and moved by the set amount, this position is set to be the origin.
15	Ref	Encoder reference (optional)

Default value is 3 .

Most of our standard stages with S1 and S2 sensors adapt in default setting but a little stage without S 1 sensor requires setting No.4.

Amounts of the movement form the machine origin in the methods 11 through 14 are set with system parameter No. 5.

3-3-2. Details of Method

Details for each method are described below.

1
Zone sensor (DATUM) determines retuning direction and detects origin.

When in CCW zone

(1) Detection starts in CW direction with trapezoidal drive. (2) Decelerates and stops by zone sensor (3) Reverses in CCW direction.
(4) Reverses in CW direction when moving through zone sensor (5) Stops when origin is detected.

When in CW zone

(1) 'Detection starts in CW direction with trapezoidal drive. (2)' Stops by deceleration when moving through zone sensor. (4) Moves at low speed in CW direction.
(5) Stops when origin is detected.

Edge of the zone sensor (DATUM) is origin position.

When in CCW zone

(1) Detection starts in CW direction with trapezoidal drive. (2) Decelerates and stops by zone sensor (3) Reverses in CCW direction
(4) Reverses in CW direction when moving through zone sensor (5) Stops at edge of zone sensor

When in CW zone

(1) 'Detection starts in CW direction with trapezoidal drive. (2)' Stops by deceleration when moving through zone sensor (4) Moves at low speed in CW direction (5) Stops when origin is detected.

Origin (ORG) located in origin proximity (NORG) is origin position.

When in CW zone

(1) Detection starts in CCW direction with trapezoidal drive. (2) Decelerates when moving through origin proximity. (3) Stops at first origin.

When in CCW zone

(4) Detection starts in CCW direction with trapezoidal drive. (5) Stops when limit is detected (Decelerates and stops if limit deceleration stop is set). (6) Reverses in CW direction with trapezoidal drive. (7) Decelerates and stops when origin proximity is detected.
(8) Reverses in CCW direction. (9) Moves at low speed in CW direction when moving through origin proximity.
(10) Stops when origin is detected.

4 One sensor located in moving zone is origin position.

(7. A little stage without origin senor in motor shaft requires this setting.

When in CW zone

(1) Detection starts in CCW direction with trapezoidal drive.
(2) Decelerates when moving through origin.
(3) Stops at origin edge.

When in CCW zone

(4) Detection starts in CCW direction with trapezoidal drive
(5) Stops when limit is detected (Decelerates and stops if limit deceleration stop is set).
(6) Reverses in CW direction with trapezoidal drive.
(7) Decelerates and stops when origin is detected.
(8) Reverses in CCW direction.
(9) Reverses and moves at low speed in CW direction when moving through origin.
(10) Stops when origin is detected.

When starting from outside of limit

(1) Detection starts in CW direction with trapezoidal drive.
(2) Stops when limit is detected (Decelerates and stops if limit deceleration stop is set).
(3) Moves at a low speed in CCW direction.
(4) Stops at a position when moving through first origin.

When starting from inside of limit
(5) Moves at low speed in CCW direction.
(6) Stops at a position when moving through first origin.

S1

L+ CW Limit

6
Origin (ORG) in proximity of CCW limit is origin position.

When starting from outside of limit

(1) Detection starts in CCW direction with trapezoidal drive.
(2) Stops when limit is detected (Decelerates and stops if limit deceleration stop is set).
(3) Moves at low speed in CW direction.
(4) Stops at a position when moving through first origin

When starting from inside of limit
(5) Moves at a low speed in CW direction.
(6) Stops at a position when moving through first origin.

(6)

Dog (Detecting plate)

$7 \quad$ Edge of CW limit is origin position.

When starting from outside of limit

(1) Detection starts in CW direction with trapezoidal drive.
(2) Stops when limit is detected (Decelerates and stops if limit deceleration stop is set).
(3) Moves at low speed in CCW direction.
(4) A position when moving through limit is origin.

When starting from inside of limit

(5) Moves at low speed in CCW direction.
(6) Stops at a position when moving through limit.

8 Edge of CCW limit is origin position.

When starting from outside of limit

(1) Detection starts in CCW direction with trapezoidal drive
(2) Stops when limit is detected (Decelerates and stops if limit deceleration stop is set).
(3) Moves at low speed in CW direction.
(4) A position where moving through limit is origin.

When starting from inside of limit

(5) Moves at low speed in CW direction.

Starting from outside of limit
(6) Stops at a position where moving through first origin.

L - CCW Limit

9
 Only origin sensor is used.

When starting from outside of sensor
(1) Detection starts in CW direction with trapezoidal drive
(2) Stops when limit is detected (Decelerates and stops if limit deceleration stop is set).
(3) Moves at low speed in CCW direction
(4) A position where moving through limit is origin.
(5) Stops when sensor detects.

When starting from inside of limit

(5) Moves at low speed in CCW direction
(6) Stops at a position where moving through first origin.

4

Stops if limit intervenes during return to origin

10 Present position is origin position.
In this mode, the present position is set to be the origin position without driving and it is considered that detection of return to origin is completed.
Present coordinate value can also be set by setting system parameter No. 5 (ORG PRESET DATA).

13
After returning to origin in method 7 , and moved by the set amount, this position is set to be the origin. In the case of arrangement as shown in the diagram below, set the parameter No. 5 to 1000.

14
After returning to origin in method 8 , and moved by the set amount, this position is set to be the origin. In the case of arrangement as shown in the diagram below, set the parameter No. 5 to -1000 .

3-4. Limit Stop

The controller stops output when a limit signal is inputted.
Stop methods are the following two types

Setting	Stop Method	
0	Emergency stop	Immediately stops at the limit detected position.
1	Decelerating stop	Decelerates and stops. The decelerating time is the same as that of decelerating setting in normal drive.

©
In standard specifications, in order to eliminate the above trouble, " 0 : Emergency stop" is fixedly set. If you wish to use in " 1 : Decelerating stop," please contact us.

To customers who set the "decelerating stop" setting to valid

In decelerating stop setting, attention must be paid because the amount of overrun becomes large and mechanical failures such as bumping the moving end may occur, if the decelerating time is set to be long.

3-5. Feedback

3-5-1. Feedback

As a feature of the SC Series, feedback can be performed with encoder input. Methods for feedback are roughly classified into an incremental method and absolute method. This product adopts the absolute method.

Incremental Method

Control is performed with an increase in deviation from the present position. Servomotor driver or the like is controlled in this method.

The servo driver has an internal deviation counter, which counts deviating amounts. The counter reads signals from the encoder and attempts to reset by the deviated amount.

Absolute Method

Coordinate value (absolute value) is controlled and feedback control is performed. This product is controlled in this method.

The controller constantly reads coordinate values with signals from the encoder and compares these values with the designated position. When deviation between the read coordinate value and the designated position occurs, the controller drives the motor to reset it to the designated position. The coordinate range which this device can control is a wide range from $-68,108,813$ to $+68,108,813$, and the controller can reset even if the position deviates from this range.

3-5-2. Setting of Feedback

In order to perform correction (feedback) by encoder input, settings of items in the following table are required.

When performing setting in manual operation, use SYS mode ("5-8. System Setting"), and when in remote operation, perform with ESI command.

Function	Manual operation (System setting)			Remote operation
	SYSNo.	Display	Setting	ESI command
* Encoder conversion Denominator	24	ENC CAL DIV 1/N	$1 \sim 16,777,215$	ESI command
* Encoder conversion Numerator	25	ENC CAL DIV N/1	$1 \sim 16,777,215$	$1,2,4$
* Multiplication setting	26	ENC MULTIPLI $1-4$	ESI command	
0 clear position	27	ENC Permissible	$0 \sim 16,777,215$	ESI command
* Conversion rounding designation	28	ENC RoundOff 0-9	$0 \sim 9$	ESI command
* Correction setting	29	FEEDBACK TYPE $0-2$	$0,1,2$	ESI command
Correction Permissible range	30	PERMIT RANGE PULS	$0 \sim \pm 10,000$	ESI command
Correction Retry number	31	Retry Count	$1 \sim 10,000$	ESI command
Correction Wait time	32	WaitTime(1ms)	$1 \sim 10,000$	ESI command
* Encoder adding direction	33	ENC ROTATE CHANGE	0,1	ESI command
Encoder coordinate synchronization	34	PM\&ENC SYSC WRITE	0,1	-
Display selection (Second line)	$43(39)$	Sor PMC=0:ENC=1	0,1	-
Display selection (Third line)	$46(42)$	Sor PMC=0:ENC=1	0,1	-

Make sure to set and adjust the functions marked with $※$ in the above table.
Parenthetical SYS Nos. are according to Controller Ver. 0.985 or former.

3-5-3. Details of Functions (During Manual Operation)

* During remote operation, refer to the items for ESI command.

No. 24 No. 25 Encoder Conversion Denominator And Numerator
When minimum resolution for the motor (movement amount per 1 pulse) is different from the minimum resolution for the encoder, set the conversion coefficient with this parameter.
For example,

SYS No.	Setting Range	Description
24	$1 \sim 16,777,215$	Denominator for conversion
25	$1 \sim 16,777,215$	Numerator for conversion

No. 26 Multiplication Setting

Multiply* count signal from the encoder to enhance resolution.

SYS No.	Setting Range	Description	
26	$\mathbf{1}$	Normal $\times 1$	
	$\mathbf{2}$	2	Multiplication $\times 2$
	$\mathbf{4}$	3	Multiplication $\times 3$

[^0]
No. 27 0 Clear Position

When attempting to set the coordinate value to 0° by using the stage of the rotating system and turning by 360°, this sets the movement amount per one orbit.

No. 28 Conversion Rounding Designation

When the conversion value for the encoder results in a decimal fraction, designates the digit to be rounded.
【Example】 Setting: In case of 4 Conversion value is $0.00288888 \rightarrow 0.003$
Setting: In case of 6 Conversion value is $0.00866666 \rightarrow 0.00867$

SYS No.	Setting Range	Description
28	$0 \sim 9$	Digit number right from decimal point. 0 is not rounded.

No. 29 Correction Setting

Feedback control is implemented. Each one of the methods is for implementing only once after movement is completed, and for continuing feedback after movement is completed can be selected.

SYS No	Setting Range	Description
29	$\mathbf{0}$	Feedback (encoder correction) is not performed.
	$\mathbf{1}$	After movement, encoder correction is performed once and completed.
	$\mathbf{2}$	After movement is completed, feedback continues.

During implementation of feedback, the BUSY lamp on the main body panel is lit even if the motor is suspended. However, BUSY flag is OFF in status response by feedback control.

No. 30 Correction Permissible Range

N0. 31 Correction Retry Number

No. 32 Correction Waiting Time

Completion conditions for correction are set. If correction is not completed within the set conditions, feedback is completed and an error (drive system error No309) is returned.

SYS No.	Setting Range	Initial Setting	Description
30	$0 \sim \pm 10,000$	1	Correction pulse range is set
31	$1 \sim 10,000$	100	Set number
32	$1 \sim 10,000$	100	

No. 33 Encoder Adding Direction

Increase and decrease polarity of counter value from encoder. That is, the rotating direction of the encoder.

SYS No.	Setting	Description
33	$\mathbf{0}$	Normal
	$\mathbf{1}$	Reverse: Positive and negative are reversed to setting 0.

No. 34 Encoder Coordinate Synchronization

If this is set, the encoder coordinate value together with pulse display value are simultaneously rewritten to ORG RESET DATA in the case of Reset command and completion of return to origin.

No. 43 (39) No. 46 (42) Display selection

Selection of display of pulse count number or display of encoder counter value in coordinate display is performed.

	Setting	Content
SYS No.		
$43(39)$	0: Pulse display	Change in display on the second line
	1: Encoder display	Change in display on the third line

3-6. Backlash Correction

Backlash generated in the gear mechanism, etc., can be corrected.
In order to carry out backlash correction, settings of corrected pulse amount and correcting method are required.

3-6-1. Remote control operation procedures

(1) Set a correction amount with motor-related initial setting (ASI command).

Stx $\mathbf{A S I} \cdot$. . . /h/ • . . CRLF Set with the $8^{\text {th }}$ parameter.

* For details, refer to the "ASI command."
(2) Designate a method by the parameter of each moving command (such as APS or RPS.)

3-6-2. Manual operation setting

In order to carry out backlash correction by manual operation, carry out necessary settings with SYS parameters in advance.

SYS No.	Setting	Content
$\mathbf{7}$	$\mathbf{0} \sim \mathbf{1 6 , 7 7 7 , 2 1 5}$	Backlash correction pulse amount
$\mathbf{8}$	$\mathbf{0} \sim \mathbf{4}$	Correction method

3-6-3. Backlash correction method

Executable backlash correction methods are as follows. The setting is common to remote operation and manual operation.

Method	Description
0	Backlash correction invalid
1	During inversion from the CW direction to CCW direction, reciprocating movement by correcting pulse amount is performed before moving.
2	During inversion from the CCW direction to CW direction, reciprocating movement by correcting pulse amount is performed before moving.
3	During moving in the CCW direction, reciprocating movement by correcting pulse amount is performed after moving.
4	During moving in the CW direction, reciprocating movement by correcting pulse amount is performed after moving.

3-6-4. Details of correcting method

1	(E)	When moving direction is changed from CW to CCW , reciprocating movement by the set correcting pulse amount is performed and then movement in the CCW direction is performed. In this method, error by backlash is generated, however, the error amount is constant.
2		When moving direction is changed from CCW to CW, reciprocating movement by the set correcting pulse amount is performed and then movement in the CW direction is performed. In this method, error by backlash is generated, however, the error amount is constant.
3		When moving in the CCW direction, at first, moving in the CCW direction, and reciprocating movement by the backlash correction amount is performed and then movement ends in the CW direction. With this method, lost motion is not generated because a stop is made on the determined gear surface side even when moving is performed from either the CW direction or CCW direction.
4		When moving in the CW direction, at first, moving in the CW direction, and reciprocating movement by the backlash correction amount is performed and then movement ends in the CW direction. With this method, lost motion is not generated because a stop is made on the determined gear surface side (opposite to 3) even when moving is performed from either the CW direction or CCW direction.

In the above table, (S) represents a start position, and (E) represents a moving end position.

【Remark】

In the case of methods 3 and 4, a slightly longer period of time is required to complete moving.

SC-200/SC-400/SC-800 Operation Manual

MEMO

4. Part Names and Functions

4-1. Front Panel

4-2. Rear Panel

4-3. Driver BOX SD-800 for SC-800

A dedicated driver BOX SD-800 is available for SC-800.

4.3.1. SD-800 Front panel

Power switch

4-3-2. SD-800 Rear panel

Never place anything in the rear of the fan or block the exhaust.

Firmly connect respective connectors.Do not pull out or plug in connector while power is ON.
When pulling out or plugging in, make sure to turn power OFF.

4-4. DIP Switch (RS-232C/GP-IB Setting Switch)

Conditions for RS-232C and GP-IB communications can be set and changed with the DIP switch (ADRS) on the rear panel of the main body.

4-4-1. Position of DIP switch

The DIP switch is located at the upper part of the rear panel on the main body.

4-4-2. Settings

Settings are as in the table below.

Switch settings in the left half of the table are reflected in settings in the right half of the table.

Switch setting								$\begin{array}{\|c} \hline \text { Communi- } \\ \text { cation } \\ \text { mode } \end{array}$	RS-232C setting				GP-IB	
1	2	3	4	5	6	7	8		Speed	Parity	Word length	S bit	Delimiter	Address
OFF	OFF	*	*	*	*	*	OFF	RS	38400	*	*	*	*	*
ON	OFF	*	*	*	*	*	OFF	RS	28800	*	*	*	*	*
OFF	ON	*	*	*	*	*	OFF	RS	19200	*	*	*	*	*
ON	ON	*	*	*	*	*	OFF	RS	9600	*	*	*	*	*
*	*	OFF	OFF	*	*	*	OFF	RS	*	NON	*	*	*	*
*	*	OFF	ON	*	*	*	OFF	RS	*	EVEN	*	*	*	*
*	*	ON	ON	*	*	*	OFF	RS	*	ODD	*	*	*	*
*	*	*	*	OFF	*	*	OFF	RS	*	*	8	*	*	*
*	*	*	*	ON	*	*	OFF	RS	*	*	7	*	*	*
*	*	*	*	*	OFF	*	OFF	RS	*	*	*	1	*	*
*	*	*	*	*	ON	*	OFF	RS	*	*	*	2	*	*
OFF	OFF	OFF	OFF	OFF	*	*	ON	GPIB	*	*	*	*	CRLF	0
ON	OFF	OFF	OFF	OFF	*	*	ON	GPIB	*	*	*	*	CRLF	1
OFF	ON	OFF	OFF	OFF	*	*	ON	GPIB	*	*	*	*	CRLF	2
ON	ON	OFF	OFF	OFF	*	*	ON	GPIB	*	*	*	*	CRLF	3
OFF	OFF	ON	OFF	OFF	*	*	ON	GPIB	*	*	*	*	CRLF	4
ON	OFF	ON	OFF	OFF	*	*	ON	GPIB	*	*	*	*	CRLF	5
ON	ON	ON	ON	OFF	*	*	ON	GPIB	*	*	*	*	CRLF	15
OFF	OFF	OFF	OFF	ON	*	*	ON	GPIB	*	*	*	*	CRLF	16
ON	ON	ON	ON	ON	*	*	ON	GPIB	*	*	*	*	CRLF	31

GP-IB delimiters are fixed to CRLF.

