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I. INTRODUCTION

A high-gain, self-amplified, spontaneous-emission
�SASE� free-electron laser �1,2� �FEL�, based on modern
beam technology, has the advantage of operating without a
resonator and hence is capable of generating coherent radia-
tion with wavelength down to the x-ray region. There are
two systems under construction for 1.5–1 Å radiation �3,4�
and a host of application experiments utilizing the high-
intensity and short-pulse capability have been planned.

The gain in a FEL is based on the constructive growth of
an instability in an electron beam when it is propagating
down a stream of undulators. The “microbunching instabil-
ity” grows as the result of an interaction between the electron
beam and the electromagnetic wave it emits as it traverses
the magnetic field of the undulator. The instability modulates
the electron density on the scale of the radiation wavelength
resulting in coherent radiation. Provided that the instability is
strong enough, the radiation grows exponentially before
reaching saturation �5–7�. The wavelength of a FEL is deter-
mined by the resonance frequency

�r =
4�c�2

�u�1 + K2/2�
. �1.1�

Here � is the relativistic factor of the beam, and �u and K
are, respectively, the undulator period and field strength pa-
rameter. For 1 Å operation, with �u=3.3 cm and K=3.1, the
relativistic parameter ��30 000, corresponding to a beam
energy of 15 GeV, accessible to modern accelerators.

Chaotic light is normally produced by incoherent light
sources such as the sun or incandescent light bulbs, and has
long been the subject of statistical optics �8�. All naturally
occurring chaotic light sources have large spectral bandwidth
and large divergence angle, meaning poor longitudinal and
transverse coherence. When filtered to proper temporal and
spatial coherence, the intensity is too low to allow time-
resolved measurements. Therefore, until now statistical op-
tics has mainly been studied in a time-integrated and
ensemble-averaged fashion, as in the famous Hanbury-
Brown and Twiss experiment �9�. The SASE FEL is a unique
chaotic light source because of its excellent transverse coher-

ence and high intensity. It provides a new opportunity for
study of the dynamics of statistical optics, including mea-
surement of the evolution of the phase as well as the ampli-
tude using well-developed light-characterizing techniques
such as frequency-resolved optical gating �FROG� �10�.

As we have noted, the SASE FEL starts up from the shot
noise in the electron beam �11,12�. The temporal behavior of
the system is that of a narrowband amplifier with a broad-
band Poisson seed. Before saturation the output is a Gaussian
random process and the radiated field is chaotic, quasimono-
chromatic, polarized light. Near saturation, the transverse be-
havior of the output is dominated by an intense, single spatial
mode. Ignoring the transverse dependence, the radiated elec-
tric field can be expressed in the form

E�z,t� = A�z,t�exp�ikrz − i�rt� , �1.2�

where z represents the location along the undulator at which
the SASE is observed and t represents the temporal position
in the radiation pulse. In the case of a cold electron beam
with a long, flat-top electron bunch profile, the SASE field
before saturation is the superposition of many electromag-
netic wave packets emitted from randomly distributed, indi-
vidual electrons. Within the classical, one-dimensional
theory, the slowly varying envelope can be approximated by

A�z,t� � A0�z��
j=1

Ne

exp�i�rtj −
�t − tj − z/vg�2

4�2 	1 +
i


3
�� ,

�1.3�

where Ne is the total number of electrons in the bunch, A0�z�
contains the exponential growth factor, tj is the random ar-
rival time of the jth electron at the undulator entrance, and vg
is the group velocity of each wave packet. The characteristic
wave packet width �=1/ �
3���, where ��=�r


3
3�p /kuz
is the SASE bandwidth �11,12� and �p the FEL Pierce pa-
rameter �2�.

The field amplitude �1.3� is expressed as a sum of inde-
pendent random terms. Rice �13� has developed a compre-
hensive method to analyze such sums using the central limit
theorem. Although his work was motivated by the study of
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shot noise in electrical circuits, his approach has found im-
portant application in statistical optics �8� and, in particular,
in the description of the chaotic output of the SASE FEL
�14,15�. Recently, FROG was used to characterize the tem-
poral evolution of the chaotic SASE output �16,17�, and the
experimental results were found to be in agreement with the
predictions of analytic theory as well as numerical simula-
tion. In this paper, we apply Rice’s statistical description of
intensity peaks and valleys to SASE and derive the analytic
results reported in Refs. �16,17�. Our analysis extends the
earlier work presented in Ref. �15�.

