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1. Introduction     
 

Tailoring the geometry of a laser pulse is one of the important fields of laser research and 
application. The most common form of a laser pulse is a Gaussian distribution in all 
dimensions. Transversely, this is the solution of the paraxial Helmholtz wave equation. A 
Gaussian distribution is invariant under Fourier transforms in both transverse and 
longitudinal dimensions. 
     Many applications only require shaping the transverse irradiance profiles. Those include 
material processing, medical procedures, lithography, and optical data processing (Dikey & 
Holswade, 2000), mostly to generate a flat-top, homogeneous intensity distribution. A 
variety of aspheric optics designs exist to convert a Gaussian beam into a flat top beam 
(Dikey & Holswade, 2000; Hoffnagle & Johnson, 2000; Zhang, Neil, & Shinn, 2003).   
     Precise, high-fidelity temporal shaping is demanded in applications such as coherence 
control in quantum systems, optical signal processing, and laser-matter interaction for 
ultrafast electron and radiation sources and is made possible by the advent of ultrafast lasers 
(Weiner, 1995). Weiner (Weiner, 1995) has given a comprehensive review of available 
techniques. The two main techniques are the spatial light modulator (SLM) (Weiner, 2000) 
and the acousto-optic programmable dispersive filter (AOPDF) (Verluise et al., 2000), which 
allows phase and amplitude tailoring in the time and frequency domain in a ps or fs time.  
     Spatiotemporal control is intrinsically complex due to the difficulty in simultaneously 
controlling the spatial and temporal distribution. Examples of successful high-fidelity 
shaping are sparse. The techniques include the use of 2-D SLM to shape the waveform of the 
pulse at different spatial locations in a 2-D manner (Vaughan et al., 2002), or the use of the 
spatial temporal duality of light by transforming a 2-D holographic image into a 2-D spatial 
temporal distribution (Nuss and Morrison, 1995). Three-dimensional control thus far has 
only been achieved via structured optics (Piestun & Miller, 2001), or temporal multiplexing 
via volume holography (Hill, Purchase & Brady, 1995).  
     One of the important applications for multiple dimension control of a laser pulse is for 
high-brightness electron beam generation in a photoinjector. This is critical for cost effective 
X-ray free electron lasers (Brinkmann et al., 1997; Cornacchia et al. 1998) and other beam 
based light sources (Grunner et al., 2002), as well as ultrafast electron beam imaging and 
diffraction experiment (King et al., 2005). To this end,  viable solutions for a homogeneous 
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cylindrical beam have been developed using a  combination of transverse shaping  and 
temporal phase control, or with pulse stacking using multiple delay optics (Sider, 1998; 
Tomizawa et al., 2006) and birefringence crystals (Dromey et al., 2007; Will & Klemz 2008; 
Bazarov, Ouzounov& Dunham, 2008; Sharma, Tsang & Rao, 2009).  
     For the more desirable homogeneous ellipsoidal beam shape due to totally linear space 
charge force (Reiser, 2005), pulse stacking becomes very complicated, though theoretically 
still possible, for example, via temporal multiplexing via volume holography (Hill, Purchase 
& Brady, 1995). The drawback, besides the low efficiency, is the volatility of the hologram 
media, which degenerates during readout (Brady & Psaltis, 1992).  
     In this chapter, we will discuss a new way of controlling the spatiotemporal distribution 
of photons via the well known chromatic dispersion in an optical system (Li and Lewellen, 
2008; Li & Chemerisov, 2008; Li, Chemerisov & Lewellen, 2009). Normally, such effect 
causes adverse effects that distort both the temporal and the spatial fidelity of a laser pulse. 
In space, this gives rise to chromatic aberration, i.e., light of different wavelength will focus 
at different distance from the lens. For ultrashort pulses, significant lengthening of the pulse 
has been predicted and observed (Bor, 1989; Bor & Horvath, 1992; Kempe et al., 1992).  
     However, due to the wavelength and phase dependence of the chromatic dispersion, 
pulse engineering is possible by coupling the space and time domain properly using 
available time and frequency domain phase- and amplitude- tailoring techniques.  
     We will start with a discussion of the chromatic aberration and its coupling to the time 
domain phase in a singlet lens, followed by Fourier optics of a laser pulse transmitted 
through a singlet lens with examples of temporal distortion due to chromatic dispersion for 
pulse with and without nonlinear phases. We will then give an example of using the 
aberration-phase coupling for an ellipsoidal pulse generation together with a proof-of-
principle experiment. Future work will also be addressed.   