- 6 to 14 and 17 to 30 in the GP-IB addresses are omitted in the above table.

5. Manual Operations

5-1. Description

SC Series controllers can perform stage positioning and driving operations of a stage and motor as a unit without connecting to a personal computer. Most of the functions available in remote control can be performed even during manual operations.
During manual operations, respective functions are performed by a total of 8 function keys F1 to F5 arranged on the lower portion of the LCD screen and 3 keys arranged on the right portion of the LCD screen and joystick.

Flow of Manual Operations

The functions of the 8 function keys vary according to screen and mode.

5-2. Turning on Power

For the SC-200

Check connections of the motor cable and communication cables, etc. and then turn on power.

When power is turned on, controller information is displayed on the display panel for a few seconds and then the normal screen appears.

RS-232C/GP-IB communications cannot be performed until the normal screen appears after the power is turned on.

The position display stores and displays values at the time when power is turned OFF.
Status displaying LED displays the status of the sensor at the time of starting.

For the SC-400/SC-800

The screen at the time of start-up differs from that of SC-200. Pressing the "Manual" button displayed on the screen when start-up shifts to the operation screen.

5.2.1 System settings

In SC-400/800, system change button is Easter egg command. For system settings, pressing buttons F4 and F5 simultaneously on the start-up screen (screen on which "Manual" is displayed) displays a "SYS" mode button.

5.2.2 Change of the display axis

Pressing the button f • 3 (Axis) on the start-up screen shifts to the screen of "display axis settings" and carries out the following settings.

Designation of display axis: two axes to be displayed can be selected among all axes. The same axes can be displayed.

Display format (calculated value, non-calculated value) of each axis can be set with the select switch.
$\mathrm{Pn}^{* P L S ~ P u l s e ~ v a l u e ~}$
$\mathrm{pn}^{* *}$ Cal Pulse angle conversion value
En ${ }^{* P L S ~ E n c o d e r ~ v a l u e ~}$
en ${ }^{* C a l ~ E n c o d e r ~ a n g l e ~ c o n v e r s i o n ~ v a l u e ~}$

5-3. Joystick Operations

After power is turned on, the normal screen appears, and operations of the joystick is enabled. The mode in joystick operations is switched by the key at the right upper. Please note that the joystick prohibiting (Non) mode is effective when power is turned on.

Operations		Functions		
Joystick	\uparrow	200	$400 / 800$	
	\downarrow	$1-$	$<-$	No.1 axis moves while tilting in the - direction, or 1 step feed
	\rightarrow	$2-$	$<-$	No.1 axis moves while tilting in the +direction, or 1 step feed
	\leftarrow	$2+$	$<-$	No.2 axis moves while tilting in the - direction, or 1 step feed
	Upper	$* * *$	$<-$	Joystick operations mode selection
	Middle	CIr	Pls/Cal	Value for the first axis is cleared to zero / Display style change
	Lower	Clr	Pls/Cal	Value for the second axis is cleared to zero / Display style change
F Key	F1	ORG	$<-$	To the origin return operations screen
	F2	ABS	$<-$	To the absolute value moving screen
	F3	REL	$<-$	To the relative position move screen
	F4	DSP	$<-$	To the setting screen for displayed value
	F5	SYS	MEU	To the system setting screen / Return to menu screen

When starting, the joystick operations mode is prohibited (Non) and the joystick does not work.

5-4. Origin Return

Function Performs origin sensor detection, and moves to origin position.

Selection The origin return operations screen appears by pressing the F1ORG key on the normal screen (JSC).

Start Origin return movement starts by pressing any of the
 F1, F2, F3keys.

Method selection Preset the origin return method by system parameters.

* Default value is 3 (NORG+ORG).

Operations end The screen returns to the normal screen (joystick operations) by pressing the F5 EXIT key.

© Operations at origin return screen

Operations		Functions	
Joystick	$\uparrow \downarrow \leftarrow \rightarrow$	$* * *$	Invalid
Right key	Upper		
	Middle	SP* *	Selects speed table for No.1 axis $0 \rightarrow 9$
	Lower	SP *	Selects speed table for No.2 axis $0 \rightarrow 9$
	F1	$[W]$	All axes start return to origin simultaneously
	F2	$[1]$	No.1 axis starts return to origin
	F3	$[2]$	No.2 axis starts return to origin
	F4		
	F5	EXIT	In suspended: Returns to normal screen(JSC)
		STOP	Operating: Stop key

Selection of Origin Return Mode
The selection of origin return mode is set with system parameter No.9.

SYSNo.	Display	Function	Setting range	Initial value
9	ORG Type 1-14	Sets origin return mode	$1 \sim 14$	3

Origin return Mode $\quad *$ No. 3 is a default value. No. 4 is used for a little stage without S1 sensor.

Mode	Sensor configuration	
1	S1, S3	Return direction is determined and origin is detected with zone sensor.
2	S3	Edge of the zone sensor is set to be the origin position.
3	S1, S2, L-	ORG (Origin S1) located in NORG (S2 Origin Proximity) is set to be the origin position.
4	S2, L-	One sensor located in moving zone is set to be the origin position.
5	S1, L+	Origin sensor in proximity of CW limit is set to be the origin position.
6	S1, L-	Origin sensor in proximity of CCW limit is set to be the origin position.
7	L+	Edge of CW limit is set to be the origin position.
8	L-	Edge of CCW limit is set to be the origin position.
9	S1	Only origin sensor is used.
10	Non	The present position is set to be the origin position.
11	S1, L+	After the origin position is detected by method 5, and moved by the set value, this position is set to be the origin position.
12	S1, L-	After the origin position is detected by method 6, and moved by the set value, this position is set to be the origin position.
13	L+	After the origin position is detected by method 7, and moved by the set value, this position is set to be the origin position.
14	L-	After the origin position is detected by method 8, and moved by the set value, this position is set to be the origin position.
15	Ref	Encoder reference Option

For details of origin return mode, refer to "3-3. Origin Return Method".

Sensor Configuration

5-5. Absolute Position Moving

Function Performs moving to the inputted designated position.

Selection The absolute position moving operations screen appears by pressing the F2 ABS key on the normal screen (JSC).
Th The present coordinate value is displayed on the screen.

Start Set the moving target value by using a function key.
Moving starts by pressing the right upper START key.
Operations end The screen returns to the normal screen (joystick operations) by pressing the F5EXIT key.

Operations at absolute position moving screen

Operations		Functions	
Joystick	$\uparrow \downarrow \leftarrow \rightarrow$	***	Invalid
Right key	Upper	START	Starts absolute position moving
	Middle	SP*	Selects speed of No. 1 axis, or selects input axis
	Lower	SP*	Selects speed of No. 2 axis, or selects input axis When selecting speed, move the cursor to the right end.
F key	F1	$[\leftarrow]$	Moves the cursor to the left digit
	F2	$[\rightarrow]$	Moves the cursor to the right digit
	F3	INC	Increases numeric value of a digit where the cursor is placed by +1
	F4	DEC	Decreases numeric value of a digit where the cursor is placed by - 1
	F5	EXIT	In suspended: Returns to the normal screen (JSC)
		STOP	Operating: Stop key

5-6. Relative Position Moving

Function Performs moving from the present position by set amount.

Selection The relative moving operations screen appears by pressing the F3 REL key on the normal screen (JSC).

The present moving set value is displayed on the screen.

Start Designate axis and direction with the F1 F2 F3 F4keys to start moving.

Movement amount settings Change or setting of the movement amount is performed by pressing the right upper SET key for switching to the normal screen.
Operations end The screen returns to the normal screen (joystick operations) by pressing the F5EXIT key.
-Moving Implementation Screen

-Operations at Relative Moving Screen

Operations		Functions	
Joystick	$\uparrow \downarrow \leftarrow \rightarrow$	$* * *$	Invalid
Right key	Upper	SET	Moves to the movement amount setting screen
	Middle	SP *	Selects speed of No.1 axis
	Lower	SP* *	Selects speed of No.2 axis
	F1	$[-]$	Moves No.1 axis in - direction by a set amount.
	F2	$[+]$	Moves No.1 axis in +direction by a set amount.
	F3	$[-]$	Moves No.2 axis in - direction by a set amount.
	F4	$[+]$	Moves No.2 axis in +direction by a set amount.
	F5	EXIT	In suspended: Returns to the normal screen (JSC).
		STOP	Operating: Stop key

- Operations at movement amount setting screen

Operations		Functions	
Joystick	$\uparrow \downarrow \leftarrow \rightarrow$	$* * *$	Invalid
Right key	Upper	CIr	Clears numeric value to 0.
	Middle	\leftarrow	Selects input for No.1 axis.
	Lower	\leftarrow	Selects input for No.2 axis.
F key	F1	$[\leftarrow]$	Moves the cursor to the left digit.
	F2	$[\rightarrow]$	Moves the cursor to the right digit.
	F3	INC	Increases numeric value of a digit where the cursor is placed by +1.
	F4	DEC	Decreases numeric value of a digit where the cursor is placed by -1.
	F5	REL	Returns to the relative moving implementation screen.

5-7. Change in Displayed Value

Function Rewrites coordinate displayed value.

DSP	CIr		DSP
P1	123456		CIr
P1	654321		100
$[\leftarrow][\rightarrow]$ P2	PEC EXIT		200
		$[\leftarrow][\rightarrow]$ INC	DEC

Selection Press the F4 DSP key on the normal screen (JSC) to move to the display change screen.
B
Present value appears on the screen after moving.

Setting Change the numeric values with the F1 F2 F3 F4 keys.

Setting end The input is confirmed by pressing the F5 key and the screen returns to the normal screen

Operations at displayed value change screen

Operations		Functions	
Joystick	$\uparrow \downarrow \leftarrow \rightarrow$	$* * *$	Invalid
Right key	Upper	Clr	Clears numeric value to 0.
	Middle	\leftarrow	Selects input for No.1 axis.
	Lower	\leftarrow	Selects input for No.2 axis.
	F1	$[\leftarrow]$	Moves the cursor to the left digit.
	F2	$[\rightarrow]$	Moves the cursor to the right digit.
	F3	INC	Increases numeric value of a digit where the cursor is placed by +1
	F4	DEC	Decreases numeric value of a digit where the cursor is placed by - 1
	F5	REL	Confirms the inputted value and returns to the normal screen.

5-8. System Setting

Function Changes and sets system settings for motor control.

Selection (SC-200) The screen changes to the system setting screen by pressing the F5SYS key on the normal screen (JSC) for more than 2 seconds.
(SC-400/800) Pressing buttons F4 and F5 simultaneously on the start-up screen (screen on which "Manual" is displayed) displays

Press for more than 2 seconds a "SYS" mode button.

Selection of item Selects item with the UP DW.

Operations end The screen returns to the normal screen (joystick operations) by pressing the F5 key.

■Operations at the displayed value change screen

Operations		Functions	
Joystick	$\uparrow \downarrow \leftarrow \rightarrow$	$* * *$	Invalid
Right key	Upper	No*	Selects axis.
	Middle	UP	Increases item No. of the system parameters
	Lower	DW	Decreases item No. of the system parameters
F key	F1	$[\leftarrow]$	Moves the cursor to the left digit
	F2	$[\rightarrow]$	Moves the cursor to the right digit
	F3	INC	Increases numeric value of a digit where the cursor is placed by +1
	F4	DEC	Decreases numeric value of a digit where the cursor is placed by -1
	F5	EXIT	Confirms the inputted value and returns to the normal screen.

5-8-1. System Setting List

SYSNo.	Display	Function	Setting range	Initial value
1	Start speed (PPS)	Start speed of Speed Table NO. 0	1~4,095,500	500
2	Top Speed (PPS)	Maximum speed of Speed Table NO. 0	1~4,095,500	5,000
3	ACC Time	Accelerating time of Speed Table NO. 0	$1 \sim 1,000,000$	24
4	DEC Time	Decelerating time of Speed Table NO. 0	$1 \sim 1,000,000$	24
5	ORG PRESET DATA	Coordinate value after return to origin	$\begin{gathered} \hline-16,777,215 \\ \sim+16,777,215 \\ \hline \end{gathered}$	0
6	PM PRESCALER	(Pre-scaler setting)	$0 \sim 16,777,215$	0
7	Backlash PULSE	Backlash correction Pulse number	$0 \sim 16,777,215$	0
8	BK N:0 CW:1 CCW:2	Backlash correction 0 : Invalid 1: CW direction 2: CCW direction	$0 \sim 4$	0
9	ORG Type 1-14	Selection of method for return to origin	$1 \sim 14$	3
10	PLS CAL DIV 1/N	Angle conversion Denominator	$0 \sim 16,777,215$	1
11	PLS CAL DIV N/1	Angle conversion Numerator	$1 \sim 16,777,215$	1
12	PLS RND 0-9	Angle conversion Designating rounding	$0 \sim 9$	1
13	Stop EMG:0 SLW: 1	Limit stop method (This function is optional.) 0 : Emergency 1: Deceleration	0,1	0
14	OFFSET_DATA	Offset	$\begin{gathered} \hline-16,777,215 \\ \sim+16,777,215 \end{gathered}$	0
15	PM ROTATE CHANGE	Change of rotating direction	0,1	0
16	CWL NON:0 INV:1	CW limiter signal logic	0,1	0
17	CCWL NON:0 INV: 1	CCW limiter signal logic	0,1	0
18	NORG NON: 0 INV:1	NORG sensor signal logic	0,1	0
19	ORG NON:0 INV:1	ORG sensor signal logic	0,1	0
20	LMT SWAP N:0 Y: 1	CCW limiter	0,1	0
21	C OFF ON:0 OFF:1	Motor excitation 0: Excitation ON 1: Excitation OFF	0,1	0
22	ACC CURVE 1-5	Selection of motor drive method 1: Rectangular drive 2:Trapezoidal drive 3: Asymmetric trapezoidal drive 4: S-shaped drive 5: Asymmetric S-shaped drive	$1 \sim 5$	2
23	CONSTANT PULSE			0
24	ENC CAL DIV 1/N	Output pulse Angle conversion Denominator	$1 \sim 16,777,215$	1
25	ENC CAL DIV N/1	Output pulse Angle conversion Numerator	1~16,777,215	1
26	ENC MULTIPLI 1-4	Multiplication settings $1: 1$ multiplication 2:2 multiplication 4:4 multiplication	1,2,4	1
27	ENC Permissible	0 clear position when using the multi-rotation table	$0 \sim 16,777,215$	0
28	ENC Round Off 0-9	Encoder Angle conversion Designating rounding	$0 \sim 9$	1
29	FEEDBACK TYPE 0-2	Encoder correction settings 0 : Not correct 1: Correct (only in positioning) 2: Correct (constant)	$0 \sim 2$	0
30	PERMIT RANGE PULS	Encoder correction Permissible range (Pulse)	$1 \sim \pm 10,000$	1
31	Retry Count	Encoder correction Retry number (times)	$1 \sim 10,000$	100
32	Wait Time(1ms)	Encoder correction Wait time (mS)	$1 \sim 10,000$	100
33	ENC ROTATE CHANGE	Encoder addition direction	0,1	0
34	PM\&ENC SYNC WRITE	Encoder coordinate synchronization	0,1	0

No.	Display	Function	Setting range	Initial value
35	SPD Table 1-300	Speed table multiple setting	1~300	1
36	Exec $=1$: $\mathbf{P a s s}=0$	Initialization of system	0,1	0
37	$\mathrm{P}=0$: $\mathrm{R}=1: \mathrm{P} \& \mathrm{R}=2$	Selection of joystick 0 : On main body side 1: External 2: Possible on both sides	$0 \sim 2$	0
38	Axis_No Select	LCD panel Axis No. displayed on second line	1,2	1
39	Sor $\mathbf{P M C = 0}$: ENC=1	Selection of display (Second line) 0: Pulse display 1: Encoder display	0,1	0
40	Hi Speed	Joystick High Speed change	0~4,095,500	8,000
41	Low Speed	Joystick Low Speed change	$0 \sim 4,095,500$	200
42	Axis_No Select	LCD panel Axis No. displayed in second line	$1 \sim 8$	1
43	Sor PMC=0:ENC=1	Selection of display (Second line) 0: Pulse display 1: Encoder display	0,1	0
44	Cal Pls=0:Cal=1	Selection of conversion display (Second line) 0 : Non conversion display 1: Angle conversion display	0,1	0
45	Axis_No Select	LCD panel Axis No. displayed on third line	$1 \sim 8$	2
46	Sor PMC=0:ENC=1	Selection of display (Third line) 0 : Pulse display 1: Encoder display	0,1	0
47	Cal Pls=0:Cal=1	Selection of conversion display (Third line) 0 : Non conversion display 1: Angle conversion display	0,1	0

SYS in accordance with version (Ver. 0.994) or later.