As illustrated in Fig. 1, the FEL output intensity as a
function of time exhibits spiking �18�. The width of the in-
tensity spikes is characterized by the coherence time �14,15�.
We note that the phase change is small near the intensity
maxima but can be larger near the intensity minima. The
rapid phase variation at the minima is closely related to the
loss of temporal coherence between spikes.

In this paper, we derive distributions for the peak inten-
sity, temporal width, frequency �phase derivative�, and fre-
quency chirp �phase second derivative� at intensity maxima.
The corresponding distributions characterizing intensity
minima can also be determined. In particular, we discuss the
frequency distribution at the intensity minima, which is
found to be much broader than the frequency distribution at
the intensity maxima. This is related to the loss of coherence
between spikes.

Our paper is organized as follows: In Sec. II, for the case
of a long electron bunch of constant density, we describe the
statistical properties of the SASE output using the analysis of
shot noise random processes developed by Rice �13�. In Sec.
III, we discuss the case of a Gaussian-distributed electron
density. We show that although there is no time translation
invariance, the statistical behavior of the chaotic electric field
can be determined in terms of a stationary Gaussian random
process. In Sec. IV, we compare our theoretical results with
experiments �16,17� that were carried out at the LEUTL fa-
cility at Argonne National Laboratory. Some concluding re-
marks are given in Sec. V. In the Appendix, we provide a
review of Rice’s derivation of the distribution describing the
statistical properties of intensity peaks and valleys.

II. STATISTICAL DESCRIPTION OF SASE BASED ON
ANALYSIS OF RICE

In the absence of an external seed laser, the SASE FEL
starts up from the shot noise in the electron beam. To de-
scribe the shot noise, one considers the arrival time of the
individual electrons at the undulator entrance to be indepen-
dent random variables, and one determines the statistical
properties of the output radiation by averaging over the sto-
chastic ensemble of arrival times. In the linear regime before
saturation, it follows from the central limit theorem �13� that
the probability distribution describing the spectral intensity

I����, or the time-domain intensity I�t�, is the negative expo-
nential distribution �8,14�

pI�I� =
1

I�
e−I/I�, �2.1�

and the intensity fluctuation is 100%. The angular brackets
indicate an ensemble average over the arrival times.

The output intensity as a function of time exhibits spiking
�18� �see Fig. 1�, and the width of the intensity peaks is
characterized by the coherence time �14,15� Tcoh=
� /��,
where �� is the SASE gain bandwidth. The spectral intensity
also exhibits spikes �Fig. 2�, and the width of the spectral
peaks is inversely proportional to the electron bunch duration
Tb.

At a fixed position z along the undulator, consider the
energy in a single SASE pulse,

W�z� � �
0

Tb

�E�t,z��2dt , �2.2�

where Tb is the duration of an electron bunch having uniform
average density. For z fixed, one can think of dividing the
pulse into M statistically independent time intervals of width
Tcoh. The energy fluctuation within a single coherent region
is 100%, but the fluctuation �W /W of the energy in the entire
pulse is reduced and given by �8�

FIG. 1. �Color online� �a� Typical raw FROG data and the re-
trieved field intensity �red, solid� and phase �blue, dashed� as a
function of time �b� and wavelength �c� of the SASE output. See
Sec. IV for more details.