 
2. Formulation of chromatic dispersion in an optical singlet lens  
 

2.1 Chromatic aberration in Gaussian optics 
Chromatic dispersion is the phenomenon in which the phase velocity and group velocity of 
a wave depends on its frequency, arising from the dependence of the refractive index upon 
the optical frequency (Born & Wolf, 2003). 
     Chromatic dispersion, as a function of frequency, manifested itself into space as 
chromatic aberration in an optical lens, where light with different frequency focuses at 
different location. For a thin, singlet spherical lens in air, the focal length f is  
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where R1 and R2 are the radius of curvature for the entrance and exit side of the lens, 
respectively, n() is the frequency- or wavelength-dependent refractive index of the lens 
material. From Eq. (1), the change of the focal length due to a shift in frequency  is  
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where f0 is the nominal focal length at 0. We assume a constant =dn/d for this analysis. 
At the nominal focal plane for 0, this leads to a defocused beam or a larger focus size. In 
Gaussian optics, this new focus size can be easily calculated, 
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Here w0=N0/ is the beam waist at the nominal wavelength 0, with N the numerical 
aperture, and zR=w02/0 is the Rayleigh range. Note that both the beam waist and the 
Rayleigh length are a function of the wavelength. However, in our analysis, the effect is 
small and is henceforth ignored.  
     It is obvious from Eqs. (2) and (3) that if one can program  in time, a programmable 
time-dependent beam size can be achieved at certain focal plane. At f>> zR, one has,  
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For a given w(t), the needed phase of the laser pulse can be obtained as   




 dttw
f

Nn
dttt )(

1
)()(

0

0


 .    (5) 

For a desired time-dependent intensity I(t), the amplitude of the laser should be  
 )()()( 2/1 twtIta   .     (6) 

This is an example of how behaviour in time and space can be coupled, and it is only made 
possible though the manifestation of chromatic dispersion into chromatic aberration. This 
forms the theoretical base for our spatiotemporal shaping method.  
      As can be seen below, the final result is also significantly affected by the time domain 
effect and certain diffraction due to the apodization of the beam.  
 

2.2 Time domain effects using Fourier optics 
The above discussion is based on geometry and Gaussian optics, where the effect due to 
dispersion is only considered in the space domain. As dispersion is mainly due to 
dependence of group and phase velocity on frequency, thus the primary effect is in the time 
domain.  
      To treat the time domain effect, we base our discussion on the Fourier optics formula for 
a dispersive singlet lens elaborated by Kempe et al. (Kempe et al., 1992): 
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Here U is the frequency domain representation of the field at the focal plane, f0 is the 
nominal focal length of the lens. Here A(,) =F[a(,t)exp(-j(t))] is the Fourier transform of 
the input pulse; and , , and  are the lens radius or beam aperture, the ray entrance 
location from the axis, and the azimuthal angle, respectively. 1 is the lens transfer function, 
with kl and ka the wave numbers in the lens and air, respectively. 1 derives its -
dependence from the thickness variation of the lens across the beam aperture. For a flat top 
input beam, at the focal plane of the lens and on axis at r=0, Eq. (7) can be rewritten as  
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The time domain field can be obtained by an inverse Fourier transform of Eq. (9), 

   adtu 2)( .     (10) 

Where the symbol * represents convolution, with =(,t)= F-1 (,), respectively. Here F-1 