5-9. Display of Position

5-9-1. Type of Display

In this device, the following 4 method types can be selected for position numerical display. Change in display is carried out by the system settings of manual operations. (\rightarrow " $5-8$. System Settings")

【Reference】

"5-8. System Settings"

6. Remote Control

6-1. Remote Control

6-1-1. Transmission and Reception

The controller returns one Response for one command.
The Response timing varies according to the type of command or selection of Response method.
(1) Setting Command
(2)

Drive Command

Commands such as MPC and ASI immediately return a Response.
For drive-related commands, two types of Response methods can be selected. (in RS-232C communications)

1. Returns a Response after completion of operations. (Completion mode)
2. Returns a Response immediately after receipt of the command, and confirms completion of operations by the STA command (Status Check). (Quick mode)
This command returns requested data. Command

Host (Personal computer) side

Controller side

Setting command nformation
command

Setting command Setting command

All Responses in GP-IB communications are of quick mode.

6-1-2. Remote Control Procedures

When using for the first time and using after a change in the setting, it is required to start from the command setting at the beginning of remote control procedures.

6-1-3. Command Format

One command consists of a header character (STX) and command, parameters, and delimiter (CRLF).

【Example】 Present position writing command: When setting the second axis to 1000

Sequence	1	2	3	4	5	6	7	8	9	10	11, 12
Command	stx	W	R	P	2	1	1	0	0	0	CRLF
Hexadecimal	02	57	52	50	32	2F	31	30	30	30	0D,0A

Characters which can be used in the command are numerical values (0 to 9), uppercase letters (A to Z), code (+, -) and symbol (/, ?).

Space $(20 H)$ cannot be used in the command.

Parameter is required, which cannot be omitted.

6-1-4. Response

Format for Response is as follows. When an abnormality occurs, abnormal Response is returned. The Response varies depending on each command, therefore, refer to the detailed page for each command.
(1) Normal Response

Normal Response

$$
\begin{array}{|c|}
\hline \text { Delimiter (end of line) } \\
\mathrm{CR}(0 \mathrm{DH})+\mathrm{LF}(0 \mathrm{AH}) \quad 2 \text { characters } \\
\hline
\end{array}
$$

C Tab<Command>Tab<Axis No.> CRLF

(2)

Abnormal Response

E Tab <Command><Axis No.> Tab <Error No.> CRLF Error occurs
w Tab <Command><Axis No.> Tab <Warning No.> CRLF In warning
(3) Data Response
$\mathbf{C T a b}$ <Command><Axis No.> Tab Data 1 Tab $\quad . .$.

In a case where a plurality of these characters exist, these are segmented by TAB and sent.

6-1-5. Characters Used

Characters described in the table below are characters which can be used in communications.

	0*	1*	2*	3*	4*	5*	6*	7*	8* $-\mathrm{F}^{*}$
*0	\times	\times	\times	0	\times	P	\times	\times	\times
*1	\times	x	\times	1	A	Q	\times	\times	\times
*2	stx	\times	\times	2	B	R	\times	\times	\times
*3	\times	\times	\times	3	C	S	\times	\times	\times
*4	\times	\times	\times	4	D	T	\times	\times	\times
*5	\times	\times	\times	5	E	U	\times	\times	\times
*6	\times	\times	\times	6	F	V	\times	\times	\times
*7	\times	\times	\times	7	G	W	\times	\times	\times
*8	\times	\times	\times	8	H	X	\times	\times	\times
*9	Tab	\times	\times	9	I	Y	\times	\times	\times
*A	LF	\times	\times	\times	J	Z	\times	\times	\times
*B	\times	\times	+	\times	K	\times	\times	\times	\times
*C	CR	\times	\times	\times	L	\times	\times	\times	\times
*D	\times	\times	-	\times	M	\times	\times	\times	\times
*E	\times	\times	.	\times	N	\times	\times	\times	\times
*F	\times	\times	I	$?$	0	\times	\times	\times	\times

Low-case letters (a to z) cannot be used.

6-2. List of Command

Commands which can be used in the SC Series are as in the table below. For details, refer to the pages for respective commands.

Command			Applicable model SC-			Page
Type	Description	Function	200	400	800	
Settings	RST	System reset	\bigcirc	\bigcirc	\bigcirc	68
	MPC	Motor-related Polarity change	\bigcirc	\bigcirc	\bigcirc	57
	ASI	Motor-related Initial settings (Designates acceleration and deceleration by time)	\bigcirc	\bigcirc	\bigcirc	48
	MSI	Motor-related Initial settings (Designates acceleration and deceleration with STEP)	\bigcirc	\bigcirc	\bigcirc	48
	ESI	Encoder settings	\bigcirc	\bigcirc	\bigcirc	54
	LNK	Electronic synchronizing proportional drive	2 axes	3 axes	3 axes	56
	DSP	Display switching	\bigcirc	\bigcirc	\bigcirc	53
Drive	ORG	Origin search	\bigcirc	\bigcirc	\bigcirc	59
	APS	Absolute position Drive	\bigcirc	\bigcirc	\bigcirc	47
	RPS	Relative position Drive	\bigcirc	\bigcirc	\bigcirc	67
	SPS	Linear interpose Drive	\bigcirc	\bigcirc		72
	MPS	Multi axis simultaneous Drive	2 axes	4 axes	4 axes	58
	OSC	Repetition (oscillation) Drive	\bigcirc	\bigcirc	\bigcirc	60
	FRP	Continuous Rotation	\bigcirc	\bigcirc	\bigcirc	55
	STP	Stop	\bigcirc	\bigcirc	\bigcirc	70
	COF	ON/OFF for excitation	\bigcirc	\bigcirc	\bigcirc	52
Coordinate	RDP	Position read	\bigcirc	\bigcirc	\bigcirc	63
	WRP	Position write	\bigcirc	\bigcirc	\bigcirc	75
	RDE	Encoder read	\bigcirc	\bigcirc	\bigcirc	61
	WRE	Encoder write	\bigcirc	\bigcirc	\bigcirc	74
	RDO	Offset read (Optical offset)	\bigcirc	\bigcirc	\bigcirc	62
	WRO	Offset write (Optical offset)	\bigcirc	\bigcirc	\bigcirc	74
Information	STR	Status read	\bigcirc	\bigcirc	\bigcirc	71
	RSY	System setting information read	\bigcirc	\bigcirc	\bigcirc	68
	RMS	Motor setting information read	\bigcirc	\bigcirc	\bigcirc	66
	RMP	MPC polarity setting information read	\bigcirc	\bigcirc	\bigcirc	65
	RES	ESI encoder setting information read	\bigcirc	\bigcirc	\bigcirc	64
	IDN	Version read	\bigcirc	\bigcirc	\bigcirc	55
Speed Table	WTB	Speed table settings	\bigcirc	\bigcirc	\bigcirc	76
	RTB	Speed table reference	\bigcirc	\bigcirc	\bigcirc	69
Teaching	TAS	Teaching axis setting	2 axes	3 axes	3 axes	77
	TMS	Teaching coordinate setting	2 axes	3 axes	3 axes	78
	RDT	Teaching coordinate read (for edition)	2 axes	3 axes	3 axes	80
	WRT	Teaching coordinate write (for edition)	2 axes	3 axes	3 axes	80
	TPS	Teaching drive execution	2 axes	3 axes	3 axes	79

Commands in this table are in accordance with the version (Ver. 0.99) as of October 2002 or later.

Commands which can be used in the SC Series are as in the table below. For details, refer to the pages for respective commands.

Command			Applicable model SC-			Page
Type	Description	Function	200	400	800	
Easy control (Internal setting dependence)	PMS	Speed setting	\bigcirc	\bigcirc	\bigcirc	81
	PMP	Relative position movement	\bigcirc	\bigcirc	\bigcirc	81
	PMA	Absolute position movement	\bigcirc	\bigcirc	\bigcirc	82
	PMH	Origin search	\bigcirc	\bigcirc	\bigcirc	82
Measurement	SCN	Continuous SCAN (Movement \& scaler read)	\bigcirc	\bigcirc	\bigcirc	83
	RBU	Data read for continuous SCAN	\bigcirc	\bigcirc	\bigcirc	85
	SFT	FT method (Time fixed, Count value measurement)	\bigcirc	\bigcirc	\bigcirc	87
Drive aid	RCP	Constant pulse read	\bigcirc	\bigcirc	\bigcirc	88
	WCP	Constant pulse write	\bigcirc	\bigcirc	\bigcirc	88

Commands in this table are in accordance with the version (Ver. 0.99) as of October 2002 or later.

6－3．Details of Command

Details of each command are described below in alphabetical order．

APS Absolute Position Drive

> SC-200 SC-400 SC-800

【Function】Moves to a target position by controlling absolute position．

【Format】

Parameter $=8$

Each parameter cannot be omitted．
For SC－800 control，the axis number of synchronous motion is 4 ．

Command parameters

Function		Setting	Remarks
\underline{a}	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\text { b }}$	Accelerating and decelerating mode	1：Rectangular drive 2：Trapezoidal drive 3：Asymmetric trapezoidal drive 4：S－shaped drive 5：Asymmetric S－shaped drive	
C	Synchronizing mode	$0:$ Invalid 1：Valid	Refer to LNK command．
d	Selection of speed table	$0 \sim 9$	
$\underline{\mathbf{e}}$	Moving target position	－68，108，813～68，108，813	
f	Backlash correction	0：Invalid 1：CW direction1 2：CCW direction1 3：CW direction2 4：CCW direction2	Refer to ASI command
g	Encoder correction	0 ：Invalid 1 ：Valid 2 2：Continue	Refer to ESI command
$\underline{\text { h }}$	Response method	0：Completed 1：Quick	＊ $1 \rightarrow$ Refer

【Response】Returns status information．＊Return timing varies depending on the Response method．

Status	Response data			
Normal	c Tab	APS＜Axis No．＞CRLF		
Abnormal	w Tab	APS＜Axis No．＞Tab	＜Warning No．＞	CRLF
	E Tab	APS＜Axis No．＞Tab	＜Error No．＞${ }^{\text {CRLF }}$	

For $<$ Error No．$>$ and $<$ Warning No．$>$ ，refer to the＂6－4．Error Code．＂

【Example】

1．Moves No． 1 axis to a position of 10000 with trapezoidal drive．
sty APS1／2／0／0／10000／0／0／0 CRLF
2．Moves No． 2 axis to a position of－ 2000 with rectangular drive of speed 5 （Table No．）．

stx APS2／1／0／5／－2000／0／0／0 CRLF

【Remarks】
Carries out stop during driving with stop command．\rightarrow Refer to STP command．
（Note）When the Response method is 0 ：standard，no Response is returned if stopped by the STP command．
＊1．When controlling by GPIB，operations are constantly carried out as＂ 1 ：Quick＂regardless of settings．

ASI	Motor Related Initial Setting	SC－200 SC－400 SC－800

【Function】 Performs various settings to drive motor．For parameter details，refer to the next page and thereafter． ASI $=($ Sets acceleration and deceleration by time $) \quad$ MSI $=($ Sets acceleration and deceleration with STEP $)$

【Format】	stx	ASla $/ \underline{\underline{b}} / \underline{c} / \underline{d} / \underline{e} / \underline{f} / \underline{\mathrm{g}} / \underline{\mathrm{h}} / \underline{\mathrm{i}} / \mathrm{j} / \underline{\mathrm{k}} / \underline{l} / \underline{m} / \underline{\mathrm{n}}$ CRLF	Parameter $=14$
【Format】	stx	MSla／b／c／d／e／f／g／h／i／i／k／l／m／n CRLF	Parameter $=14$

Space between characters cannot be used．Each parameter cannot be omitted．
Command parameters

Function		Setting	Remark	SYS
$\underline{\text { a }}$	Axis No．	1～8	Varies according to model	－
\underline{b}	Start speed	1～4，095，500 PPS	＊Effective when designating speed Table No． 0 （Refer to＂3－1．Speed Setting＂）	1
C	Maximum speed	$1 \sim 4,095,500$ PPS		2
d	Accelerating time（ASI） Accelerating STEP（MSI）	$\begin{array}{ll} \hline 1 \sim 1,000,000 & \times 0.01 \text { second } \\ 1 \sim 1,000,000 & \text { STEP } \end{array}$		3
$\underline{\text { e }}$	Decelerating time（ASI） Decelerating STEP（MSI）	$\begin{array}{ll} \hline 1 \sim 1,000,000 & \times 0.01 \text { second } \\ 1 \sim 1,000,000 & \text { STEP } \end{array}$		4
f	Position after detecting origin	－16，777，215～16，777，215		5
g	Prescale	$0 \sim 16,777,215$ pulse		6
h	Backlash correction	$0 \sim 16,777,215$ pulse		7
$\underline{1}$	Angle conversion Denominator	$0 \sim 16,777,215$		10
I	Angle conversion Numerator	$1 \sim 16,777,215$		11
k	（Conversion：Trigonometric function）	0	Fixed to 0 ＊Option	－
I	（Conversion：Distance from center）	0	Fixed to 0 ＊Option	－
$\underline{\mathrm{m}}$	Designating rounding converted value	$0 \sim 9$		12
n	Stop method when detecting limit	$\begin{aligned} & \text { 0: Emergency stop } \\ & \text { (1: Decelerating stop) } \end{aligned}$	＊Fixed to 0 in case of standard specifications	13

＊SYS in the above table is the SYS setting No．during manual operations．Refer to＂ $5-8$ ．System Settings．＂
【Response】Returns status information．＊Returns immediately after receiving the command．

Status	Response data			
	C	Tab	ASI＜Axis No．＞	CRLF
	C	Tab	ASI＜Axis No．＞	CRLF
Abnormal	E Tab	ASI＜Axis No．＞	Tab	＜Error No．＞
	CRLF			
	E Tab	ASI＜Axis No．＞	Tab	＜Error No．＞

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂
【Example】 When setting the same value as the default value on the No． 2 axis，details of the parameter are as follows．

【Remarks】

－Note that if the stop method during limit detection is set to＂ 1 ：Deceleration，＂the moving end limit is exceeded if the decelerating time is long，whereby mechanical damage may occur． （Standard specification is fixedly set to＂ 0 ：Emergency stop．＂）
－Details that has been set is stored in the backup memory．
－When settings of the same item are changed by manual operation after setting by remote control， the details of the setting by manual operation is stored．

【Caution】

－Please note that a maximum speed up to $4,095,500 \mathrm{PPS}$ can be outputted，however，this does not mean that the motor and stage actually operate at that speed．
－Speed and other settings cannot be changed during driving．

ASI Command ：Details of Parameter

b Start Speed

c Maximum Speed

Sets the start speed，maximum speed， accelerating time and decelerating time． Relationships among them are as in the figure on the right．

A
This setting becomes effective when designating the Speed Table No．0．In a case where designating the Speed Table Nos． $1-9$ ，speed is driven with each table setting value．

Position After Detecting Origin

Sets coordinate value（pulse amount）after origin detection（ORG）completed．
（Example）When $\mathrm{f}=1000$ was set，coordinate value of origin position becomes 1000 after returning to origin completed．

Pre－Scale

When the set coordinate value is reached，it is automatically reset to 0 ．
This is used when returning to the original position by the rotating movement
 such as the rotating stage．

h Backlash Correction Pulse Number

Corrects backlash generated by gear mechanism．
Implementation of backlash correction is set by a moving command（such as APS and RPS）．

【Reference】Selection of backlash correction method．
Backlash correction method is selected from the following methods in implementation．

Setting	Details
0	Backlash correction invalid
1	During inversion from the CW direction to CCW direction，reciprocating movement by correcting pulse amount is performed before moving．
2	During inversion from the CCW direction to CW direction，reciprocating movement by correcting pulse amount is performed before moving．
3	During inversion from the CW direction to CCW direction，reciprocating movement by correcting pulse amount is performed after moving．
4	During inversion from the CCW direction to CW direction，reciprocating movement by correcting pulse amount is performed after moving．

i J Angle Conversion Numerator and Denominator

Defines a ratio between the actual output pulse number of the motor and the coordinate display value or encoder input value．
【Function】
－Conversion of angle display，or when designating angle with RDP（position read）command．
－Sets resolution when supplementing encoder．

k 1 Trigonometric Function and Distance From Center

This function is not equipped with the standard－spec products．Normally set this function to 0 ．

m Angle Conversion Value Designating Digit to be Rounded off

When using the angle conversion function，designates the digit of conversion data to be rounded off．

n Stop Method When Detecting Limit

Defines the stop method when detecting the limit sensor at the moving end.
The following are the two methods.