FIG. 2. Schematic of intensity spiking in the frequency domain
�arbitrary units�. In the single-shot spectrum shown on the left, the
width of the peaks is inversely proportional to the electron bunch
duration Tb. The average of many SASE pulses is illustrated on the
right, and in this case the width is proportional to the gain band-
width ��=
� /Tcoh.
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�W
2

W2 =
�W − W��2�

W�2 �
1

M
�

Tcoh

Tb
. �2.3�

Here, M is defined �8� to be the number of modes in the
radiation pulse. The energy per pulse is described by the 	
distribution �13�

pW�W� =
MM

	�M�
	 W

W�
�M−1 1

W�
exp	− M

W

W�
� . �2.4�

As in Eq. �1.2�, let E�z , t�=A�z , t�exp�ikrz− i�rt� be the
radiated SASE electric field. In the description �at fixed z� of
the statistical properties of the SASE output, two important
quantities are the field correlation function

g1�t1 − t2� =
A�t1�A*�t2��


�A�t1��2�A�t2��2�
�2.5�

and the intensity correlation function

g2�t1 − t2� =
�A�t1��2�A�t2��2�

�A�t1��2��A�t2��2�
. �2.6�

Here we do not explicitly show the dependence of the field
on z. In the linear region before saturation �14�,

g2�t� = 1 + �g1�t��2. �2.7�

The energy fluctuation �W in a pulse can be expressed in the
form

�W
2

W2 =
1

Tb
2�

0

Tb

dt1�
0

Tb

dt2�g2�t1 − t2� − 1� =
1

Tb
�

−Tb

Tb

dt�g1�t��2.

�2.8�

Comparing Eqs. �2.3� and �2.8�, we see that �when Tcoh

Tb� the coherence time can be expressed in terms of the
field correlation function according to �8�

Tcoh =� dt�g1�t��2. �2.9�

A useful approximation is �14,15�

g1�t� = exp	−
��

2 t2

2
� , �2.10�

in which case it follows from �2.9� that

Tcoh =

�
��

. �2.11�

In the time domain, the joint probability that at a fixed
position z along the undulator axis, the normalized intensity
Q� I / I� in the radiation pulse has the values Q1 and Q2 at
times t1 and t2 is given by �13,15�

P�Q1,Q2� =
e−Q1/�1−�12�e−Q2/�1−�12�

1 − �12
I0	2
�12Q1Q2

1 − �12
� ,

�2.12�

where

�12 = g2�t1 − t2� − 1 = e−��
2 �t1 − t2�2

. �2.13�

The conditional average Q2�Q1
of the intensity at t2, given

that the intensity at t1 is Q1, is given by �15�

Q2�Q1
=

�
0

�

dQ2Q2P�Q1,Q2�

�
0

�

dQ2P�Q1,Q2�
= Q1 + �1 − �12��1 − Q1� .

�2.14�

We note from Eq. �2.14� that Q2�Q1
is less than Q1 when

Q11, and is greater than Q1 when Q1�1. This is the sta-
tistical basis for the appearance of spikes in the radiation
output. A reasonable approximation is to consider the output
to be comprised of a series of peaks, and in the region near a
maximum, the intensity profile

Q � Qpe−��
2 �t − tp�2

, �2.15�

where Qp is the maximum intensity of the peak centered
about t= tp. This suggests that we can approximate the �av-
erage� rms width of the temporal spike by �15�

�t� �
1


2��

. �2.16�

The average spacing between the spikes �see Eq. �2.27�� is
given by �13,15�

�t� �

2�

��

. �2.17�

Let us consider the scaled field amplitude

a�t� = A�t�/
�A�2� . �2.18�

Equations �2.18� and �1.3� demonstrate that a�t� is the sum of
independent random variables, so its statistical properties are
determined by the central limit theorem. Together with the
expression for the correlation given in Eq. �2.10�, this im-
plies that a�t� is a stationary Gaussian random process,
whose correlations are given by a�t��=0,

a�t1�a�t2�� = 0, �2.19�

a�t1�a*�t2�� = exp	−
��

2 �t1 − t2�2

2
� , �2.20�

�a�t1��2�a�t2��2� = 1 + �a�t1�a*�t2���2. �2.21�

One can also write

a�t1�a*�t2�� =� d� w���e−i��t1−t2�, �2.22�

where the spectral weight w��� is given by

w��� =
1


2���

exp	−
�2

2��
2 � . �2.23�

Introducing the amplitude R�t� and phase ��t� via
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a�t� = R�t�ei��t�, �2.24�

we define the normalized variables

� =
R

2

, � =
− R�

��
2 
2

, � =
��

��

, � =
��

��
2 . �2.25�

Rice �13� has shown �see the Appendix� that the probability
p�� ,� ,� ,��d� d� d� d� dt of finding an extremum of inten-
sity in the interval d� d� d� d� dt is given by