denotes inverse Fourier transformation.  
     Following the elaboration in Kempe et. al. (Kempe et al., 1992) and ignoring the constant 
phase terms, we obtain from Eq. (9a) for =-0,  
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Here d is the thickness of the lens center at =0. Thus we have 
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For a Gaussian input pulse,  
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where  is the full width at half maximum (FWHM) of the pulse, we obtain from Eqs. (10) – 
(12),  
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In comparison with the input pulse, Eq. (14) shows two effects. The first is the group 
velocity delay (GVDE), which causes the pulse originate at different radial location  to arrive 
at the focus at different time characterized by T() and has a quadratic dependence on the 
radius  of the entrance position. For short pulses, this leads to time broadening as first 
discussed by Bor (Bor, 1989).  
     The second effect is the common group velocity dispersion (GVDI), i.e., light waves with 
different frequencies propagate at different group velocities in a dispersive medium, which 
also leads to lengthening of the pulse.  
     An interesting example is when the input pulse has a significant time/envelope 
dependent nonlinear phase such as a third order phase due to self-phase modulation (SPM) 
or B-integral (Li & Crowell, 2007). As we will see, this is the regime where our 
spatiotemporal shaping method resides, as described by Eqs (5) and (6).  
     We assume that the pulse has a small enough bandwidth, hence the second order terms 
in Eq. (7) can be neglected, therefore 

  Tktt  ),(  ,    (16) 

and the nonlinear Schrodinger equation (NLSE) (Agrawal, 1995) governing the propagation 
of a laser pulse in a nonlinear medium can be analytically solved to give the pulse right after 
the lens as, 
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Here  is a phase modulation parameter, =T/d if the SPM is generated in the lens and 
=L/d if the self modulated phase is accumulated before arriving at the lens through an 
effective beam path of L. The pulse at the focus is then 
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  We can see that similar to Eq. (14), the integrand in Eq. (18) shows that the field at the focus 
is the superposition the of pulse slices with shifted arriving time. However, the temporal 
dependence of the phase now causes the superposition to be either constructive or 
destructive, and in general with small enough , shortened the pulse. This is depicted in 
Figs. 1 (a) and (b), showing the real part of the integrand in Eq. (18) as a function of t and . 
The drifting of the field pattern as function of  is clear resulting into shortened pulses u(t), 
as shown in Figs. 1 (c) and (d). The pulses are shortened to 0.21 ps and 0.2 ps from that of 
the input pulse of 1 ps for =T/d and =L/d=1, respectively, a factor of 5 in reduction. In the 
calculation, we use a fused silica lens of f0=150 mm, d=5 mm, and an aperture of =12 mm in 
radius. The laser wavelength is 249 nm. An intensity of 5×1011 W/cm2 is used resulting into 
a =15 rad. We use an n2=2.38×10-16 W/cm2 (Taylor, Rodriguez & Clement, 1996). This pulse 
shortening is in contrast to the lengthening effect discussed by previous authors (Bor, 1989; 
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Figure 1 The real part of the complex field at the focus as a function of time and radius 
for =T/d (a) and =1 (b), and the corresponding the intensity of the integrated field 
(solid) and the input pulse (dashed) as a function of time for the same cases [(c) and (d)]. 
The input pulse is shortened from 1 ps to 0.21 (c) and 0.20 ps (FWHM) (d) at the focus, a 
reduction by a factor of 5. The calculation assumes an f=150 mm lens with =12 mm and 
d=5 mm. The laser wavelength is 249 nm with =15 at a laser intensity of 5×1011 W/cm2. 
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Bor & Horvath, 1992; Kempe et al., 1992). Under the same condition, a 50 fs pulse would be 
stretched to 0.5 ps without the SPM. Because of the similarity, we limit our discussion for 
cases with =1 in the following.  
    As the pulse shortening is due to localized destructive superposition of the field, first, the 
phase slip between the pulse slices should be bigger enough so that destructive 
superposition dominates and, second, the phase slippage should be small enough so that the 
phase span is limited and the final pulse will not become the sum of a set of quasi random 
phaser, which will result in a thermal light (Goodman, 1985). Let the group delay between 
the center and edge be t, the above statement can be expressed as tconstant, or  