Setting	Stop method	
0	Emergency stop	Immediately stops at the limit detected position.
1	Decelerating stop	Decelerates and stops. The decelerating time is the same as that of the decelerating setting in normal drive.

 if the decelerating time is set to be long, the amount of overrun becomes large and a mechanical failure such as bumping to the moving end occurs.

With standard specifications, in order to eliminate the above trouble, "0: Emergency stop" becomes a fixed setting. If you would like to use in " 1 : Decelerating stop," contact us for how to make a change in setting since a change can be made with internal setting.

【Function】Switches ON／OFF for motor output current．

【Format】

stx COFa／b CRLF

Parameter $=2$
©
Space between characters cannot be used．Each parameter cannot be omitted．

COF command parameters

Function		Setting	Remark
$\underline{\mathbf{a}}$	Axis designation	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Excitation output switching	0,1	0 ：Excitation ON \quad 1：Excitation OFF

【Response】Returns status information．＊Returns immediately after receiving the command．

Status	Response data			
Normal	C	Tab	COF＜Axis name＞	CRLF
Abnormal	E	Tab	COF＜Axis name＞	Tab
＜Error No．＞	CRLF			

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂

【Example】

Error occurs if transmitting the drive－related command in a state of excitation OFF． （Error code No．308）

When using it for the Z axis，pay attention because falling off may occur when turning excitation OFF．

When turning excitation OFF，the position may deviate because the motor becomes free．It is recommended to carry out origin return operations again after turning excitation ON．
\triangle
When turning off the power of the controller in the excitation OFF state and turning on the power again，the controller starts up in the excitation ON state．

【Function】Switches description displayed on the controller front panel．

Function 1．Displayed axis No．switching

Switches axis No．displayed on the second and third lines from the liquid crystal display．Axis No．is displayed at the second character from the left．

Function 2．Pulse／Encoder display change

Switches pulse value display and encoder counter value display．In the case of pulse display，＂P＂or＂ p ＂is displayed for the first character from the right，and in the case of encoder display，＂E＂or＂e＂is displayed．

Function 3．Conversion value，Non conversion value switching

Determines whether pulse and respective encoder counter values are directly displayed or conversion－displayed by the set coefficient．Panel displays are distinguished by upper and lower case characters such as＂P＂and＂p．＂

Meaning of displayed characters

\mathbf{P}	Pulse display value（Non conversion value）	\mathbf{E}	Encoder count value（Non conversion value）
\mathbf{p}	Pulse display value（Conversion value）	\mathbf{e}	Encoder count value（Conversion value）

【Format】

stx DSPa／b／c CRLF

Parameter $=3$

Space between characters cannot be used．Each parameter cannot be omitted．
DSP command parameters＊SYS is the SYS setting No．during manual operations．

Function		Setting	Remarks	SYS
$\underline{\mathbf{a}}$	Designating display line	1,2	1：Second line 2：Third line	-
$\underline{\mathbf{b}}$	Axis No．	$1 \sim 8$	Varies according to model	42,45
$\underline{\mathbf{c}}$	Selection of method		0：Pulse display（Non conversion）	
		$0,1,2,3,4$	1：Encoder value（Non conversion value）	43,44
			3：Pulse value（Conversion value）	46,47
		4：Encoder value（Conversion value）		

【Response】Returns status information．＊Returns immediately after receiving the command．

Status	Response data				
Normal	C	Tab	DSP＜Line No．＞	CRLF	
Abnormal	E	Tab	DSP＜Line No．＞	Tab	＜Error No．＞
CRLF					

For $<$ Error No．＞，refer to the item of＂6－4．Error Code．＂
【Reference】 Pulse conversion setting（System setting＝No． 10 and 11），Encoder conversion setting（System setting $=$ No． 24 and 25）
【Remarks】
－Details that has been set is stored in the backup memory．
－When settings of the same item are changed by manual operation after setting by remote control， the details of the setting by manual operation is stored．

【Function】 Performs initial setting when using the encoder．
Function 1．When reading a value of the encoder and only displaying \rightarrow Setting of format（1）
Function 2．When performing feedback control（supplement）with position data of encoder
\rightarrow Setting of format（2）
［Format】
Parameter

Space between characters cannot be used．Each parameter cannot be omitted．

ESI command parameters

Function		Setting	Remarks	SYS
\mathbf{a}	Designating encoder axis	$1 \sim 8$	Varies according to model	-
$\underline{\mathbf{b}}$	N．C	0		-
\mathbf{c}	Resolution conversion Denominator	$1 \sim 16,777,215$		24
\mathbf{d}	Resolution conversion Numerator	$1 \sim 16,777,215$		25
$\underline{\mathbf{e}}$	Pre－scale	$0 \sim 16,777,215$		27
$\mathbf{\underline { f }}$	Multiplication	$1,2,4$－fold		26
\mathbf{g}	Encolder polarity change	$0:$ Normal $1:$ Reverse		33
\mathbf{h}	Retry number	$1 \sim 10,000$ times		31
\mathbf{i}	Permissible stop range	$0 \sim \pm 10,000$ pulses	Encoder input pulse	30
\mathbf{I}	Waiting time	$1 \sim 10,000 \times 10 \mathrm{mSec}$		32
\mathbf{k}	Conversion designating rounding	$0 \sim 9$ digits	\rightarrow Refer to RDE command	28

＊SYS in the above table is the SYS setting No．during manual operations．Refer to＂ $5-8$ ．System Setting．＂

【Response】Returns status information．＊Returns immediately after receiving the command．

Status	Response data			
Normal	C	Tab	ESI＜Encoder No．$>$ ERLF	
Abnormal	E	Tab	ESI＜Encoder No．$>$ Tab	

For $<$ Error No．＞，refer to the item of＂6－4．Error Code．＂

【Remarks】

If this command is issued，the present encoder data becomes invalid．
－Details that has been set is stored in the backup memory．
－When settings of the same item are changed by manual operation after setting by remote control， the details of the setting by manual operation is stored．

【Function】 Continuous operation is carried out until Stop command（STP）is issued．

	stx FRPa／b／c／d／e／f CRLF	
［Format】	stx FRPa／b／c／d／e／p／	Parameter $=6$

Space between characters cannot be used．
Each parameter cannot be omitted．
For SC－800 control，the axis number of synchronous motion is 4 ．
Command parameters

Function		Setting	Remarks
\mathbf{a}	Designating axis	$1-8$	Varies according to model
$\underline{\mathbf{b}}$	Accelerating and	1：Rectangular drive	
	decelerating mode	2：Trapezoidal drive	
		3：Asymmetric trapezoidal drive	
		4：S－shaped drive	
		5：Asymmetric S－shaped drive	
\mathbf{c}	Synchronizing mode	0：Invalid 1：Valid	Refer to LNK command．
\mathbf{d}	Selection of speed table	$0 \sim 9$	
\mathbf{e}	Rotational direction	$1:$ CW direction 0：CCW direction	$* 1$
\mathbf{f}	Response method	0：Completed 1：Quick	

【Response】Returns status information．＊Return timing varies depending on the Response method．

Status	Response data					
Normal	C Tab	APS＜Axis No．＞CRLF				
Abnormal	W Tab	APS＜Axis No．＞	Tab	＜Warning N	No．＞	CRLF
	E Tab	APS＜Axis No．＞	Tab	＜Error No．＞	CRLF	

For $<$ Error No．$>$ and $<$ Warning No．＞，refer to the＂6－4．Error Code．＂
【Example】
1．Continuously rotates the No． 1 axis in the CW direction by trapezoidal drive．
stx FRP1／2／0／0／1／0 CRLF
【Remarks】
－Carries out stop during driving with stop command．\rightarrow Refer to STP command．
（Note）The Response method is processed by quick setting．
1．When controlling by GPIB，operations are constantly carried out as＂1：Quick＂regardless of settings．

【Function】Responds with the model name of the controller body and the version of the system program．
【Format】

Parameter $=0$

【Response】	C Tab	IDN0 Tab＜Model name＞	ersion＞ CRLF
【Example of Response】	C Tab	IDN0 Tab 200 Tab 1000 CRLF	＂SC－200 Ver 1．000＂
【Example of Response】	C Tab	IDN0 Tab 400 Tab 1000 CRLF	＂SC－400 Ver 1.000 ＂
【Example of Response】	C Tab	IDN0 Tab 800 Tab 1000 CRLF	＂SC－800 Ver1．000＂

【Functions】Sets ratio of electronic coupling．

【Format】Master＋Slave 1

【Format】Master＋Slave 1＋Slave 2

stx LNKa／b／$\underline{\mathbf{c}} / \underline{\mathbf{d}} / \underline{\mathbf{e}}$ CRLF \quad Parameter $=5$

Space between characters cannot be used．Each parameter cannot be omitted．
Parameters

Function		Settings	Remarks
$\underline{\mathbf{a}}$	Master axis designation	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Slave 1 axis designation	$1 \sim 8$	Varies according to model
$\underline{\mathbf{c}}$	Slave 1 ratio	$1 \sim 256$	
$\underline{\mathbf{d}}$	Slave 2 axes designation	$1 \sim 8$	Varies according to model
\mathbf{q}	Slave 2 ratio	$1 \sim 256$	

【Response】Returns status information．＊Return timing depends on Response method．

Status	Response Data				
Normal	C	Tab	LNK＜Axis No．＞	CRLF	
Abnormal	E	Tab	LNK＜Axis No．＞Tab	＜Error No．＞	CRLF

For＜Error No．＞，refer to the item of＂ 6 －4．Error Code．＂
【Example】
Sets No． 1 ratio on Master axis，No． 2 ratio 2 on Slave 1 axis，and No． 3 ratio 3 on Slave 2 axes．
stx LNK1／2／2／3／3 CRLF
Moves No． 1 axis to the position of 10000 in synchronization mode by trapezoidal drive．（Synchronization mode 1 ：Valid）
stx APS1／2／1／0／10000／0／0 CRLF

Slave 1

【Remarks】

－Details that has been set is stored in the backup memory．

【Function】Changes and sets input logic of each sensor such as rotating direction of the motor，limit and origin．

（1）Motor rotating direction

Sets actual rotating direction to rotating command．

（2）Sensor input logic

Sets logic（N．C，N．O）in agreement with the connected sensor．

（3） $\mathbf{C W}, \mathrm{CCW}$ swap

Electrically switches effective limit sensor for moving direction．

N．C

N．O

［Format】

Parameter $=7$

Space between characters cannot be used．Each parameter cannot be omitted．

Parameters

Function		Setting range	Remark
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Motor rotating direction	0：Forward rotation $1:$ Reverse rotation	
$\underline{\mathbf{c}}$	CW limit sensor	$0:$ Positive \quad 1：Negative	
$\underline{\mathbf{d}}$	CCW limit sensor	$0:$ Positive $\quad 1:$ Negative	
$\underline{\mathbf{e}}$	NORG sensor	$0:$ Positive $\quad 1:$ Negative	
$\underline{\mathbf{f}}$	ORG sensor	$0:$ Positive $\quad 1:$ Negative	
$\underline{\mathbf{g}}$	CW，CCW swap	0 ：Positive $\quad 1:$ Negative	

【Response】Returns status information．＊Return timing depends on Response method．

Status	Response data			
Normal	C	Tab	MPC＜Axis No．＞	CRLF
Abnormal	E	Tab	MPC	＜Axis No．＞
Tab	＜Error No．＞	CRLF		

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂

【Related】

RMP command MPC setting information read（Refer to page 65）

【Remarks】

WX • Details that has been set is stored in the backup memory．
－When settings of the same item are changed by manual operation after setting by remote control， the details of the setting by manual operation is stored．

MPS

【Function】Performs simultaneous drive of No． 2 to No． 4 axes．
【Explanation】In general，periods of time required for movement differ and loci are depicted as shown by the broken line as in the right handed figure，if the moving distance and moving speed differ from each other in the 2 axes simultaneous drive．However，if the linear interpolation（SPS） command is designated，the speeds of the respective axes are automatically calculated．
［Format】
（1）Designating 2 axes
（1）Designating 3 axes
（1）Designating 4 axes
stxMPSa／b／c／d／i CRLF stxMPSa／b／c／d／e／f／i ERLF stx $/ M P S \underline{a} / \underline{\mathbf{b}} / \underline{\mathbf{c}} / \underline{\mathbf{d}} / \mathbf{e} / \mathbf{f} / \mathbf{g} / \underline{\mathbf{h}} / \underline{\mathbf{i}}$ CRLF

Parameter $=5$
Parameter $=7$
Parameter $=9$

Space between characters cannot be used．Each parameter cannot be omitted．
Designating 3 and 4 axes cannot be carried out in SC－200．
For SC－800 control，the axis number of synchronous motion is 4.

Command parameters

Function		Setting	Remarks
$\underline{\mathbf{a}}$	No．1 axis designation	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	No．1 axis target position	$-68,108,813 \sim 68,108,813$	
$\underline{\mathbf{C}}$	No．2 axis designation	$1 \sim 8$	Varies according to model
$\underline{\mathbf{d}}$	No．2 axis target position	$-68,108,813 \sim 68,108,813$	
$\underline{\mathbf{e}}$	No．3 axis designation	$1 \sim 8$	Varies according to model
$\underline{\mathbf{f}}$	No．3 axis target position	$-68,108,813 \sim 68,108,813$	
$\underline{\mathbf{g}}$	No． 4 axis designation	$1 \sim 8$	Varies according to model
$\underline{\mathbf{h}}$	No．4 axis target position	$-68,108,813 \sim 68,108,813$	
$\underline{\mathbf{l}}$	Response method	$0:$ Completed $1:$ Quick	

【Response】Returns status information．＊Return timing depends on Response method．

Status	Response data				
Normal	C	Tab	APS＜No． 1 Axis No．＞	cRLF	
Abnormal	W	Tab	APS＜No． 1 Axis No．＞	Tab	＜Warning No．＞
	CRLF				
	E	Tab	APS＜No． 1 Axis No．＞	Tab	＜Error No．＞

For $<$ Error No．$>$ and $<$ Warning No．$>$ ，refer to the＂ 6 －4．Error Code．＂
【Example】When simultaneously driving with MPS command for No． 1 to No． 3 axes
1．Sets the drive condition by setting the target positions of No． 1 to No． 3 axes to ？．（Type ？ character）
stx APS1／2／0／0／？／0／0／0
CRLF
stx APS2／2／0／0／？／0／0／0
CRLF
stx APS3／2／0／0／？／0／0／0
2．Sets No． 1 axis to the target position 1000，No． 2 axis to the target position 2000，and No． 1 axis to the target position 1500 ．

stx MPS1／1000／2／2000／3／1500／0

【Remarks】
P．The content set in APS ？is stored in the backup memory as MPS data．

ORG Origin Search

【Function】 Performs origin position detection according to the selected method．For return to origin， 14 methods can be selected．For details，refer to ＂2－3．Origin Return Method．＂

IFormat】 \quad sto $\mathbf{O R G} \mathbf{a} / \underline{\mathbf{b}} / \mathbf{c} / \mathbf{d} / \mathbf{d} / \mathbf{e} / \underline{\mathbf{f}}$ CRLF \quad Parameter $=6$

Space between characters cannot be used．Each parameter cannot be omitted．
For SC－800 control，the axis number of synchronous motion is 4 ．
Command parameter

Function		Setting			Remark
a	Designating axis		$1 \sim 8$		Varies according to model
$\underline{\text { b }}$	Accelerating and decelerating mode	1：Rectangula 3：Asymmetr 5：Asymmetri	drive rapezoidal drive S－shaped drive	2：Trapezoidal drive 4：S－shaped drive	
C	（Synchronizing mode）		0		Refer to LNK command．
d	Speed table selection		$0 \sim 9$		
$\underline{\text { e }}$	Origin return mode selection		$1 \sim 14$		\rightarrow Refer to＂3－3．Origin Return Method＂
f	Response method	0：Completed	1：Quick		＊ $1 \rightarrow$ Refer

Sensor configuration

Method	Sensor configuration	
1	S1，S3	Returning direction is determined and origin is detected with zone sensor．
2	S3	Edge of the zone sensor is set to be the origin position．
3	S1，S2，L－	ORG（Origin S1）located in NORG（S2 Origin Proximity）is set to be the origin position．
4	S2，L－	One sensor located in moving zone is set to be the origin position．
5	S1，L＋	Origin sensor in proximity of CW limit is set to be the origin position．
6	S1，L－	Origin sensor in proximity of CCW limit is set to be the origin position．
7	L＋	Edge of CW limit is set to be the origin position．
8	L－	Edge of CCW limit is set to be the origin position．
9	S1	Only origin sensor is used．
10	None	The present position is set to be the origin position．
11	S1，L＋	After the origin position is detected by method 5，and moved by the set value，this position is set to be the origin position．
12	S1，L－	After the origin position is detected by method 6，and moved by the set value，this position is set to be the origin position．
13	L＋	After the origin position is detected by method 7，and moved by the set value，this position is set to be the origin position．
14	L－	After the origin position is detected by method 8, and moved by the set value，this position is set to be the origin position．