p��,�,�,�� =
8��

�2 ����3 exp�− 3�2 + 2�� − �� + �2��2

− �2�2� . �2.26�

Maxima correspond to �0 and minima to ��0.
This distribution was first derived by Rice �13� 60 years

ago, as part of a study of the stability of repeaters in a loaded
telephone transmission line. The envelope R was associated
with the “returned current” produced by reflections from line
irregularities. It also applies �15� to the description of the
chaotic SASE optical field. This is a beautiful example of
how mathematics can unify the description of very different
physical problems. The FROG measurements of SASE out-
put reported in Refs. �16,17� provide an experimental labo-
ratory for the study of the statistical theory of shot noise
random processes as developed by Rice. In the applications
Rice had in mind, he was only interested in the behavior of
the envelope R. Consideration of the time evolution of the
SASE chaotic radiation field stimulates our interest in the
behavior of the phase �.

The number of spikes per unit time �13�, Nt, is found by
integrating the distribution of Eq. �2.26�,

Nt =
1

�t�
= �

0

�

d��
0

�

d��
−�

�

d��
−�

�

d� p��,�,�,��

=
��

35/4
2�
�
n=0

� �n + 1�		n

2
+

5

4
�

3n/2		n

2
+

7

4
� �

��


2�
. �2.27�

One can also derive �13� the probability �dp��� /d��d� of
finding a maximum in the interval d�,

dp���
d�

=
1

Nt
�

0

�

d��
−�

�

d��
−�

�

d� p��,�,�,��

= 	 2

�
�1/2��

Nt
�3/2e−3�2�

n=0

�
�n + 1��n

		n

2
+

7

4
� . �2.28�

In Ref. �15�, we discussed the probability distribution
dp�Qmax� /dQmax= �d� /dQmax��dp��� /d���=
Qmax/2 of finding
a spike with maximum normalized intensity Qmax=R2=2�2

�Fig. 3�. In principle one can measure the distribution of
intensity at the peak of SASE spikes, but in the experiment
of Refs. �16,17� this was not possible because of normaliza-
tion issues.

The simulation results shown in Figs. 3–6 are carried out
using Eq. �1.3� with 200 electron bunches each containing
5000 electrons uniformly distributed on the interval 0� tj
�1. The rms wave packet width �=0.014, the radiation fre-
quency fr=�r /2�=500.1, the coherence time Tcoh=0.043,
the mode number M =23, and the average number of spikes
per unit time, Nt=16.

The distribution of R /R� is closely related to the distribu-
tion of rms spike width �t. Let us introduce the variable s
��� � /�= �R�� / �R��

2 �. Suppose the spikes have a Gaussian
profile, R�t�=Rp exp�−t2 /4��t�2�. At the peak t=0 of a
Gaussian, we see that s=1/ �
2���t�2, i.e., the variable s is a
measure of the square of the inverse rms width. To proceed,
we express the distribution of Eq. �2.26� in terms of the
variable s �upper signs apply for intensity maxima and lower
for intensity minima�:

p̂��,s,�,�� =
8��

�2 s�5 exp�− �2�3 � 2s + �s ± �2�2 + �2�� .

�2.29�

This follows from p̂�� ,s ,� ,��d� ds d� d�
= p�� ,� ,� ,��d� d� d� d�. The distribution of the square of
the inverse widths at the maxima is �see Fig. 4�,

dp�s�
ds

=
1

Nt
�

−�

�

d��
−�

�

d��
0

�

d� p̂��,s,�,��

=
6��

�Nt
�

0

� sd�

�3 − 2s + �s + �2�2�5/2 . �2.30�

From an experimental point of view, it is more natural to
consider the distribution of the normalized width w=1/
s
=
2���t, which is determined by dp /dw
= �ds /dw��dp /ds�s=1/w2.