constant,    (19) 
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    The scaling in Eq. (20) is qualitatively demonstrated in Fig. 2, where the ratio of the 
FWHM at the focus to that of the input pulse is plotted as a function of  and , where the 
maximum shortening centers around =2 -3. Although the plot in Fig. 2 is for an input 
pulse duration of 1 ps, it is verified that it is universal and covers for a large range of input 
pulse duration from a few fs to several ps if the GVDI is ignored.  
    To gain more insight, a set of numerical integration for Eq. (7) is carried out with SPM 
effect included in the input pulse and with GVDI in the lens considered. Fig. 3 (a) shows the 
on-axis pulse envelope as a function the distance from the focus. In Fig. 3 (b-c), the intensity 
distribution as a function of radius and time of the 1 ps pulse at the focus are compared with 
and without SPM. Clearly, the pulse is significantly shortened and maintains its short 
duration in a large space range, and its spatial fidelity is well maintained. The rest of the 
pulse is “scattered” away from the focal region due to the wavefront distortion.  
     It should be mentioned that, the modulated phase can also be acquired through cross 
phase modulation (XPM) when multiple laser beams overlaps in time and space in the same 
medium, and can be more severe than SPM.  
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Fig. 2 Output/input pulse duration ratio as a function of time shift parameter  and the 
phase shift parameter  for a =1 ps Gaussian pulse for =1. The two dotted lines are 
=2 and 3. Calculation for pulse duration ranging up to a few nanoseconds gives 
identical distributions.  
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     Note that Eq. (18) is valid only when  <<1 for both input pulse and the pulse with the 
modulated phase, this eventually limits the initial pulse duration, the medium length, and 
the laser pulse intensity. The laser intensity is in addition limited by the damage threshold 
of fused silica, which is a few times of 1012 W/cm2 (Stuart et al., 1995; Tien et al., 1999). For 
the examples in this chapter, the validity is checked by solving the NLSE (Agrawal, 1995) 
numerically.  
     This pulse shortening due to SPM is only one of the examples how dispersion can affect 
the performance of an optical lens and needs to be carefully examined for many applications 
involving manipulating intense UV beams, such as focusing the multi kilo joule UV laser 
beam into a holrum in inertial confinement fusion experiments and in shaping and 
delivering an high quality UV pulse for a modern photoinjector which we will discuss 
below. In those applications the modulated phase may accumulate duration the laser 
transport and frequency conversion. The remedy is to use achromatic optics when possible, 
which has been shown to be effective in mitigate the pulse lengthening effect. 

 
3. Application to ultrafast, spatiotemporal pulse engineering: a light ellipsoid  
 

3.1 Numerical results   
Though the potential of using Eqs. (5) and (6) for designed spatiotemporal shaping is 
unlimited, a practical example of the spatiotemporal shape is the uniform ellipsoidal (UE) 
pulse desired for modern photoinjectors (Reiser, 1995; Li & Lewellen, 2008; Limborg_Depray 
& Bolton, 2006) to generate high brightness electron beams. Such beam profile provides the 
possibility of maximizing the beam brightness with high efficiency suitable for more cost 
effective X-ray free-electron lasers and other electron beam-based light sources (Brinkmann 
et al., 1997; Cornacchia et al. 1998; Grunner et al., 2002). The envelope of the beam is defined 
by an ellipsoid surface 