【Response】Returns status information．＊Return timing depends on Response method．

Status	Response data							
Normal	C Tab	ORG＜Axis No．＞ CRLF						
Abnormal	E Tab	ORG＜Axis No．＞Tab						

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂

【Remarks】

Speed setting of manual operation cannot be changed by speed setting of ORG command．

OSC Repetition（oscillation）Drive

SC－200 SC－400 SC－800
【Function】 Oscillation moves between the present position and the target position．

Parameter $=11$

Space between characters cannot be used．
Each parameter cannot be omitted．
For SC－800 control，the axis number of synchronous motion is 4 ．

Command parameter

Function		Setting	Remarks
$\underline{\text { a }}$	Designating axis	1－8	Varies according to model
\underline{b}	Accelerating and decelerating mode	1：Rectangular drive 2：Trapezoidal drive 3：Asymmetric trapezoidal drive 4：S－shaped drive 5：Asymmetric S－shaped drive	
c	Synchronizing mode	0 ：Invalid 1：Valid	Refer to LNK command．
d	Selection of speed table	0～9	
$\underline{\text { e }}$	Oscillating direction	1：CW 0：CCW	
f	Moving target position	－68，108，813～68，108，813	
g	Oscillating times	$1 \sim 65,534$	One reciprocation by 2 times
h	Stop time	$0 \sim 65,534 \times 10 \mathrm{mSec}$	
$\underline{1}$	Shutter synchronization	0 ：Invalid 1：Valid	Fixed to 0 ＊Optional function
I	Backlash correction	0：Invalid 1： CW direction1 2． CCW direction1 3： CW direction2 4： CCW direction2 	\rightarrow Refer to the ASI command
k	Response method	0 ：Completed 1：Quick	＊ $1 \rightarrow$ Refer

【Response】Returns status information．＊Return timing varies depending on the Response method．

Status	Response data										
Normal	C								Tab	OSC＜Axis No．＞	CRLF
Abnormal	W	Tab	OSC＜Axis No．＞	Tab	＜Warning No．＞	ORLF					
	E	Tab	OSC＜Axis No．＞	Tab	＜Error No．＞	CRLF					

For $<$ Error No．$>$ and $<$ Warning No．$>$ ，refer to the＂ $6-4$ ．Error Code．＂
【Example】
1．Perform 5 reciprocations of the No． 1 axis between the present position and the position of 10000 ．
（Stop time when reversing： 0.1 seconds）

stx OSC1／2／0／0／10000／10／100／0／0／0 CRLF

【Remarks】

P．Carry out a stop during driving by the stop（STP）command．Refer to the STP command．
－When the Response method is set to be Quick，the present oscillating times can be known with the STR command．
（Note）When the Response method is 0：standard，no Response is returned if stopped by the STP command．
＊ 1 ．When controlling by GPIB，operations are constantly performed as＂ 1 ：Quick＂regardless of settings．

【Function】Responds with the counter value of the connected encoder input．

Command parameters

Function		Setting	Remarks
$\underline{\mathbf{a}}$	Designating input No．	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	（Mode）	0：Pulse 	1：Pulse + Offset 2：Angle conversion value 3：Angle conversion value＋Offset

【Response】Returns counter value．

Status	Response data		
Normal	C	Tab	RDE＜No．＞
Tab	＜Counter value＞	CRLF	
Abnormal	E	Tab	RDE＜No．＞

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂

【Example】Reads the second encoder value．

Command：stx RDE2／0 CRLF \downarrow

> Response:

C Tab RDE2Tab－2000CRLF

【Related】
ESI command Initial setting of the encoder

【Function】 Makes a response to the present set offset．

Space between characters cannot be used．Each parameter cannot be omitted．

Command parameters

Function		Setting	Remarks
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Varies according to model

【Response】Returns an offset value．

Status	Response data				
Normal	C	Tab	RDO＜Axis No．＞	Tab	＜Offset value＞
CRLF					
Abnormal	E	Tab	RDO＜Axis No．＞	Tab	＜Error No．＞

For $<$ Error No．$>$ ，refer to the item of＂ $6-4$ ．Error Code．＂
【Example】Reads the offset value of the first axis．
$\substack{\text { Command：} \\ \downarrow \\ \text { Response：} \\ \text { sty RDO1 CRLF } \\ \text { Clab RDO1 Tab 100 CRLF }}$

【Function】Responds with the present position information（counter value）．

Space between characters cannot be used．Each parameter cannot be omitted．
Command parameters

Function		Setting	Remark
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	（Mode）	0：Pulse 	1：Pulse + Offset 2：Angle conversion value 3：Angle conversion value + Offset

【Response】Returns the counter value．

Status	Response data		
Normal	C Tab	RDP＜Axis No．＞	Tab
＜Counter value＞			
AbRLF			

For $<$ Error No．$>$ ，refer to the item of＂ $6-4$ ．Error Code．＂

\triangle
If encoder correction was set，Response values read and converted by the encoder．
Reference APS RPS command
【Example】Reads the second coordinate value．
Command：stx RDP2／0 erLF
\downarrow
Response：
C Tab RDP2Tab123456ERLF

【Function】 Responds with present encoder setting information set by ESI command．

Space between characters cannot be used．Each parameter cannot be omitted．
Command parameters

Function		Setting	Remark
$\underline{\mathbf{a}}$	Designating encoder axis	$1 \sim 8$	Varies according to model

【Response】 Returns encoder setting information．
Plural parameters are returned wile being sandwiched by the Tab codes．

Status	Response Data	
Normal	c Tab	
Abnormal	E Tab	RES＜Axis No．＞Tab＜Error No．＞CRLF

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂

Details of parameters

Function		Setting	Remarks
$\underline{\mathbf{b}}$	N．C	0	Fixed to 0
$\underline{\mathbf{c}}$	Resolution conversion Denominator	$1 \sim 16,777,215$	
$\underline{\mathbf{d}}$	Resolution conversion Numerator	$1 \sim 16,777,215$	
$\underline{\mathbf{e}}$	Pre－scale	$0 \sim 16,777,215$	
$\underline{\mathbf{f}}$	Multiplication	$1,2,4-$ fold	
\mathbf{g}	Encoder polarity change	$0:$ Normal $1:$ Reverse	
$\underline{\mathbf{h}}$	Retry number	$1 \sim 10,000$ times	
$\underline{\mathbf{i}}$	Permissible stop range	$0 \sim \pm 10,000$ pulses	Encoder input pulse
\mathbf{i}	Waiting time	$1 \sim 10,000 \mathrm{msec}$	
$\underline{\mathbf{k}}$	Conversion Designating rounding	$0 \sim 9$ digits	Refer to RDE command

【Example】Reads the setting of No． 2 axis．
Command：stxRES2CRLF

【Related】
E S I Initial settings of the encoder

RMP MPC Motor polarity setting read

【Function】Responds with present motor related polarity setting information set by MPC command．

Parameter $=1$

Space between characters cannot be used．Each parameter cannot be omitted．

Command parameter

Function		Setting	Remark
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Varies according to model

【Response】Returns motor related polarity setting information．
Plural parameters are returned wile being sandwiched by the Tab codes．

Status	Response Data				
Normal	C Tab	RMP＜Axis No．＞Tab	＜Parameter	$\underline{b}>$ Tab	\sim Tab＜Parameter $\underline{\text { g }}$＜CRLF
Abnormal	E Tab	RMP＜Axis No．＞Tab	＜Error No．＞	CRLF	

For $<$ Error No．$>$ ，refer to the item of＂ $6-4$ ．Error Code．＂

Details of parameters

Function		Setting range	Remarks
$\underline{\mathbf{b}}$	Motor rotating direction	$0:$ Forward rotation 1：Reverse rotation	
$\underline{\mathbf{c}}$	CW limit sensor	$0:$ Positive 1：Negative	
$\underline{\mathbf{d}}$	CCW limit sensor	$0:$ Positive 1：Negative	
$\underline{\mathbf{e}}$	NORG sensor	$0:$ Positive 1：Negative	
$\underline{\mathbf{f}}$	ORG sensor	$0:$ Positive 1：Negative	
$\underline{\mathbf{g}}$	CW，CCW swap	$0:$ Positive 1：Negative	

【Example】Reads setting of No． 1 axis．
Command：stxRMP1CRLF
\downarrow
Response：CTabRMP1 Tab0Tab1Tab1Tab0Tab1Tab0CRLF

【Related】

MPC command Motor related polarity setting

【Function】 Responds with present motor related initial setting information set by ASI and MSI commands．
【Format】 stx RMS

Space between characters cannot be used．Each parameter cannot be omitted．
Command parameter

Function		Setting	Remark
$\underline{\mathbf{a}}$	Designating encoder axis	$1 \sim 8$	Varies according to model

【Response】 Returns motor related initial setting information．
Plural parameters are returned wile being sandwiched by the Tab codes．

Status	Response Data	
Normal	C Tab	RMS＜Axis No．＞Tab＜Parameter b＞Tab～Tab＜Parameter q＞${ }_{\text {cRLF }}$
Abnormal	E Tab	RMS＜Axis No．＞Tab＜Error No．＞CRLF

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂

Details of parameters

Function		Setting	Remark
\underline{b}	Start speed	$1 \sim 4,095,500 \quad$ PPS	＊Setting value of speed Table No． 0 （Refer to＂2－2．Speed setting＂）
C	Maximum speed	$1 \sim 4,095,500 \quad$ PPS	
d	Accelerating pulse number	$0 \sim 1,000,000$ pulse	
e	Decelerating pulse number	$0 \sim 1,000,000$ pulse	
f	Position after detecting origin	－16，777，215～16，777，215	
g	Pre－scale	$0 \sim 16,777,215$ pulse	
h	Backlash correction	$0 \sim 16,777,215$ pulse	
I	Angle conversion Denominator	$0 \sim 16,777,215$	
İ	Angle conversion Numerator	$1 \sim 16,777,215$	
k	（Conversion Trigonometric function）	0	＊Option
I	（Conversion Distance from center）	0	＊Option
m	Designating rounding off converted value	$0 \sim 9$	
$\underline{\square}$	Stop method when detecting limit	$\begin{aligned} & \text { 0: Emergency stop } \\ & \text { (1: Decelerating stop) } \end{aligned}$	＊Fixed to 0 for standard specification
O	Origin return mode	$1 \sim 14$	Returns present origin return mode．
p	Accelerating time	$1 \sim 1,000,000$	＊10msec
$\underline{\text { q }}$	Decelerating time	$1 \sim 1,000,000$	

【Related】
MPC command Motor related polarity setting

【Function】 Moves from the present position to a position by a set movement amount．

【Format】

stx RPSa／b／c／d／e／f／g／h CRLF

Parameter $=8$
Space between characters cannot be used．Each parameter cannot be omitted．
For SC－800 control，the axis number of synchronous motion is 4.

Command parameters

Function		Setting	Remark
a	Designating axis	1～8	Varies according to model
b	Accelerating and decelerating mode	1：Rectangular drive 2：Trapezoidal drive 3：Asymmetric trapezoidal drive 4：S－shaped drive 5：Asymmetric S－shaped drive	
c	Synchronizing mode	0：Valid 1：Invalid	Refer to LNK command．
d	Selection of speed table	0～9	
e	Movement amount	$-68,108,813 \sim 68,108,813$	
f	Backlash correction	0：Invalid 1： CW direction1 2： CCW direction1 3： CW direction2 4： CCW direction2	\rightarrow Refer to ASI command
g	Encoder correction	0：Invalid 2：Continue 1：Valid	\rightarrow Refer to ESI command
$\underline{\text { h }}$	Response method	0 ：When completed 1：Quick	＊ $1 \rightarrow$ Refer

【Response】Returns status information．＊Return timing depends on Response method．

Status	Response data	
Normal	c Tab	RPS＜Axis No．＞${ }^{\text {cRLF }}$
Abnormal	w Tab	RPS＜Axis No．＞ Tab $^{\text {a }}$＜Warning No．＞CRLF
	E Tab	RPS＜Axis No．＞Tab＜Error No．＞CRLF

For＜Error No．＞and＜Warning No．＞，refer to the＂6－4．Error Code．＂
【Example】
1．Moves No． 1 axis with trapezoidal drive by 1000 pulses．

stx RPS1／2／0／0／1000／0／0／0 CRLF

2．Moves No． 2 axis in negative direction by 2000 pulses with rectangular drive of speed 5
stx RPS2／1／0／5／－2000／0／0／0 CRLF
【Remark】
－Carried out a stop during driving by the stop（STP）command．Refer to the STP command．
（Note）When the Response method is 0：standard，no Response is returned if stopped by the STP command．
＊1．When controlling by GPIB，operations are constantly performed as＂1：Quick＂regardless of settings．
RPS command exerts no influence on setting of relative movement（REL）in manual operation．

RST
 System Reset

SC－200 SC－400 SC－800

【Function】 Resets all settings in the controller to the initial status（settings when shipping from the factory）．
［Format \quad stx RST CRLF \quad Parameter $=0$

Space cannot be used in the command sentence．
【Response】 Returns status information．

| Status | Response data |
| :---: | :--- | :--- |
| Normal | C Tab RST CRLF |
| Abnormal | E Tab RST Tab ＜Error No．＞ CRLF |

For $<$ Error No．$>$ ，refer to the item of＂ $6-4$ ．Error Code．＂
【Remark】
About 60 mS is required to complete the reset（Response）after transmitting RST command．

【Function】 Reads the present set value of the system setting parameters． For system setting，refer to the＂5－8－1．List of System Settings．＂
［Format］stx RSYa／b ［RLI \quad Parameter $=2$
Space between characters cannot be used．Each parameter cannot be omitted．

Command parameters

Function		Setting	Remark
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	System No．	$1 \sim 47$	

【Response】 Returns set value．

Status	Response data			
Normal	c Tab	RSY＜Axis No．＞Tab	＜System No．＞Tab	＜Set value＞CRLF
Abnormal	E Tab	RSY＜Axis No．＞Tab	＜Error No．＞CRLF	

For $<$ Error No．$>$ ，refer to the item of＂ $6-4$ ．Error Code．＂

【Example】

1．Check the excitation output status ON／OFF of No． 1 axis．

2．Check the origin return method of No． 2 axis．
stx RSY2／9CRLF－＞CTabRSY2Tab9Tab3CRLF \cdots Setting 3

RTB

【Function】Reads the present set value in the speed table．
［Format】

Parameter $=2$

Space between characters cannot be used．Each parameter cannot be omitted．
Command parameters

Function		Setting	Remark
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Table No．	$1 \sim 11$	

＊Tables No． 1 to 9 are used for drive commands such as APS and RPS．
Tables No． 10 and 11 are for joystick operation speed during manual operations．No． 10 is the setting in high speed operations，and No． 11 is the setting in low speed operations．
【Response】 Returns set value．

For $<$ Error No．＞，refer to the item of＂6－4．Error Code．＂
Response data

Item		Data range	Remarks
$\underline{\mathbf{b}}$	Table No．	$1 \sim 11$	$1-9:$ For drive system $10,11:$ Joystick operation speed
$\underline{\mathbf{c}}$	Setting method check	$0:$ MSI 1：ASI	＊1
$\underline{\mathbf{d}}$	Start speed	$1 \sim 4,095,500$	PPS
$\underline{\mathbf{e}}$	Maximum speed	$1 \sim 4,095,500$	PPS
$\underline{\mathbf{f}}$	Accelerating pulse number	$1 \sim 1,000,000$	Pulse
\mathbf{g}	Decelerating pulse number	$1 \sim 1,000,000$	Pulse
$\underline{\mathbf{h}}$	Accelerating time	$1 \sim 1,000,000$	$\times 0.01$ Second
$\underline{\mathbf{i}}$	Decelerating time	$1 \sim 1,000,000$	$\times 0.01$ Second

＊ 1 Returns command type（MSI or ASI）used for motor setting．

[^1]
STP Stop SC－200 SC－400 SC－800

【Function】 Stops the motor during driving．Stop only designated axis or stop all axes can be designated．

A Space between characters cannot be used．Each parameter cannot be omitted．

Command parameters

Function		Setting		Remarks
$\underline{\mathbf{a}}$	Designating axis	0 ：All axes stop	$1 \sim 8$ ：Designating axis	Varies according to model
$\underline{\mathbf{b}}$	Selecting stop mode	0 ：Decelerate and stop $\quad 1$ ：Emergency stop		

【Response】Returns set value．

Status	Response data	
Normal	C Tab	STP＜Axis No．＞CRLF
Abnormal	E Tab	STP＜Axis No．＞Tab

For $<$ Error No．＞，refer to the item of＂6－4．Error Code．＂
Δ
Response is transmitted at the time when the axis completely stops．

【Function】 Checks status of the controller．
（1）Checking driving operations
（2）Status of limit and sensor
（3）Error information

【Format】 stx STRa／b CRLF Parameter $=2$
\triangle
Space between characters cannot be used．Each parameter cannot be omitted．
Command parameters

Function		Setting	Remark
$\underline{\mathbf{a}}$	（Mode）	1	Fixed to 1（For standard specification）
$\underline{\mathbf{b}}$	Designating axis	$1 \sim 8$	Varies according to model

＊Designation of mode a is used for special specifications．Normally setting is fixed to 1.
【Response】 Returns status of controller．

Status	Response data
Normal	
Abnormal	E TabSTR＜Axis No．＞Tab＜Error No．＞ERLF

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂
Response data

Item		Status	Remark
$\underline{\mathbf{c}}$	Driving operations	0：In suspended 1：Operating alone 2：Operating as slave of link 3：Operating with multi－axes drive	
$\underline{\mathbf{d}}$	NORG signal	$0:$ OFF 1：ON	
$\underline{\mathbf{e}}$	ORG signal	$0:$ OFF 1：ON	
$\underline{\mathbf{f}}$	CW limit signal	$0:$ OFF 1：ON	
\mathbf{q}	CCW limit signal	0：OFF 1：ON	
$\underline{\mathbf{h}}$	Swing drive count number	Returns count number	In oscillation drive During normal time，the count number is 0.
$\underline{\mathbf{I}}$	Error	Returns error No．	If read once，it is cleared to 0.