The average normalized width of a spike is

FIG. 3. �Color online� The distribution of normalized peak in-
tensity dp�Qmax� /dQmax as derived from Eq. �2.28� �solid curve�
and as obtained from simulation �dashed curve�.
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w� = �
0

�

dw wp�w� = 0.87, �2.31�

so

�t� =
0.87

2��

. �2.32�

Assuming that the spikes have Gaussian shape �15�, �t� is
the average rms temporal width of the intensity maxima.
Note that Eq. �2.32� is in good agreement with the approxi-
mation given in Eq. �2.16�.

In Refs. �16,17�, to make a comparison with the experi-
mental data, it was useful to consider the distribution of the
normalized width �=w / w�:

dp���
d�

=
6��

�Nt

w�
�w���5

��
0

� d�

�3 − 2/�w���2 + �1/�w���2 + �2�2�5/2 .

�2.33�

Our analytic calculations are based on the assumption of an
electron bunch length long compared to the coherence
length. In the experiment, the electron bunch length was
comparable to the coherence length. Consideration of the
distribution of the normalized width � helped to take into
account this difference and good agreement between experi-
ment and theory was found. See Sec. IV.

From Eq. �2.26�, we can also determine the distributions
�Fig. 5� of the normalized frequency deviation from reso-
nance, �=�� /�� at both intensity maxima ��� and minima
���:

dp±���
d�

=
1

Nt
�

0

�

ds�
−�

�

d��
−�

�

d� p̂��,s,�,��

=
��

�Nt

1

3 + �4�
3 + �4 ± ��2 − 1��2

. �2.34�

We note that the frequency deviation from the resonant value
is much smaller at the intensity maxima than at the minima.
The larger frequency deviation at the minima corresponds to
the rapid phase variation related to the loss of coherence
between spikes. The frequency distributions presented in Fig.
5 were found �16,17� to be in agreement with experimental
FROG measurements as discussed in Sec. IV.

FIG. 4. �Color online� The distribution dp�s� /ds as given in Eq.
�2.30� �solid curve� and by simulation �dashed curve�. Recall that
s�� /�= �R�� / �R��

2 � is a measure of the square of the inverse rms
spike width.

FIG. 5. �Color online� The distributions of normalized fre-
quency deviation �=�� /�� at �a� intensity maxima and �b� inten-
sity minima as given by Eq. �2.34� �solid curve� and by simulation
�dashed curve�.
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The distributions �Fig. 6� describing the frequency chirp
�=�� /�� at intensity maxima ��� and minima ���, are also
found from Eq. �2.26�:

dp±���
d�

=
1

Nt
�

−�

�

d��
0

�

ds�
0

�

d� p̂��,s,�,��

=
8��

�2Nt
�

−�

�

d� f„1, ± ��2 − 1�,3 + �4 + �2
… ,

�2.35�

where

f�a,b,c� = �
0

� x dx

�ax2 + bx + c�3 =
1

4c�
+

3b2

8c�2

+
3ab

8�5/2�arctan	 b

�� −

�

2 � �2.36�

and �=ac−b2. In the case of spikes in a bunch long com-
pared to coherence time, the distribution p��� is symmetric
about �=0, with the most likely value being zero chirp. This
is different from the situation for a bunch with length similar
to the coherence length, for which the distribution is peaked
about a nonvanishing value of the chirp �19�.

III. STATISTICAL TREATMENT FOR GAUSSIAN
ELECTRON BUNCH DENSITY

Let us now discuss the extension of Rice’s analysis to a
Gaussian bunch density. A full treatment of SASE from a
Gaussian bunch would take into account the dependence of
the FEL gain on the electron density profile, which results in
a dependence of the wave packet duration � �Eq. �1.3�� on
the temporal position in the pulse. In our discussion, we shall
ignore this dependence and consider constant �.

We suppose the electron bunch to have a Gaussian aver-
age density profile

wb�t� =
1


2��b

exp	−
t2

2�b
2� , �3.1�

and consider the time dependence of the SASE amplitude
�1.3� observed at a fixed position z. Suppressing the depen-
dence on z, we write the complex, slowly varying amplitude
in the form

A�t� = A0�
j=1

Ne

exp	− ��t − tj�2

4�2 + i�rtj� , �3.2�

where �=1+ i� with �=1/
3. The arrival time tj of the jth
electron at the undulator entrance is randomly distributed
according to the Gaussian distribution wb�t� of Eq. �3.1�.
Averaging over the stochastic ensemble of arrival times, we
determine the field correlation function

A�t1�A*�t2�� =
Ne�A0

2


�b
2 + �2

exp	− �1 + �2��b
2�t1 − t2�2 − 2�2��t1

2 + �*t2
2�

8��b
2 + �2��2 � . �3.3�

In deriving Eq. �3.3�, we have retained only the dominant
contributions characterized by the absence of rapid phase
variation. These correspond to keeping pairwise equal sum-
mation indices from the A and A* terms. It is also easily seen
that the average of the field vanishes, A�t��=0.