2
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Fig. 3 (a) On axis laser pulse envelope as a function of the distance from the focus and 
temporal and spatial distribution of focus for SPM shortened pulse (b) and a pulse 
without SPM effect (n2=0) (c). The calculation assumes an f0=150 mm lens with =12 mm 
and d=5 mm, =15 at laser intensity of 5×1011 W/cm2. 
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Here 2 is the full temporal width and R0 the maximum radius. Within the envelope, the 
electron distribution should be homogeneous and outside the envelope, there should be no 
electrons at all. The scheme for generating such an electron distribution via dynamic self 
evolution (Luiten et al., 2004; Musumeci et al., 2008) is limited to low charge cases (Li & 
Lewellen, 2008), thus to generate an ellipsoidal laser beam remains the ultimate solution and 
challenge.  
     To generate an ellipsoidal envelope described by Eq. (21), substitute w(t) with R(t) in Eq. 
(5), the desired phase becomes, 
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where =1/2, and (n0-1)NR0/f0 is the maximum frequency shift. To keep the laser flux 
|a(t)|2/R(t)2 constant over time, we have 
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with =1/2. Equations (22) and (23) describe a pulse that can form a spatiotemporal ellipsoid 
at the focus of a singlet lens.  
     As mentioned earlier, Gaussian optics method is used to obtain Eqs. (5) and (6), thus Eqs. 
(22) and (23) does not treat the effects of diffraction due to beam apodization and the time 
domain effect of dispersion described in Sec. 2.2. These effects are numerically evaluated 
using a Fourier optics model described by Eqs. (7) and (8).  
     In fact, the group delay and diffraction effects prevent us from generating a perfect UE 
pulse, thus  and in Eqs. (22) and (23) are adjusted for better emittance in accordance with 
the particle simulation (Li & Lewellen, 2008; Li, Chemerisov & Lewellen, 2009). The time 
and frequency domain representations of a pulse with excellent emittance performance are 
shown in Figs. 4 (a) and (b), with =6 ps, 0.25 m, and  The spatiotemporal 
flux at the focal plane of an f0=150 mm fused silica lens is given in Fig. 4 (c). In particle 
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Fig. 4 Time and (b) frequency domain representation (solid line: intensity; dashed line: 
phase), and (c) the spatiotemporal intensity distribution of a laser pulse that gives an 
excellent emittance performance in beam simulation [=1/2 at t<0, =1 at t≥0, and 
=1/2 in Eqs. (22) and (23)]. The pulse has a 5% full bandwidth at 249 nm (about 1% full 
width at half maximum). A =25 mm and f0=150 mm fused silica lens is used. The 
spatiotemporal distribution in (c) represents the laser pulse to be applied to the cathode.  
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tracking simulation, the emittance performance of the beam was found to closely mimicking 
that of an ideal ellipsoidal beam (Li & Lewellen, 2008; Li, Chemerisov & Lewellen, 2009). 
     The intensity in Fig. 4 (c) displays the basic features of a UE pulse but with noticeable 
distortions. The distortion has three components representing three different physics, which 
can be more clearly observed in the dependence of the spatiotemporal profile on the laser 
and lens parameters in Figs. 5 and 6. Figure 5 shows simulated spatiotemporal profiles of 
the laser pulse as a function of the laser bandwidth = 8%, 4%, 2%, 1% and 0.5% with a 
lens radius of =25 mm. Figure 6 shows profiles as a function of the lens radius  at a fixed 
bandwidth = 8%.  
     The first effect is the group velocity delay effect shown in Eq. (14), which generates the 
prominent recess in the leading edge and the protrusion at the trailing edge. This is due to 
the group delay between rays traversing the lens at different radii, with the maximum delay 
determined by the lens parameters. With longer pulses, or smaller beam aperture, the 
impact can be much reduced, as can be seen in Fig. 6.  
     The second effect is the obvious diffraction fringes, mostly clear at smaller beam 
apertures. The detail of the diffraction structure depends on the laser bandwidths and other 
factors (Figs. 5 and 6). Even in this application the effect is detrimental and needs further 
analysis, this complicated diffraction patter can provide another dimension for 
spatiotemporal control of the pulse. Using apodization to manipulate the depth of focus was 
explored decades ago (Welford, 1960) and the effect of apodization of an ultrafast laser pulse 
remains an interesting research topic (Veetil, 2006).  
     The third effect is that is discussed in Section 2.2, the temporal modulation due to 
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Fig. 6 Numerically calculated spatiotemporal laser profiles with different input beam 
size (flat topped) using the same  and  as in Fig. 1(c). From left to right:  =25, 12, 6, 4, 
and 2 mm. Note the different scales in r as noted in each panel.  
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Fig. 5 Numerically calculated spatiotemporal laser profiles with different input 
bandwidth with =25 mm input beam (flat topped) using the same  and  as in Fig. 
4(c). From left to right: =8%, 4%, 2%, 1%, and 0.5%. Note the different scales in r as 
noted in each panel.  



Name of the book (Header position 1,5) 

 

10 

superposition of the field with different phase, originating form the time-dependent phase 
of the input pulse.  
     As expected, as the bandwidth decreases, the maximum radius of the beam decreases 
proportionally, and the diffraction structure becomes more dominant. Smaller beam size the 
also makes diffraction more dominant. Though the effect on the beam needs to be evaluated 
further, it is clear that larger beam size and larger bandwidth is preferred. 
     The 3-D distribution can in general be image-relayed using achromatic optics to maintain 
the temporal-spatial fidelity, and the associated dispersion can be pre-compensated, as can 
be seen in the proof-of-principle experiment in the next section.  
 