【Function】 Performs linear interpolation in simultaneous drive of 2 or more axes．
【Description】 In general 2 axes simultaneous drive，if the moving distances or moving speeds of the axes are different from each other，the time period required to move also differs as shown by the broken line as shown in the figure on the right， however，if linear interpolation is designated， the velocities of respective axes are automatically calculated and respective axes move linearly．

【Format】

（2）Designating 3 axes stx SPSa／b／c／d／e／f／g／h／i／j／k／l／m CRLF

Parameter $=10$

Parameter $=13$

\LeftrightarrowSpace between characters cannot be used．Each parameter cannot be omitted．
Designation of 3 axes cannot be used for SC－200．
For SC－800 control，the axis number of synchronous motion is 4 ．

Command parameters

Function		Setting	Remarks
a	Designating No． 1 axis	$1 \sim 8$	Varies according to model
b	No． 1 axis target position	－68，108，813～68，108，813	
c	Designating No． 2 axis	$1 \sim 8$	Varies according to model
$\underline{\text { d }}$	No． 2 axis target position	－68，108，813～68，108，813	
$\underline{\text { e }}$	Designating No． 3 axis	$1 \sim 8$	Varies according to model
f	No． 3 axis target position	－68，108，813～68，108，813	
g	Accelerating and decelerating mode	1：Rectangular drive 2：Trapezoidal drive 3：Asymmetric trapezoidal drive 4：S－shaped drive 5：Asymmetric S－shaped drive	
$\underline{\text { h }}$	Speed table selection	$0 \sim 9$	
$\underline{\text { i }}$	No． 1 axis encoder correction	0：Invalid 1：Valid 2：Continue	\rightarrow Refer to ESI command
i	No． 2 axis encoder correction	0：Invalid 1：Valid 2：Continue	
k	No． 3 axis encoder correction	0：Invalid 1：Valid 2：Continue	
I	Backlash correction	0：Invalid 1：CW direction1 2：CCW direction1 3： CW direction2 4： CCW direction2	\rightarrow Refer to ASI command
\underline{m}	Response method	0 ：When completed 1：Quick	

【Response】 Returns status information．＊Return timing depends on the Response method．

Status	Response data		
Normal	C Tab	SPS＜No． 1 axis＞CRLF	
Abnormal	w Tab	SPS＜No． 1 axis＞Tab	＜Warning No．＞CRLF
	E Tab	SPS＜No． 1 axis＞Tab	＜Error No．＞CRLF

[^2]
【Example】

1．Moves No．1 and No． 2 axes to respective positions of No． $1=1000$ and No． $2=2000$ with trapezoidal drive and at speed 3 ．

sty SPS1／1000／2／2000／2／3／0／0／0／0 CRLF

2．Performs encoder correction for all 3 axes of No．1，No． 2 and No． 3 when they move to positions of No． $1=100$ ，No． $2=-200$ and No． $3=500$ respectively at speed 5 （table No．）．

str SPS1／100／2／－200／3／500／2／5／1／1／1／0／0 CRLF

【Remarks】

－Carries out a stop during driving by the stop（STP）command．Refer to the STP command．
（Note）When the Response method is 0 ：normal，Response is not returned if stopped by the STP command．
＊1．When controlling by GPIB，operations are constantly performed as＂1：Quick＂regardless of setting．

WRE Encoder write

SC－200 SC－400 SC－800

【Function】 Rewrites the counter value of the encoder．The counter value by the encoder signal continues to increase and decrease from the rewritten value．

Space between characters cannot be used．Each parameter cannot be omitted．
Command parameters

Function	Setting	Remarks	
$\underline{\mathbf{a}}$	Designating encoder axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Set value	$-68,108,813 \sim 68,108,813$	Pulse

【Response】 Returns status．

Status	Response data	
Normal	C Tab	WRE＜Encoder axis No．＞ CRLF
Abnormal	E Tab WRE＜Encoder axis No．＞Tab	＜Error No．＞CRLF

For $<$ Error No．＞，refer to the item of＂ $6-4$ ．Error Code．＂

WRO Offset write

SC－200 SC－400 SC－800
【Function】 Rewrites the offset value．

【Format】 \square Parameter $=2$

Space between characters cannot be used．Each parameter cannot be omitted．
Command parameters

Function	Setting	Remarks	
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Offset value	$-68,108,813 \sim 68,108,813$	Pulse

【Response】Returns status．

Status	Response data		
Normal	C Tab	WRO＜Axis No．＞	
CRLF			
Abnormal	E Tab	WRO＜Axis No．＞	Tab
＜Error No．＞	CRLF		

For＜Error No．＞，refer to the item of＂ $6-4$ ．Error Code．＂
Writes offset 100 to the present coordinate．
Command：stx RDP2／1 CRLF
\Longleftrightarrow C TabRDP2 Tab ORLF
Command：stx WRO2／100
CRLF
C TabRDO CRLF
Command：stx RDP2／1 ERLF
C TabRDP2Tab100 CRLF

【Remarks】

－The offset is also reflected on the read values converted to in angles．Issue the ASI and ESI commands in advance．

【Function】Rewrites the value of the present position．

A Space between characters cannot be used．Each parameter cannot be omitted．

Command parameters

Function		Setting	
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Remarks
$\underline{\mathbf{b}}$	Set value	$-68,108,813 \sim 68,108,813$	Pulse

【Response】Returns status．

Status				Response data
Normal	C Tab	WRP＜Axis No．＞GRLF		
Abnormal	E Tab			

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂

【Function】 Rewrites the set value of the speed table．
【Format】 \quad stx WTBa／b／c／d／e／f CRLF \quad Parameter $=6$
Space between characters cannot be used．Each parameter cannot be omitted．

Command parameters

Function		Setting	Remark
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Table No．	$1 \sim 11$	$1 \sim 9:$ For drive system $10,11:$ Joystick operation speed
$\underline{\mathbf{c}}$	Start speed	$1 \sim 4,095,500$	PPS
$\underline{\mathbf{d}}$	Maximum speed	$1 \sim 4,095,500$	PPS Maximum speed $>$ Start speed
$\underline{\mathbf{e}}$	Accelerating time	$1 \sim 1,000,000$	$\times 0.01$ second
$\underline{\mathbf{f}}$	Decelerating time	$1 \sim 1,000,000$	$\times 0.01$ second

Tables No． 1 to 9 are used for drive commands such as APS and RPS．
Tables No． 10 and 11 are for joystick operation speed during manual operations．No． 10 is the setting in high speed operations，and No． 11 is the setting in low speed operations．

【Response】 Returns status．

Status	Response data	
Normal	c Tab	WTB＜Axis No．＞GRLF
Abnormal	E Tab	WTB＜Axis No．＞Tab＜Error No．＞CRLF

For $<$ Error No．＞，refer to the item of＂6－4．Error Code．＂

【Reference】

RTB Command，APS Command，RPS Command

【Remarks】

T．The set content is stored in the backup memory．

TAS

【Function】Sets teaching of the n axes．（Links axis No．with the coordinate memory．）

Space between characters cannot be used．Each parameter cannot be omitted． 3 axes setting cannot be used for SC－200．

Command parameter

Function		Setting	Remark
$\underline{\mathbf{a}}$	Designating axis of coordinate memory 1	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Designating axis of coordinate memory 2	$1 \sim 8$	Varies according to model
$\underline{\mathbf{c}}$	Designating axis of coordinate memory 3	$1 \sim 8$	Varies according to model

【Response】Returns status of controller．

Status	Response data		
Normal	C Tab	WTB＜Axis No．$>$ CRLF	
Abnormal	E Tab	WTB＜Axis No．$>$ Tab	CError No．＞ CRLF

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂
【Example】
1．Sets teaching of 1 axis．

stix TAS1 CRLF

Position data of axis No． 1 is registered into the coordinate memory 1.
【Example】
2．Sets teaching of 2 axes．
Position data of axis No． 1 is registered into the coordinate memory 1.
Position data of axis No． 2 is registered into the coordinate memory 2.

【Example】

3．Sets teaching of 1 axis．
stx TAS $1 / 2 / 4$ CRLF
Position data of axis No． 1 is registered into the coordinate memory 1.
Position data of axis No． 2 is registered into the coordinate memory 2.
Position data of axis No． 3 is registered into the coordinate memory 3.
【Remarks】 Relation between the axis No．and coordinate memory set by this command is stored in the backup memory．

\triangleWhen teaching of 1 axis is performed，writing in the coordinate memory 2 or 3 （WRT command）， even if it is carried out，is invalid．

TMS Teaching Function Position Information set

SC－200 SC－400 SC－800

【Function】 Writes the coordinate value of the axis No．linked by TAS command in the designated memory address．

Space between characters cannot be used．Each parameter cannot be omitted．
Command parameters

Function		Setting	Remark
$\underline{\mathbf{a}}$	Coordinate memory address	$0 \sim 10,000$	

【Response】Returns status of controller．

Status	Response data	
Normal	c Tab	TMS＜Axis No．＞CRLF $<$ Memory address＞CRLF
Abnormal	E Tab	TMS＜Axis No．＞Tab＜Error No．＞CRLF

$<$ Number of axes >1 axis $=1,2$ axes $=2,3$ axes $=3 \quad$ For $<$ Error No．$>$ ，refer to the item of＂ $6-4$ ．Error Code．＂
【Example】
Performs teaching to write the coordinate values of 3 axes．

【Remarks】

For the speed tables，the speed table 0 is stored as a default when the TMS command is issued．
When attempting to change the speed table，use the WRT command to change．

【Function】Drives axis according to the value of the designated coordinate memory address．
［Format】

Parameter $=2$

Space between characters cannot be used．Each parameter cannot be omitted．
For SC－800 control，the axis number of synchronous motion is 4 ．

Function		Setting	Remark
$\underline{\mathbf{a}}$	Coordinate memory address	$0 \sim 10,000$	Varies according to model
$\underline{\mathbf{b}}$	Response method	0 ：Copmpleted 1：Quick	

【Response】Returns status of controller．

Status		Response data
Normal	C Tab TPS＜Number of axes＞CRLF	
Abnormal	w Tab	TPS＜Number of axes $>$ CRLF｜＜Waning No．＞${ }_{\text {cRLF }}$
	E Tab	TPS＜Number of axes $>$ Tab＜Error No．＞CRLF

$<$ Number of axes＞ 1 axis $=1,2$ axes $=2,3$ axes $=3 \quad$ For the $<$ Error No．＞and $<$ Warning No．＞，refer to the＂ $6-4$ ．Error Code．＂
【Example】
When the coordinate data is set as in the table below．

Status	Axis No．1		Axis No．2		Axis No．4	
	Coordinate value	Speed	Coordinate value	Speed	Coordinate value	Speed
0	100	0	100	0	100	0
1	110	0	120	0	130	0
2	115	0	125	0	140	0
3	10	0	20	0	30	0
4	----	-----	-----	-----	-----	----
----	----	-----	-----	-----	-----	-----
9999	----	-----	-----	-----	-----	----

RDT \quad Teaching Function Position Data Read
 SC－200 SC－400 SC－800

【Functions】 Reads out teaching data．＊This can be used as an editing function．

```
stx RDTa/blarLI
```

Parameter $=2$

Space between characters cannot be used．Each parameter cannot be omitted．
Command parameters

Function		Setting	Remark
$\underline{\mathbf{a}}$	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Coordinate memory address	$0 \sim 10,000$	

【Response】 Returns the position information and speed table No．

For $<$ Error No．＞，refer to the item of＂6－4．Error Code．＂

【Example】Reads out the coordinate memory address 100 of axis No． 1.
stx RDT1／100 CRLF
\Longrightarrow
C TabRDT1 Tab1234Tab0CRLF

Position Data Write

SC－200 SC－400 SC－800

【Functions】Rewrites the teaching data．This can be used as editing function．

【Response】 Returns status of controller．

Status	Response data		
Normal	C Tab	WRT＜Axis No．＞CRLF	
Abnormal	E Tab	WRT＜Axis No．$>$ Tab	CError No．＞CRLF

For＜Error No．＞，refer to the item of＂ $6-4$ ．Error Code．＂
【Example】Writes the position information 1245 and speed table selection 7 in the coordinate memory 100 of axis No． 1.

Easy control commands are a group of commands to drive with minimum parameters by using parameters set via manual operation．

Therefore，please notice that the movement changes when the internal parameters are changed via manual operation．

\section*{| PMS | Easv Control Speed Change |
| :--- | :--- | :--- |}

SC－200 SC－400 SC－800

【Functions】 Designates a speed table when executing easy control command．

A Space between characters cannot be used．Each parameter cannot be omitted．

Function		Setting	Remarks
\mathbf{a}	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Speed table selection	$0 \sim 9$	

【Response】 The Response method is Quick fix

Status				Response data
Normal	C Tab PMS＜Axis No．＞ERLF			
Abnormal	E Tab PMS＜Axis No．＞Tab	CError No．＞CRLF		

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂
【Example】Designates the speed table to 5 when executing easy control command．
stx PMS1／5CRLF $\quad \Longrightarrow$ C TabPMS1CRLF

【Functions】 Performs relative position movement．

Space between characters cannot be used．Each parameter cannot be omitted．
For SC－800 control，the axis number of synchronous motion is 4 ．

Function		Setting	Remarks
\mathbf{a}	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\mathbf{b}}$	Movement amount	$-68,108,813 \sim 68,108,813$	Pulse

【Response】The Response method is Quick fix．Use the STR command to check the end．

Status	Response data		
Normal	C Tab	PMP＜Axis No．$>$ CRLF	
Abnormal	E Tab	PMP＜Axis No．$>$ Tab	CError No．＞CRLF

For $<$ Error No．＞，refer to the item of＂6－4．Error Code．＂
【Example】Performs relative position movement of the axis No． 1 by 1000 pulses．
sts
PMP1／5CRLF
C TabPMP1 CRLF

\section*{| PMA | Easy Control Absolute position Drive |
| :--- | :--- | :--- |}

SC－200 SC－400 SC－800
【Functions】 Performs absolute position movement．

【Response】 The Response method is Quick fix．Use the STR command to check the end．

Status	Response data		
Normal	C Tab	PMA＜Axis No．＞CRLF	
Abnormal	E Tab	TMA＜Axis No．＞Tab	

For $<$ Error No．＞，refer to the item of＂6－4．Error Code．＂
【Example】 Performs absolute position movement of the axis No． 1 by 1000 pulses．
stx PMA1／1000CRLF $\longrightarrow C$ TabPMA1 CRLF

PMH Easy Control Origin search

 SC－200 SC－400 SC－800【Functions】 Performs relative position movement．

Space between characters cannot be used．Each parameter cannot be omitted．
For SC－800 control，the axis number of synchronous motion is 4.