The Wigner function �20� is defined by

W�t,�� =� d��A	t −
�

2
�A*	t +

�

2
��exp�− i�� − �r��� .

�3.4�

From Eqs. �3.3� and �3.4�, we derive

FIG. 6. �Color online� Distribution of normalized frequency
chirp �=�� /��

2 at intensity maxima as given by Eq. �2.35� �solid
curve� and by simulation �dashed curve�.
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W�t,�� =
Ne�A0

2
2�

�t��0
exp	−

t2

2�t
2 −

�� − �r − ut�2

2��0
2 � ,

�3.5�

where

�t
2 = �b

2 + �2, ��0
2 =

1 + �2

4�2 −
�2

4�t
2 , u =

�

2�t
2 . �3.6�

Note that for a long pulse, the chirp u �Eq. �3.6�� vanishes
inversely proportionally to the square of the pulse duration.

Integrating the Wigner function over frequency we obtain
the average instantaneous intensity,

�A�t��2� =� d�

2�
W�t,�� =

Ne�A0
2

�t
exp	−

t2

2�t
2� , �3.7�

and integrating over time, the average spectral intensity

�Ã����2� =� dt W�t,�� =
2�Ne�A0

2

��

exp	−
�� − �r�2

2��
2 � .

�3.8�

It is seen that the rms radiation bandwidth is given by

��
2 = ��0

2 + u2�t
2 =

1 + �2

4�2 . �3.9�

The phase space area occupied by the SASE radiation �see
Fig. 7� is proportional to the product �t��0. The uncertainty
principle sets a lower bound of 1

2 for the quantity �t��0. The
ratio of �t��0 to the minimum value is given by

2�t��0 =
1 +
�1 + �2��b

2

�2 . �3.10�

This ratio is expected to be equal to the number of modes.
Support for this is presented in the following.

Let us introduce the scaled field amplitude ��t� via

A�t� = A0
Ne�

�t
exp	−

�t2

4�t
2���t� . �3.11�

It now follows from Eq. �3.3� that the correlation of the
scaled field is

g1�t1 − t2� � ��t1��*�t2�� = exp	−
��

2

2
�t1 − t2�2� ,

�3.12�

where we define

��
2 = ��0

2 −
1

4�t
2 . �3.13�

We can also write

��t1��*�t2�� =� d� w����e−i��t1−t2�, �3.14�

where the spectral weight w���� is given by

w���� =
1


2���

exp	−
�2

2��
2 � . �3.15�

The total radiation bandwidth �� is related to �� by

��
2 = ��

2 +
1 + �2

4�t
2 =

1 + �2

4�2 �3.16a�

and

�b

�t
=

��

��

. �3.16b�

The coherence time �21� is defined by

Tcoh �� d���A	t −
�

2
�A*	t +

�

2
��

�A�t��2� �
2

. �3.17�

Using Eqs. �3.11�–�3.13�, we find

Tcoh =

�
��0

. �3.18�

Let us now introduce

g2�t1 − t2� � ���t1��2���t2��2� = 1 + �g1�t1 − t2��2.

�3.19�

The fluctuation �W of the energy W in a pulse can be ex-
pressed in the form

�W
2

W2 =
� dt1dt2��A�t1��2�A�t2��2� − �A�t1��2��A�t2��2��

� dt1�A�t1��2� � dt2�A�t2��2�
.

