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Shortening of a laser pulse with a self-modulated
phase at the focus of a lens
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We found that, at the focus of a chromatic lens, a laser pulse with a self-modulated phase can be shortened
due to the radial dependence of the group delay imposed by the lens. Normally, this group delay stretches a
short pulse into a long pulse by spreading the arrival time of the pulse at the focus. However, for a pulse
with a self-modulated phase, it causes the fields with different phases to overlap, thus resulting in destruc-
tive interference that shortens the pulse. © 2006 Optical Society of America

OCIS codes: 320.5540, 260.0260, 190.5940.
Distortion of an ultrashort laser pulse due to lenses
was first discussed by Bor in the framework of geo-
metrical optics1 and later by Bor and Horvath2 and
Kempe et al.3 in the framework of wave optics. These
distortions, mainly lengthening the pulse, are due to
group velocity delay (GVDE) and group velocity dis-
persion (GVDI). The GVDE mismatch causes a delay
between the phase velocity and the group velocity in
the lens media, hence spreading the arrival time of
the pulse at the focus. The GVDI effect causes the
pulse to lengthen in the lens and can be very impor-
tant for ultrashort pulses with large bandwidth. The
effect was later verified by experiments.4–6

In this Letter, we describe a phenomenon that may
occur in focusing optics, such as a lens or a focusing
zone plate, caused by self-phase modulation (SPM) or
a B-integral during the propagation of the laser
pulse. We find that a relatively long pulse can be sig-
nificantly shortened at the focus due to the GDVE ef-
fect, which lengthens a short pulse in the absence of
the SPM. Similar to the lengthening effect, this
shortening is most severe at shorter wavelengths
where the refractive index has a stronger dependence
on wavelength. In addition, the effect can also impact
pulses with durations from the picsecond to nanosec-
ond range, covering many applications involving in-
tense ultraviolet (UV) beam manipulation, such as in
modern photoinjectors7 and inertial confinement fu-
sion experiments.8 The effect should also be evalu-
ated for focusing beams in atomic and plasma physics
applications and in microscopy and optical communi-
cations.

Our discussion is based on the elaboration of
Fresnel diffraction formulation by Kempe et al.3 For
a flat-top circular beam traversing a lens, at the focus
of the lens, Eq. (2) in Kempe et al., which describes
the optical field in the frequency domain, can be re-
written as
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Here U is the frequency domain representation of the
field at the focus; f is the focal length of the lens; r is
the distance at the entrance from the optical axis; kl
and ka are the wave vectors in the lens and air, re-
spectively; and n is the refractive index in the lens at
the nominal wavelength. The amplitude of the beam
at the entrance of the lens is assumed to be homoge-
neous and has a circular shape with a field of A�r ,��
in the frequency domain. The lens transfer function
is �, and its r-dependence derives from the thickness
variation across the beam aperture. The time domain
field can be obtained by an inverse Fourier transform
of Eq. (1):

u�t� = 2�� rdra * �, �3�

where the symbol * represents convolution, with a
=a�r , t�=F−1A�r ,�� and �=��r , t�=F−1��r ,��. Follow-
ing the elaboration in Kempe et al.3 and ignoring the
constant phase terms, we obtain for Eq. (2)
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Here d is the thickness of the lens at r=0.
For a Gaussian pulse a=a0exp�−2 ln 2t2 /�2� with

no SPM, where t is the full width at half-maximum

(FWHM), we obtain from Eqs. (3)–(5)
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where 	=4k�T /�2. In comparison with the input
pulse, Eq. (6) shows pulse distortions discussed ear-
lier that are due to both GVDE and GVDI effects.1–3

An interesting scenario not discussed before is
when the pulse has an amplitude-dependent, thus
time-dependent nonlinear phase, such as SPM. As-
suming that the pulse has a small enough bandwidth
that the second-order terms �	2� in Eq. (5) can be ne-
glected, we have

��r,t� = ��t − k�T�. �7�

Under this condition, the nonlinear Schrödinger
equation9 can be analytically solved for a=a0exp
�−2 ln 2t2 /�2� to give the pulse after the lens as

a�r,t� = a0exp�− 2 ln 2
t2

�2�exp�j� exp�− 4 ln 2
t2
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Here �=kn2a0
2d is the maximum phase modulation,

=T /d, if the SPM is generated in the lens, and 
=L /d if the SPM is accumulated before arriving at
the lens through a medium of an effective length of L.
The pulse at the focus is then

u�t� = a0� rdr exp�− 2 ln 2
�t − k�T�2
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We can see that, similar to Eq. (6), the integrand in
Eq. (9) shows that the field at the focus is the super-
position pulse slices with a shifted arrival time. How-
ever, the temporal dependence of the SPM now
causes the superposition to be either constructive or
destructive and, in general, shortens the pulse. This
is depicted in Figs. 1(a) and 1(b), which show the real
part of the integrand in Eq. (9) as a function of t and
r. The drifting of the field pattern as function of r is
clear, resulting in shortened pulses u�t�, in Figs. 1(c)
and 1(d). The pulses’ FWHMs are shortened to 0.21
and 0.2 ps, a factor of 5 reduction in comparison with
the input pulse of 1 ps for the cases =T /d and 
=L /d=1, respectively. This shortening effect is in
contrast to the lengthening effect discussed by previ-
ous authors.1–3 Under the same conditions, a 50 fs
pulse would be stretched to 0.5 ps without the SPM.
Because of the similarity, in the following we limit
our discussion for cases with =1. In the calculation,
we use a fused silica lens of f=150 mm, d=5 mm, and
an aperture of R=12 mm in radius (numerical aper-

ture NA�1/6). The laser wavelength is 249 nm with
intensity of 5
1011 W/cm2. The resulting � is 15 rad.
We use n2=2.38
1016 W/cm2.10