Function		Setting	Remarks
\mathbf{a}	Designating axis	$1 \sim 8$	Varies according to model

【Response】 The Response method is Quick fix．Use the STR command to check the end．

| Status | Response data | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Normal | C Tab | PMH＜Axis No．＞ | CRLF | |
| Abnormal | E Tab | PMH＜Axis No．$>$ Tab | ＜Error No．＞ | CRLF |

For＜Error No．＞，refer to the item of＂6－4．Error Code．＂
【Example】 Performs origin search for the axis No． 1.
Origin search mode is dependent on SYS No． 5 ORG TYPE during manual operation．
stx
PMH1CRLF

C TabPMH1 CRLF

【Functions】 Collect data with two scaler counters while moving by the designated movement amount from the present position．
［Format】
stx SCNa／b／c／d／e／f／g／h／i／i CRLF
Parameter $=10$
Space between characters cannot be used．Each parameter cannot be omitted．
SCN Command parameter

Function		Setting	Remarks
a	Designating axis	$1 \sim 8$	Varies according to model
$\underline{\text { b }}$	Accelerating and decelerating mode	1：Rectangular drive 2：Trapezoidal drive 3：Asymmetric trapezoidal drive 4：S－shaped drive 5：Asymmetric S－shaped drive	
c	（Synchronizing mode）	0：Valid 1：Invalid	Refer to LNK command．
d	Selection of speed table	0～9	
$\underline{\text { e }}$	Movement amount （relative value）	$-68,108,813 \sim 68,108,813$	Pulse
f	Measuring STEP	$1 \sim 68,108,813$	Pulse
$\underline{9}$	Measuring time	$0 \sim 16,777,215$	g）Measuring time $=0$ the depends on the D ）speed of the Selection of speed table．
h	Backlash correction	0：Invalid 1：CW direction1 2：CCW direction1 3：CW direction2 4：CCW direction2	\rightarrow Refer to ASI command
I	Encoder correction	0：Invalid 1：Valid 2：Continue	\rightarrow Refer to ESI command
i	Response method	0 ：When completed 1：Quick	＊ $1 \rightarrow$ Refer

【Response】 Returns status information．＊Return timing depends on Response method．

Status	Response data		
Normal	c Tab	SCN＜Axis No．＞CRLF	
Abnormal	W Tab	SCN＜Axis No．＞Tab	＜Warning No．＞CRLF
	E Tab	SCN＜Axis No．＞Tab	＜Error No．＞CRLF

For the $<$ Error No．$>$ and $<$ Warning No．$>$ ，refer to the＂ $6-4$ ．Error Code．＂

Maximum sampling numbers（movement amount／measuring STEP）are 20000 points for Ch1 and Ch2 respectively．
The collected data can be read with the RBU command．
【Example 1】 When executing the SCN command by 1 axis control
Parameter setting method when using a goniometer with minimum resolution of $0.001^{\circ} /$ step．
【Measuring condition】Measuring range $\mathbf{0}^{\circ} \sim \mathbf{1 0}^{\circ}$
Measuring speed $\quad \mathbf{0 . 1}{ }^{\circ} \mathbf{S T E P} / \mathbf{S E C}$（Moves by 0.1° for 1 second）
Present value $\quad \mathbf{1 0}^{\circ}$
【Set value】 Movement amount $\mathbf{1 0 0 0 0 0}$ 【Pulse】
Measuring step 100 【Step】
Measuring time 1 【SEC】
stx APS1／2／0／0／0／0／0 CRLF Moves to 0° by absolute position movement

【Example 2】 When executing the SCN command by 2 axes synchronizing proportional control

AXIS＿＿A Parameter setting method when using a goniometer with minimum resolution of 0.001% step
AXIS＿＿B Parameter setting method when using a goniometer with minimum resolution of 0.001% step【Measurement condition】

AXIS A

AXIS＿B
B

【Set value】

Measuring range	$0^{\circ} \sim 10^{\circ}$
Measuring speed	0．1 ${ }^{\text {o }}$ STEP／SEC（Moves by $0.1{ }^{\circ}$ for 1 second）
Axis No． 1	
Present value	10°
Measuring range	$0^{\circ} \sim 50^{\circ}$
Measuring speed Axis No． 2	$\mathbf{0 . 0 5}{ }^{\circ} \mathbf{S T E P} / \mathbf{S E C}$（Moves by 0.05° for 1 second）
Present value	10°
Movement amount	100000 【Pulse】
Measuring step	100 【Step】
Measuring time	1【SEC】

stx LNK1／2／2 CRLF
stxAPS1／2／0／0／0／0／0 CRLF
stxAPS2／2／0／0／0／0／0 CRLF

Set AXIS＿B so as to perform synchronizing proportional movement with half of AXIS＿A．
Moves AXIS＿A to 0° by absolute position movement．
Moves $A X I S _B$ to 0° by absolute position movement．
1 CRLF Designates synchronizing proportion．

【Example 3】How to high speed Scan Setting

Please set the g）Measuring time to 0 ．
Measurement speed depends on \quad D）depends the Selection of speed table ．

【Remarks】
－Carry out a stop during driving by the stop（STP）command．Refer to the STP command．
（Note）When the Response method is 0 ：standard，no Response is returned if stopped by the STP command．
＊1．When controlling by GPIB，operations are constantly performed as＂1：Quick＂regardless of settings．

RBU Measurement SCAN Data Read

SC－400 SC－800
【Functions】 Reads the counter data collected by the SCN command．

Space between characters cannot be used．Each parameter cannot be omitted．
AP Command parameter

Function		Setting	Remark
$\underline{\mathbf{a}}$	Data source	1：Ch1 2：Ch2 3：Ch1 \＆Ch2 4：Ch1 \＆Ch2\＆Position	
$\underline{\mathbf{b}}$	Data No	$0 \sim 20,000$	

【Response】 Returns status information．＊Return timing depends on Response method．

Status				Response data
Normal				
	C Tab BUFa Tab b Tab c Tab d CRLF			
Abnormal	w Tab	BUF＜Data source＞	Tab	＜Warning No．＞CRLF
	E Tab	BUF＜Data source＞	Tab	＜Error No．＞CRLF

For the $<$ Error No．$>$ and $<$ Warning No．$>$ ，refer to items of＂ $6-4$ ．Error Code．＂

【Response data】

Item		Status	Remark
$\underline{\mathbf{a}}$	Data source	1：Ch1 2：Ch2 3：Ch1 \＆Ch2 4：Ch1 \＆Ch2 \＆Position	Ch1：Scaler counter1 Ch2：Scaler counter2
\mathbf{b}	Status	0：Data unconfirmed 1：Data confirmed 2：Data completed	
		$0 \sim 4,000,000$	
\mathbf{c}	Count value	$0 \sim 4,000,000$	Input frequency Max $\quad 4 \mathrm{MHz}$
\mathbf{d}	Count value	Input frequency Max $\quad 4 \mathrm{MHz}$	

【Explanation of Response parameter】
The Response parameter varies with selection of data source for transmission command．

sty	RBU1／0 CRLF
stx	RBU2／0 6 CRLF
stx	RBU3／0 CRLF
sts	RBU4／0 6 CRLF

C Tab RBU1 Tab＜Status＞Tab Ch1 Data \qquad
$\Longrightarrow c$ Tab RBU1 Tab ＜Status＞Tab

Ch2 Data CRLF
$\Rightarrow C$ Tab RBU1 Tab＜Status＞Tab Ch1 Data Tab Ch2 Data erLF $\Longrightarrow c$ Tab RBU1 Tab＜Status＞Tab Ch1 Data Tab Ch2 DataTab Position CRLF

【Example】 Explains a method for use in combination with the SCN command．
SCAN is started．The Response method is Quick．

【Remarks】
－The captured scaler data is held until the next SCN command is issued．
－The captured scaler data is stored in the backup memory．
－Carry out a stop during driving by the stop（STP）command．\rightarrow Refer to the STP command．
（Note）When the Response method is 0 ：standard，no Response is returned if stopped by the STP command．
＊1．When controlling by GPIB，operations are constantly performed as＂ 1 ：Quick＂regardless of settings．

SFT	Measurement	Fixed Time Measurement	SC－400	SC－800

【Functions】 Returns the number of pulses inputted into the data source within the set measuring period of time．
【Format】 \square Parameter $=2$

Space between characters cannot be used．Each parameter cannot be omitted．
APS Command parameters

Function		Setting	
$\underline{\mathbf{a}}$	Data source	$1:$ Ch1 \quad 2：Ch2 3：Ch1 \＆Ch2	
$\underline{\mathbf{b}}$	Measuring time	$1 \sim 16,777,215$	mSec

【Response】 Returns status information．＊Return timing depends on the Response method．

Status	Response data			
Normal	c Tab	SFT＜Data source＞Tab	Ch1 Data CRLF	
	c Tab	SFT＜Data source＞Tab	Ch2 Data CRLF	
	c Tab	SFT＜Data source＞Tab	Ch1 Data Tab	Ch2 Data CRLF
Abnormal	w Tab	SFT＜Axis No．＞Tab	＜Warning No．＞CRLF	
	E Tab	SFT＜Axis No．＞Tab	Error No．＞CRLF	

For the $<$ Error No．$>$ and $<$ Warning No．$>$ ，refer to the＂ $6-4$ ．Error Code．＂

【Explanation of Response parameter】
The Response parameter varies with selection of data source for transmission command．

【Example】
1．Measurement of pulse inputted into CH 1 for one second is carried out．

stx SFT1／1000 CRLF $\Rightarrow C$ Tab SFT1Tab Ch1 Data CRLF

1．Measurement of pulse inputted into CH 1 and CH 2 for one second is carried out．
SFT3／1000CRLF $\Rightarrow C$ Tab SFT1Tab Ch1 Data Tab Ch2

【Remarks】

Carry out a stop during driving by the stop（STP）command．Refer to the STP command．
（Note）When the Response method is 0 ：standard，no Response is returned if stopped by the STP command．
＊1．When controlling by GPIB，operations are constantly performed as＂1：Quick＂regardless of settings．

WCP \quad Drive Aid Constant PULSE write \quad SC－400 SC－800

【Functions】 Outputs constant speed pulses by the designated number of pulses at deceleration．

Space between characters cannot be used．Each parameter cannot be omitted．
WCP Command parameter

Function		Setting	Remarks
\mathbf{a}	Designating axis	$1 \sim 8$	Varies according to model
\mathbf{b}	Constant speed pulse	$0 \sim 20,000$	

【Response】Returns status information．＊Return timing depends on the Response method．

Status	Response data		
Normal	C Tab	WCP＜Axis No．＞${ }^{\text {CRLF }}$	
Abnormal	E Tab	WCP＜Axis No．＞Tab	＜Error No．＞CRLF

For the $<$ Error No．$>$ and $<$ Warning No．$>$ ，refer to the＂ $6-4$ ．Error Code．＂
【Remarks】
The set content is stored in the backup memory．

【Functions】 Reads out the set constant speed pulse．

【Format】
stx RCPa CRLF Parameter $=1$

Space between characters cannot be used．Each parameter cannot be omitted．
R CP Command parameter

Function		Setting	Remarks
\mathbf{a}	Designating axis	$1 \sim 8$	Varies according to model

【Response】 Returns status information．＊Return timing depends on the Response method．

Status	Response data			
Normal	c Tab	RCP＜Axis No．＞	CRLF	
Abnormal	E Tab	RCP＜Axis No．＞	Tab	＜Error No．＞CRLF

For the $<$ Error No．$>$ and $<$ Warning No．＞，refer to the＂ $6-4$ ．Error Code．＂

6-4. Error Code

6-4-1. Error Code

If an error is confirmed when transmitting a command, the controller returns an acknowledgement with the error code.
In addition, after a drive error occurs, an error code can be checked with status read (STR).

Command stx <Command>. . . . CRLF

When in normal, the head character is C . When an error occurs, an error code with E or W is returned.

6-4-2. List of Error Codes

System Related Error (* independent of command type)

Error code	Description	Remarks
1	No STX on head of command.	
2	Total number of commands is short.	
3	Absence of CR+LF	
4	Character other than specified characters and figures is included.	
5	No applicable command.	
10	Now operating in manual mode.	

Parameter Error

Error code	Description	Remarks
100	Total number of parameters is incorrect.	
10 n	Numerical value of $\mathrm{n}^{\text {th }}$ parameter is out of range.	$\mathrm{n}=1 \sim 7$
120	Value is designated so that movable value at one time is exceeded.	

Command Issue Sequence Error

Error code	Description	Remarks
200	Reset command is not issued.	
201	MSI and ASI commands are not issued.	
202	Link command is not issued.	
205	ORG command is not issued. (Origin is not detected))	
206	APS/RPS? command corresponding to the first parameter of MPS command is not issued.	
207	APS/RPS? command corresponding to the second parameter of MPS command is not issued.	APS/RPS? command corresponding to the third parameter of MPS command is not issued.
208	APS/RPS? command corresponding to the fourth parameter of MPS command is not issued.	
210	ESI command is not issued.	

Drive Related Error

Error code	Description	Remarks
300	PMG is in use.	Inside IC (Integrated circuit) related error
301	Speed setting is 0 in rectangular drive.	
302	Operating the axis during driving.	
303	Tried to rewrite the present value of the axis during driving.	
304	Stopped by CW limiter during driving.	
305	Stopped by CCW limiter during driving.	
306	Any axis on MPS driving stopped by limiter.	
307	Both of CW and CCW limiters are activated.	
308	Tried to move the axis for which excitation is OFF.	
309	Out of the control range in feedback control.	

Link Related Error * SC-800 Command

Error code	Description	Remarks
400	Hardware which does not allow for LNK driving.	
401	Operating axis during LNK driving.	
402	Link counter is now in use.	
403	Tried to rewrite present value of axis during LNK driving.	
404	Designated to stop axis which is driving by slave axis.	
405	Axis designation of LNK slave 1 is incorrect.	
406	Axis designation of LNK slave 2 is incorrect.	

Multi-Axes Setting Error

Error code	Description	Remarks
501	First parameter and second parameter are the same.	
502	First parameter and third parameter are the same.	
503	First parameter and fourth parameter are the same	
504	Second parameter and third parameter are the same.	
505	Second parameter and fourth parameter are the same.	
506	Third parameter and fourth parameter are the same.	

ASI, WTB, RTB Command Calculation Error

Error code	Description	Remarks
600	Accelerating pulse number is large, or accelerating time is long.	
601	Accelerating pulse number is small, or accelerating time is short.	
602	Decelerating pulse number is large, or decelerating time is long.	
603	Decelerating pulse number is small, or decelerating time is short.	
604	Preparation failure of speed table with WTB command.	

Warning Message

Error code	Description	Remarks
1	The target position and present position are the same.	* SC-800
2	In one move setting, waiting time is designated with OSC command.	Designated address to which a coordinate is not registered by the TPS command.
100		

SC-200/SC-400/SC-800 Operation Manual

MEMO

7. Internal Motor Driver

7-1. Driver Specifications

Model	MD-501A (SC specifications)
Driving Method	Micro Step Drive
Input Power	100 to 115 V AC $50 / 60 \mathrm{~Hz} 3.5 \mathrm{~A}$
Driving Current	0.5 to $1.4 \mathrm{~A} /$ Phase
Number of Divisions	16 stages, $1,2,4,5,8,10,16,20,25,40,50,80,100,125,200,250$
Low Vibration Drive	Internal 16 division drive when division number 1 and 2 are selected
Input Signal	Photo coupler Input resistance F, R: $300 \Omega \quad \mathrm{HO}: 390 \Omega$
Maximum Response Frequency	500 Kpps
Output Signal	Photo coupler insulation, Open collector output
Functions	Pulse input method switching, Automatic current down, Step angle switching, Drive voltage switching, Self-diagnosis function
Cooling Method	Natural convection air-cooling method
Weight	750 g
Insulation Resistance	Value measured between AC input and case with 500V DC megger at room temperature and room humidity is $50 \mathrm{M} \Omega$ or more.
Insulation Strength	No abnormality even when 1500 V AC is applied to AC input for one minute at room temperature and room humidity.
Operating Environmental	0 to $40^{\circ} \mathrm{C}$ No freezing.
Temperature	0 to $85^{\circ} \%$ No condensation.
Operating Environmental	
Humidity	

※The above are specifications for a single driver.

7-2. Arrangement of Driver

The built-in stepping motor driver is arranged under the main board.

The above diagram is for SC-200. Similarly, for SC-400, 4 drivers are arranged under the main board.

7-3 Open and close of Enclosure, Adjustment of Driver

Adjustments of the driver in the controller are required in order to perform setting of the division number for the micro step or to adjust output current.

Method to open and close the controller enclosure is as follows.

- Opening and Closing Enclosure
(1) Remove the 2 screws on the rear panel.

(2) Slightly move the upper cover backward, and lift it up.

(3) The adjustment part for the driver is seen from the gap on the side, and make adjustments by using tweezers and a clock driver.

(4) When closing, align pawls of the upper cover with that of the lower cover to close.

Carry out carefully so that no breakage or abnormality occurs.
A change in parts other than the driver adjustment part such as the switch is not allowed.
Please be advised that some products in the SC Series differ in the method of opening the enclosure depending on the specifications.