�3.20�

Using Eqs. �3.11� and �3.19�, this can be rewritten as

FIG. 7. Region of phase space occupied by radiation. ��=�
−�r. Area is 2��t��0.
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�W
2

W2 =� dt1dt2

2��t
2 exp	− t1

2 − t2
2

2�t
2 ��g1�t1 − t2��2. �3.21�

Following Ref. �8�, we define the number of modes M by

�W
2

W2 =
1

M
. �3.22�

Equations �3.12� and �3.21� imply that

M = 
1 + 4��
2�t

2. �3.23�

From Eqs. �3.10�, �3.13�, and �3.18�, it is seen that this im-
plies

M = 2�t��0 =
2
��t

Tcoh
. �3.24�

Hence, we have shown that the number of modes as defined
in terms of the energy fluctuation �Eq. �3.22�� is equal to the
number of minimum area phase space cells occupied by the
radiation.

One can also express the number of modes M in terms of
the Wigner function via

� dt d� W2�t,��

	� dt d� W�t,���2 =
� dt1dt2�A�t1�A*�t2���2

W2 =
1

M
.

�3.25�

The quantity on the left-hand side is often used as a measure
of the total degree of coherence �20�. For Gaussian random
fields,

�A�t1�A*�t2���2 = �A�t1��2�A�t2��2� − �A�t1��2��A�t2��2� ,

�3.26�

and Eq. �3.25� is equivalent to the definition given in Eq.
�3.22�. For more general fields, where Eq. �3.26� does not
hold, Eq. �3.25� may provide a better definition of the num-
ber of modes. In particular, for a fully coherent field with no
energy fluctuation, Eq. �3.25� still holds and says there is one
mode.

Let us introduce the Fourier transform of the field,

Ã��� =� dt ei�tA�t� . �3.27�

Inserting Eq. �3.2� for A�t�, we find

Ã��� = A0
Ne
4��2

�
exp	−

�2�2

�
�b̃��� , �3.28�

where

b̃��� =
1


Ne
�
j=1

Ne

ei��r+��tj . �3.29�

b̃��� is the normalized Fourier transform of the incident

electron density b�t�=� j=1
Ne ��t− tj�. Since b̃��� is a sum of

independent random terms, its statistical behavior is de-

scribed by the central limit theorem �13�. It is easily seen that

b̃����=0 and

b̃��1�b̃*��2�� = exp	−
�b

2

2
��1 − �2�2� . �3.30�

We can also write

b̃��1�b̃*��2�� =� dt wb�t�e−it��1−�2�, �3.31�

where the temporal electron density wb�t� was introduced in
Eq. �3.1�.

The range of spectral coherence �21� is defined by

�coh =� d����Ã	� −
��

2
�Ã*	� +

��

2
��

�Ã����2�
�

2

.

�3.32�

Using Eqs. �3.28�, �3.30�, and �3.32�, we find that

�coh =
 �

�b
2 +

1

4��
2

. �3.33�

Since, �t
2��0

2 =�b
2��

2 +1/4, it follows that the number of
modes can also be expressed in the form

M = 2�t��0 =
2
���

�coh
. �3.34�

In summary, Eqs. �3.2� and �3.11� demonstrate that the
scaled field ��t� is the sum of independent random variables,
so its statistical properties are determined by the central limit
theorem. Together with the expression for the correlation
given in Eq. �3.12�, this implies that ��t� is a stationary
Gaussian random process. Therefore, all the analysis �13�
discussed in Sec. II for a uniform electron distribution ap-
plies to the statistics of the scaled field ��t� for a Gaussian
electron density. Using Eq. �3.11�, this in turn determines the
statistical properties of the actual field amplitude A�t� emit-
ted by a Gaussian bunch. We have shown that ��t��=0,
��t1���t2��=0,

��t1��*�t2�� = exp	−
��

2�t1 − t2�2

2
� , �3.35�

���t1��2���t2��2� = 1 + ���t1��*�t2���2. �3.36�

It is useful to write

��t1��*�t2�� =� d� w����e−i��t1−t2�, �3.37�

where the spectral weight w��� is given by

w���� =
1


2���

exp	−
�2

2��
2 � , �3.38�

and �� was defined in Eq. �3.13�. The total radiation band-
width �� is related to �� by
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��
2 = ��

2 +
1 + �2

4�t
2 =

1 + �2

4�2 . �3.39�

Recall, that � is the SASE wave packet duration introduced
in Eq. �3.2�, and �=1/
3.