Because the pulse shortening is due to localized de-
structive superposition of the field, the phase slip-
page between the pulse slices traversing the lens
should be big enough that destructive superposition
dominates. However, the phase slippage should be
small enough that the final pulse will not become a
sum of quasi-random phasers, which can result in a
thermal light.11 Let the group delay between the lens
center and edge be �t: the above statement can be ex-
pressed as �t � /��constant, or

�� � constant, �10�

with
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The scaling in Eq. (10) is qualitatively demonstrated
in Fig. 2, where the ratio of the pulse FWHM at the
focus to that of the input pulse, calculated using Eq.
(9), is plotted as a function of � and �. Obviously, the
maximum shortening parameter space centers
around ��=2�–3�. Note that, although the plot in
Fig. 2 is for an input pulse duration of 1 ps, we have
verified that its characteristics are applicable for a
large range of input pulse durations from a few
femtoseconds to several nanoseconds if the GVDI is
ignored.

This phenomenon can also be explained as the dif-
fraction of a laser pulse with a distorted time-
dependent wavefront. The pulse is shortened due to a
time-dependent scattering. This is better understood
by calculating the time and space dependence of the
field, in which we again used Kempe’s model3 by in-
cluding the SPM in the input pulse and the GVDI in
the lens. Figure 3(a) shows the on-axis pulse enve-
lope as a function of the distance from the focus �z.

Fig. 1. Real part of the complex field arriving at the focus
as a function of time and radius for (a) =T /d and (b) 
=1, and the corresponding intensity of the integrated field
(solid curve) and the input pulse (dashed curve) as a func-
tion of time for the same cases [(c) and (d)]. The FWHM of
the pulse is shortened from 1 ps to (c) 210 fs and (d) 200 fs,
a reduction by a factor of 5. The calculation assumes an f
=150 mm lens with R=12 mm and d=5 mm. The pulse
wavelength is 0.249 nm with �=15 at a laser intensity of
5
1011 W/cm2.
Figures 3(b) and 3(c) give the intensity distribution
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at the focus as a function of radius and time. Clearly,
the shortened pulse duration is maintained beyond
the Rayleigh range of 90 �m. The spatial fidelity of
the pulse is also well maintained. It should be men-
tioned that the nonlinear phase can also be acquired
through cross-phase modulation9 when multiple la-
ser beams overlap in time and space in the same me-
dium and can be more severe than SPM.

As mentioned before, Eq. (9) is valid only when
	2�1 for both input pulse and the pulse with the
modulated pulse. This limits the applicability in ini-
tial pulse duration, the medium length, and the laser
pulse intensity. The laser intensity is, in addition,
limited by the damage threshold of the medium,
which is a few times 1012 W/cm2 for fused silica.12,13

Fig. 3. On-axis laser pulse envelope as a function of the
defocusing distance; the intensity as a function of time and
radius for a pulse (b) without and (c) with the SPM effect.
The calculation assumes the same conditions as for Fig. 1.

Fig. 2. Pulse duration ratio as a function of time-shift pa-
rameter � [defined in Eq. (11)] and the phase-shift param-
eter � [defined in Eq. (8)] for a �=1 ps Gaussian pulse for
=1. The two dotted curves are ��=2� (lower) and ��
=3� (upper). Calculations for pulse duration ranging from
a few femtoseconds to a few nanoseconds gives identical
distributions when GVDI is ignored. The wavy structure is
due to the generation of multiple peaks.
For the examples in Figs. 1 and 3, the validity was
checked by solving the nonlinear Schrödinger equa-
tion numerically and can be extended to input pulse
duration down to 200 fs for the same lens and inten-
sity.

We believe the pulse shortening due to this
intensity-dependent pulse distortion needs to be
carefully examined for applications involving ma-
nipulating intense UV beams, such as delivering
high-quality UV pulses for a modern photoinjector7

and focusing a multikilojoule UV laser beam into a
hohlraum in inertial confinement fusion
experiments.8 In those applications, the modulated
phase may accumulate during the laser transport
and frequency conversion. The remedy is using ach-
romatic optics when possible, which has been shown
to be effective in mitigating the pulse lengthening
effect.1–3 It should also be noted this is a linear effect
in the time domain because of a nonlinear phase in
the laser pulse, whereas the more widely studied
nonlinear pulse evolution effects are intertwined
with spatial effects such as self-focusing, self-
guiding, and the recently observed self-compression14

and self-similar pulse collapse.15
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