Internal Driver

Set the micro step division number with the rotary digital switch M1. The setting of the switch and the division number is as in the following table ("Setting table for division number")

Setting table for division number M1

Setting	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Division number	1	2	4	5	8	10	20	40	80	16	25	50	100	125	200	250

The driver is set to the setting 1 (2 divisions) when shipped from the factory.

Setting of Drive Current

Set the current when the motor is running with the digital switch indicated as RUN. The setting and the current value is as in the following table. Setting table for drive current RUN

Setting	0	1	2	3	4	5	6	7	8	9
Current value	0.5	0.58	0.66	0.75	0.81	0.88	0.96	1.03	1.10	1.15

The driver is set to the setting $3(0.75 \mathrm{~A})$ when shipped from the factory. If the product and our motor drive stage are purchased simultaneously, the settings of the motor and the stage are made compatible before shipment. In a case of replacement with another stage (motor), check the drive current of the motor for the setting.

Setting of Current-Down

If setting of automatic current down has been set (C.D switch is OFF), current down is performed at the set ratio when the motor stops. Set with the digital switch indicated as STOP.

Setting table for current down STOP

Setting	0	1	2	3	4	5	6	7	8	9
$\%$	27	31	36	40	45	50	54	58	62	66

In general, the driver is set to the setting $5(50 \%)$ when shipped from the factory.
When it is considered that the automatic current down has not been performed, check the switch setting for the correct setting.

7-4 Voltage change of Sensor Power Source

Power supply to each sensor, such as origin and limit can be changed to 5 V or 24 V .
When changing voltage, replacement of the jumper pins and resistance arrays are required. The setting is 24 V at shipment.

7-4-1. Position of resistance array and jumper pins

7-4-2. Setting

Supply voltage	5 V	24V(Setting at shipment)
Jumper pins		
Resistance arrays (Resistance value)	470Ω	

7-5 Change in encoder input system

About SC-200

1. Open Enclosure (refer to 93 page), and operate the jumper-pin on the substrate mounted in the reverse-side of a rear panel.

2 ."Differential input" or "Open collector input" can be chosen by the jumper pin.

About SC-400

1. Open Enclosure (refer to 93 pages), and operate the jumper-pin on the substrate mounted in the left-hand side when you look at a rear panel.

2 ."Differential input" or "Open collector input" can be chosen by the jumper pin.

About SC-800

1. Open Enclosure (refer to 93 pages), and operate jumper-pins on the substrate looked when you remove a bottom panel.

2 ."Differential input" or "Open collector input" can be chosen by the jumper pin.

8. Maintenance and After-Service

Power is not turned on

Is the power cord pulled out or loosened?
\rightarrow Plug the power cord into the main body securely.
Is the fuse on the rear panel inserted or burnt?
\rightarrow Insert or replace with a new fuse.
(If the fuse frequently burns out, this may be caused by an internal failure.)
\diamond Is power conducted to the outlet?
\rightarrow Plug the power cord of another electric appliance into the outlet, and check if the appliance operates.
\rightarrow Check if power is applied with a voltmeter such as a tester.
\diamond Is the power cord broken at some point?
\rightarrow Check conductivity between both ends of the cord if you have a tester.
\diamond The display plate and switches on the front panel do not light up while the heat release fan is rotating.
\rightarrow After turning off the power, turn on the power again. If the same phenomenon occurs, this is considered to be an internal failure.

Display on the front panel is incorrect.

Characters displayed are incorrect. That is, not displayed correctly.
\rightarrow After turning off the power, turn on the power again. If the same phenomenon occurs, this is considered to be an internal failure.

The device does not operate even when the joystick is tilted

Is "NON" displayed on the right upper portion of the liquid crystal screen?
\rightarrow This is in the prohibitive mode for joystick operations. Press the switch on the right upper portion of the display, and change the mode.Is there a rotating sound or abnormal sound?
\rightarrow This is considered to be an out-of-adjustment of the motor, therefore, change the speed, or adjust the output current of the driver.
(When there is a rotating sound), is the motor rotating?
\rightarrow If the device has been used for a long period of time, the coupling of the motor shaft may be loosened in some rare cases.
(When there is no rotating sound), do the limit indications light up?
\rightarrow The device stopped by the limit switch. Move in the reverse direction and move through the limit zone.
(When there is no rotating sound), is the stage connecting cable pulled out, or loosened ?
\rightarrow Securely plug the stage connector into the main body connector.
\diamond (In case of multi-axes specification), do all axes of the move?
\rightarrow If some axes move, but others do not, exchange the connectors of respective axes (motor), and determine whether trouble is caused on the main body side or motor side.

Origin return operations cannot be performed

Do the motors completely operate ?
\rightarrow Check the other items such as "The device does not operate even when the joystick is tilted".
(The axis stops at position which is not origin), is the origin sensor correctly installed?
\rightarrow Adjust the origin sensor.
\rightarrow In such a case where the moving range is small, the limit sensor range may overlap with the origin sensor range. In this case, the device does not operate properly. Make an adjustment so that the origin sensor range is out of the limit range.
\rightarrow When using the origin proximity sensor and origin sensor, take the positional relationship into account. If the origin is out of the origin proximity sensor range, the axis cannot return to the origin properly. Make an adjustment of the origin position.
(The axis stops at a position which is not the origin), is logic for origin sensor properly set?
\rightarrow Switch the input logic for the sensor (Normal open, Normal close).

Positional deviation

Is the setting such that the moving step value is incorrect?
\rightarrow Check each setting according to the Operation Manual.
Is the motor properly operating ? Does an abnormal sound occur?
\rightarrow An out-of adjustment may be considered, therefore, change the speed, or adjust the output current of the driver.
Is the load exceeding the rated applied ?
\rightarrow Check the load. Also try to lower the speed.
\diamond Is the axis in the limit range ?
\rightarrow In a case where the axis is in the limit range, the stop position and counter value are not guaranteed. Use it out of the limit range.
Is there any problem with the motor assembly and driving portions?
\rightarrow If the device has been used for a long period of time, the coupling of the motor shaft may be loosened.

Remote control (RS-232C, GP-IB) does not operate properly

Is the communications cable pulled out or loosened ?
\rightarrow Securely plug the connector of the communications cable into the connector of the main body.
Have the parameter settings of RS-232C and address settings of GP-IB been properly performed ?
\rightarrow Read the setting method in the Operation Manual for a check.
(When the settings have been changed, turn on the power again.)
\diamond Is a proper cable used ?
\rightarrow Check the arrangement of the connector pins on each cable.
During communications, is any error code transmitted?
\rightarrow Take measures for an error on the host computer.
Is there any error in the control program on the host computer?
\rightarrow Check the program. Please note that errors such as distinction between upper and lower case letters and setting of the delimiter code frequently occur.
\rightarrow Are commands transmitted and received properly？Make sure to receive data for commands which have a response（for example，status reading）．
Checking by support software．Support software which can be easily operated is also available．
\rightarrow If proper operations can be performed by the support software，it is considered that the user＇s software is not correctly written．

Are communications forcedly interrupted mid－stream？
\rightarrow Press the［RESET］switch，or turn on the power again．

8－2．Maintenance of Product

Maintenance of Controller

－In such cases of using in a dusty room，carry out internal cleaning periodically．
－When not using or storing for a long period of time，make sure to disconnect the power cord from the outlet and also to remove the other cables．
－Maintenance and service other than troubleshooting shall be carried out only by us at cost．

Maintenance of Stage

【Lubrication】
【Looseness of screws】
【Looseness of couplings】

8-3. Contact

If you have question about our products, fill in the necessary items below and notify us by FAX or mail. Questions by E-mail are also acceptable.

To KOHZU Precision Co., Ltd., Sales Department

 Zip 215-8521, 2-6-15 Kurigi, Asao-Ward, Kawasaki-City, Kanagawa-Prefecture
FAX +81-44-981-2181 E-mail: sale@kohzu.co.jp

※ Please do not hesitate to notify us of your questions and opinions about our company and our products.

8-4. Warranty and After-Service

If the product fails within the warranty period, we will repair free of charge under our stipulations.

Warranty Period	One year from the date of shipment

Request for repair within warranty period

Please contact the sales agent or commercial firm from which you purchased our product, or our Sales Department.

Repair after warranty period has elapsed

Even if the warranty period has elapsed, initially, consult the sales agent or commercial firm from which you purchased the product. Repairs shall be carried out depending on failure at cost.

- Maintenance for repairing parts

We will carry out maintenance of most parts for repair within a period specified by us after discontinuing production. Please understand that repair requiring parts for which the warranty period has elapsed may be rejected. Also, this condition may not be satisfied due to inconvenience of the parts supply maker.

9. Specification

9-1. General specifications

	SC-200	SC-400	SC-800
Number of axes controlled	2 axes	4 axes	8 axes
Number of axes controlled simultaneously	2 axes	4 axes	4 axes
Drive motor	5 phases stepping motor	$<-$	$<-$
Driver type	Micro step drive	$<-$	$<-$
Power for driver	100 V	$<-$	$<-$
Driving current	Maximum 1.4A/Phase	$<-$	$<-$
Power	$100 \mathrm{~V} \mathrm{AC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$	$<-$	$<-$
electricity consumption	$430 \mathrm{VA}(2$ axes motion)	$790 \mathrm{VA}(4$ axes motion)	$890 \mathrm{VA}(4$ axes motion)
Operating environment	Temperature $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ Humidity 0 to 85%	$<-$	$<-$
Exterior dimensions	W215 $\times \mathrm{H} 88 \times \mathrm{D} 425(\mathrm{~mm})$	$\mathrm{W} 215 \times \mathrm{H} 133 \times \mathrm{D} 425(\mathrm{~mm})$	$\mathrm{W} 215 \times \mathrm{H} 88 \times \mathrm{D} 425(\mathrm{~mm})$
Weight	5.8 kg	8.6 kg	4.6 kg

The electricity consumption value of SC-800 is shown in case of SD-800 connection.

9-2. Performance Specifications

	SC-200/SC-400/SC-800
Driving Function	2 axes simultaneously/independently, 2 axes linear interpolation, 3 axes linear interpolation (SC-400/SC-800), Trapezoidal/asymmetric trapezoidal drive, S-shaped/asymmetric S-shaped drive
Micro Step Division	16 stages $1 / 2 / 4 / 5 / 8 / 10 / 16 / 20 / 25 / 40 / 50 / 80 / 100 / 125 / 200 / 250$ Number
Set Movement amount	1 to 500 Kpps (according to driver)
Driving Frequency	14 methods
Origin Return Method	Display by pulse, Display by angle conversion, Display by encoder
Display Type	RS-232C/GP-IB
Communications Function	Continuous drive, Swing drive
Others	

9-3. Connector

9-3-1. Motor Connecting Connector

Connector model : S-1328 made by HIROSE ELECTRIC

9-3-2. RS-232C Connector

Connector Model : D-sub 9pins (DE-9)

9-3-3. GP-IB Connector

■Connector Arrangement	Signal Name	Pin A	nent	Signal Name
	DIO1	1	13	DIO5
	DIO2	2	14	DIO6
	DIO3	3	15	DIO7
	DIO4	4	16	DIO8
	EOI	5	17	REN
	DAV	6	18	GND
	NRFD	7	19	GND
	NDAC	8	20	GND
	IFC	9	21	GND
	SRQ	10	22	GND
	ATN	11	23	GND
	FG	12	24	GND

9-3-4. Pulse Connecting Connector (For SC-800, SD-800)

Connector model : S-1345(SC-800), P-1345(SD-800) made by HIROSE ELECTRIC

9-3-5. Signal Connecting Connector (For SC-800, SD-800)

Connector model : D-sub50pin female (SC-800), D-sub50pin male(SD-800)

	Pin Arrangement	Signal Name	Pin Arrangement		Pin Arrangement	Signal Name
	1	PM1_CWLS			34	PM1_CCWLS
	2	PM1_NORG	18	+24V	35	PM1_ORG
	3	PM2_CWLS	19	SGND	36	PM2_CCWLS
	4	PM2_NORG	20	+24V	37	PM2_ORG
S1E11	5	PM3_CWLS	21	SGND	38	PM3_CCWLS
	6	PM3_NORG	22	+24V	39	PM3_ORG
	7	PM4_CWLS	23	SGND	40	PM4_CCWLS
	8	PM4_NORG	24	+24V	41	PM4_ORG
	9	PM5_CWLS	25	SGND	42	PM5_CCWLS
	10	PM5_NORG	26	+24V	43	PM5_ORG
	11	PM6_CWLS	27	SGND	44	PM6_CCWLS
	12	PM6_NORG	28	+24V	45	PM6_ORG
	13	PM7_CWLS	29	SGND	46	PM7_CCWLS
	14	PM7_NORG	30	+24V	47	PM7_ORG
	15	PM8_CWLS	31	SGND	48	PM8_CCWLS
	16	PM8_NORG	32	+24V	49	PM8_ORG
	17	NC	33	SGND	50	NC
Supply voltage can be change +24 V to +5 V , refer to the "7-4. Voltage change of Sensor Power Source."						

9-3-6. Encoder Connecting Connector A/B (For SC-800, SD-800)

Connector model : D-sub37pin female (SC-800), D-sub37pin male (SD-800)

Pin Arrangement	Signal Name	Pin Arrangement	Signal Name
1	+5V	20	PM1_ENC_A
2	/PM1_ENC_A	21	GND
3	PM1_ENC_B	22	/PM1_ENC_B
4	GND	23	PM1_ENC_Z
5	/PM1_ENC_Z	24	+5V
6	PM2_ENC_A	25	/PM2_ENC_A
7	GND	26	PM2_ENC_B
8	/PM2_ENC_B	27	GND
9	PM2_ENC_Z	28	/PM2_ENC_Z
10	+5V	29	PM3_ENC_A
11	/PM3_ENC_A	30	GND
12	PM3_ENC_B	31	/PM3_ENC_B
13	GND	32	PM3_ENC_Z
14	/PM3_ENC_Z	33	+5V
15	PM4_ENC_A	34	/PM4_ENC_A
16	GND	35	PM4_ENC_B
17	/PM4_ENC_B	36	GND
18	PM4_ENC_Z	37	/PM4_ENC_Z
19	NC		

9-4. Exterior Dimensions

SC-200

SC-400

10. Attached CD-R

10-1. Configuration

The description of the attached CD-R is as follows.

Description	Folder name, File name	Remark
Operating Manual		This reference
Introduction Manual		
MD-501A Operating Manual(J)		Operating Manual for built-in driver
Sample software		RS-232C, GP-IB
Design files		DXF format

※ Descriptions may be subject to change without prior notice.

10-2. Sample software

The sample software is for Microsoft Visual Basic6.0 and Visual C++6.0. To execute software, the developing software is required. GP-IB sample software is for National Instruments GP-IB board.

History of change
August, 2002
January, 2003
July, 2004
Joystick related SYS settings changed
Correct misprint, add general spec, add connector arrangement (SC-800, SD-800), add annotation for remote command.
December,2004
'RBU Command' additional mode .
'SCN Command' additional mode .
Pioneering the door to the future with a commitment to technology

KOHZU Precision Co., Ltd.

Headquarters \quad Zip 215-8521
2-6-15 Kurigi, Asao-Ward, Kawasaki-City, Kanagawa-Prefecture Tel : +81-44-981-2131 Fax : +81-44-981-2181

E- mail: sale@kohzu.co.jp
Web Site: http://www.kohzu.co.jp/

Kohzu America 4900 Hopyard Rd. Suite 100 Pleasanton, CA 94588
Tel.: +1-925-468-4129 Fax: +1-925-468-4133
E-mail: sales@kohzuamerica.com
Web Site: http://www.kohzuamerica.com/

Section for recording

Production No.

Special note

Change Check-Sheet
Record a change in the setting of the main body and driver if made.

Customer Name		Serial No.	
Person in Charge		Date shipped/purchased	
Remarks			

DIP Switch

Speed Table

Axis Name																	
Selection		L	H	A	D	L	H	A	D	L	H	A	D	L	H	A	D
$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{\pi}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	0																
	1																
	2																
	3																
	4																
	5																
	6																
	7																
	8																
	9																
	10																
	11																

Setting for each axis

Changed Date Axis Name		-	- •	- •	-	-	-	- •	
	No=								
	No=								
	No=								
	No=								
	No=								
	No=								
	No=								
	No=								
	$\mathrm{No}=$								
	No=								
	No $=$								
	No=								
	No=								
	$\mathrm{No}=$								
	No=								
	No=								
Sensor Voltage									
	Model								
	STOP								
	RUN (Current)								
	M1 (Division number)								
	2/1CK								
	CD								
	L/HV								

[^0]: 5
 $*$ Multiplication (multiply) means multiplying frequency by n.

[^1]: 【Reference】
 WTB command，APS command，RPS command

[^2]: For the $<$ Error No．$>$ and $<$ Warning No．$>$ ，refer to the＂ $6-4$ ．Error Code．＂