3.1 Experiment and results  
The phase in Eq. (22), though apparently complex, is dominated by the common third order 
phase that can be generated via self-phase/cross phase modulation and is exploited in 
various laser applications, especially in few cycle pulse generation for the large bandwidth it 
generates during propagation. For a precise control, one of the practical solutions is the 
acousto-optic programmable dispersive filter (AOPDF) (Verluise et al., 2000). AOPDF uses 
the transient Bragg effect in a crystal induced by an acoustic wave to manipulate the phase 
and amplitude of a laser pulse. 
     A proof-of-principle experiment is carried out. A schematic of the experiment is shown in 
Fig. 7. A pair of Pockel cells is used to reduce the repetition rate of a Ti: Sa oscillator from 90 
MHz to 1 kHz. The 40-nm bandwidth pulse is stretched to135-fs after the Pockel cells. It is 
split into two arms. One traverses a delay line to serve as a probe beam. The other, denoted 
as the main beam, is sent through an AOPDF and is modulated in phase and amplitude. It is 
then spatially filtered to generate a Gaussian beam using a pair of achromatic lenses and a 
pinhole. A plano-spherical ZnSe lens (25-mm diameter, 88.9-mm radius of curvature, and 
2.9-mm center thickness, Janos Technology, A1204-105) is used for its high dispersion (250 
fs2/mm at 800 nm) to form the desired spatiotemporal distribution at its focal plane. The 
focal plane is image-relayed by an achromatic lens onto a CCD camera to interfere with the 
probe beam. The interference fringes as a function of delay between the two beams are 
recorded on a 12-bit camera and are used to extract the spatiotemporal intensity distribution 
of the main beam. The imaging system is aligned to focus at 845 nm, accomplished by 
generating an 845-nm beam via the AOPDF.  

 

C 

AL 
ZSL 

SF 

PP 

D 

ODL 

I 

 
 
Fig. 7 Schematic of the experiment. Keys: PP: pulse picker; D: DAZZLER; SF: achromatic 
spatial filter; ZSL: ZnSe lens; AL: achromatic image relay lens; ODL: optical delay line; C: 
camera. I: iris.  
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     For the delay scan, the AOPDF is set up according to Eqs. (4) and (5), with =1 ps and a 
full bandwidth from 845 nm to 790 nm. The spectrum modulation function is calculated 
using the native spectrum of the laser to generate those specified by Eqs. (22) and (23). At 
the focus of the ZnSe lens, this pulse is expected to generate a tightly focused spot at the 
beginning and end of the pulse, but be defocused between the ends. Unless specified, all the 
second-order dispersion in the optics, including the third- and fourth-order dispersion in the 
AOPDF crystal, are canceled by properly setting the AOPDF. The calculated amplitude and 
phase in the time and frequency domains are given in Figs. 8 (a, b), together with a spectrum 
measured in the experiment. Although the measured spectrum closely matched the 
theoretical one, some deviation is evident and is expected due to the limited crystal length 
and slightly nonlinear response across the spectrum of the AOPDF. The transverse beam 
profile is given in Fig. 8 (c) with a 1/e2 radius of 6 mm. To avoid potential saturation effect 
of the AOPDF, the power level is set at 20%. Figure 9 shows the spectrum at several power 
settings of the AOPDF where the variation is clearly visible.  
  To extract the spatiotemporal intensity of the main beam, we start with the signal recorded 
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Fig. 8 Laser pulse amplitude a (bold solid lines) and phase  (dashed lines) calculated 
from Eqs. (5) and (6) for  = =1/2 in the time (a) and frequency (b) domains, and the 
measured spectrum amplitude (thin solid line in (b)). The transverse profile of the laser 
pulse after the spatial filter and before the ZnSe lens is shown in (c) with a slight 
asymmetry.  
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Fig. 9 (a) Variation of measured spectra as functions of AOPDF settings and (b) the detail 
of (a) from 790-810 nm. The target spectrum is the same as in Fig. 8 (b), with power level 
of AOPDF adjusted as noted in the figure. The dark green curve is the target spectrum.  
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on the camera:  
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pm

 rrrrr

rrr   (24) 

where a(t, r), (r), and I are the amplitude, phase, and integrated intensity of the laser 
beams; the subscripts m and p denote the main and probe beam, respectively;  is the delay; 
and (r) is the phase variation due to the angle between the two laser beams. The phase 
term in the integral, though impossible to evaluate for each location, only causes the 
interference fringes at the detector to shift. Therefore, if the probe pulse is much shorter than 
the main pulse, Eq. (24) can be reduced to 

   .)(),()]([cos2)()()( rrrrrr pmppm IitIII     (10) 

Here tp is the duration of the probe pulse, and im is the time-dependent intensity 
distribution. The second term describes the fringes as functions of delay and location, from 
which one can extract the contrast ratio C(, r), which in turn gives  

).(/),(),( 2 rrr pm ICi        (11)  

     Two sets of experiments were performed. In the first set, while maintaining the spectrum, 
we control the linear chirp of the main pulse using the AOPDF. Due to the specific phase of 
the pulse, this change will shift the “waist” (the fattest part of the spatiotemporal 
distribution of the beam) in time. A comparison is given in Fig. 10 between the experiment 
measurement and simulation with linear chirp set at different values from the fully 
compensated case. Other than the striations due to shot-to-shot laser fluctuation, the 
agreement is excellent. The input beam is a Gaussian beam with a 1/e2 width of 3.9 mm. No 
aperture is used in this part of the experiment.  
     The Fourier model also predicts that the fine structure of the beam is highly sensitive to 
the beam apodization as shown in Figs. 5 and 6. This is measured using a beam with 1/e2 
width of 6 mm. The measured spatiotemporal intensity distributions are given in top row of 
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Fig. 10. Measured (top row), simulated (middle row) spatiotemporal distributions with 
different linear chirp in the main beam, and the intensity as a function of time at r=0 
(bottom row; measured: bold lines; simulated: thin lines). Striations in the experiment 
data are due to the fluctuation of the laser pointing. 



Chapter Title (Header position 1,5) 

 

13 

Figs 11. The corresponding distributions from the Fourier model are given in the middle 
row of Fig. 11. An iso-intensity surface plot comparison is given in Fig. 12 for the iris radius 
P=3 mm case. In the measurement an iris located directly in front of the ZnSe lens is 
adjusted to different sizes. For the measurement in Fig. 11, the second-order dispersion is set 
at zero.  
     As predicted by the Gaussian beam optics, the pulse shows generally an ellipsoidal 
envelope, but with dramatic variation in the internal structure due to diffraction at the iris. 
The diffraction pattern changes as a function of time due to both the changing wavelength 
and the changing focusing condition. With larger aperture size, the internal structure 
acquires higher and higher spatial frequency and eventually flattens out, as shown in Figs. 4 
through 6.  
     Although the agreement between the simulation and experiment is generally good, 
several discrepancies can be noticed. The first is that better agreement between experiment 
and calculation is achieved at small aperture sizes. This can be partially attributed to the 
limited dynamic range of the probing system, which makes the extraction of signals difficult 
at low-intensity wings of the distribution. In addition, the measurement suffers from the 
pointing stability of the laser, which causes shot-to-shot fluctuation of both beams and thus, 
fluctuation of the measured intensity.  
     The temporal resolution of the measurement is limited by the probe pulse duration at 
about 130 fs; a shorter probe pulse would demand a higher dynamic range for data 
recording.  

 
4. Conclusion 
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Fig. 11. Measured (top row) and simulated (middle row) spatiotemporal intensity 
distribution with different iris radius P using the experiment condition. The bottom row 
shows a comparison of the intensity at r=0 extracted from the top and middle rows 
(measured: bold lines; simulated: thin lines).  
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We discussed the well known effect of chromatic dispersion of a singlet lens on the spatial 
temporal behaviour of an ultrafast laser pulse. A pulse engineering scheme exploiting these 
chromatic aberration is proposed with an example of generating ellipsoidal pulse for 
photoinjector applications. A proof-of-principle experiment was carried out with results 
confirming the optical Fourier model. Further investigation is planned to establish the 
adaptive control as well as preservation of the phase in frequency conversion. A near term 
goal is to demonstrate a quasi UE beam and compare it with the numerical calculation.  
     The authors thank K.-J. Kim and K. Harkay for support, he also thanks S. Chemerisov for 
assistance of the experiment and J. Lewellen for helping beam simulations. This work is 
supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy 
Sciences, under Contract No. DE-AC02-06CH11357. 
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