Results in the frequency domain are obtained by making
the replacements:

��t� → b̃��� , �3.40a�

w���� → wb�t� , �3.40b�

�� → �b. �3.40c�

In this section, we have ignored the effect of the depen-
dence of gain on the local electron density. It is our belief
that when one includes the effect of the density dependence
of the gain, the relation given in Eq. �3.6� between the radia-
tion pulse duration �t and the electron bunch duration �b is
modified, but to good approximation the statistical behavior
as described in this section is correct.

In the case when the coherence time is small compared to
the electron bunch distribution ��
�b�, the results simplify
and can be summarized as follows:

M � 2�t�� �number of modes� , �3.41�

�t� �

2�

��

�average temporal spike separation� ,

�3.42�

�t� �
1


2��

�average temporal spike width� ,

�3.43�

Tcoh �

�
��

�coherence time� , �3.44�

M �
2
��t

Tcoh
, �3.45�

��� �

2�

�t
�average frequency spike separation� ,

�3.46�

��� �
1


2�t

�average frequency spike width� ,

�3.47�

�coh �

�
�t

�range of frequency coherence� ,

�3.48�

M �
2
���

�coh
. �3.49�

IV. COMPARISON WITH EXPERIMENTAL RESULTS

The experiment was conducted at the Low-Energy Undu-
lator Test Line at the Advanced Photon Source �16,17,19�. A
detailed description of the facility was presented earlier �5�
and Table I is a summary of the main parameters for the
experiment. �FWHM indicates full width at half-maximum�.

Briefly, a high-brightness electron bunch generated from a
rf photocathode gun is compressed through a magnetic chi-
cane and then accelerated to 217 MeV in energy for opera-
tion at 532 nm, a wavelength chosen so a FROG device in
the second-harmonic configuration can be used.

The electron beam is sent into an undulator line. Expo-
nential gain and saturation were verified by measuring the
FEL energy after each undulator, and a gain length of
LG=0.68 m was obtained.

The output from undulator 5 is directed through a number
of collimating optics to a single-shot FROG device using the
second-harmonic gating geometry �10�. The FROG device
records single-shot spectrograms of the correlation signal of
two replicas of the input pulses from a 0.5 mm type-I BBO
crystal. For the second-harmonic gating geometry used in
this experiment, the autocorrelation field signal is Esig�t ,��
�E�t�E�t−��, where � is the relative delay. When recording
the spectrum, the observed trace is the so-called spectrogram
IFROG�� ,��� ��−�

� Esig�t ,��exp�−i�t�dt�2, and contains the in-
formation of both the amplitude and the phase of the input,
which is then retrieved using an iterative algorithm. Note
that for this FROG geometry there is an ambiguity about the
direction of time.

Each FROG image and its retrieval show a full character-
ization of the pulse, including the field amplitude and the
phase. This is an advantage over the traditional time-
integrated experiments such as the intensity interferometer.
In addition, study of the shot-to-shot variation of multiple
pulses provides information on the statistics of the chaotic
optical field.

Let us first consider the time-domain intensity spikes �16�.
In Figs. 8�a� and 8�b�, we show the probability distributions
of the normalized rms spike width �=�t / �t� and the normal-
ized spacing between the intensity maxima �=�t / �t�. For
the ensemble of the pulses we measured, �t�=52 fs is the
average value of the rms spike width. In Fig. 8�a�, the distri-
bution of the spike width peaks at a value slightly smaller

TABLE I. Main experimental parameters.

Peak current 850 A

Effective FWHM bunch length �Tb� 0.9 ps

rms normalized emittance 9� mm mrad

Undulator period ��u� 3.3 cm

Undulator length �each section� 2.4 m

Undulator strength parameter �K� 3.1

Beam energy ��mc2� 217 MeV

Nominal radiation wavelength ��r� 530 nm

FWHM SASE bandwidth ���� �3 nm

Gain length �LG� 0.68 m
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than the average. It has a long tail extending to larger spike
width and an abrupt drop at smaller spike width. The distri-
bution in Fig. 8�b� for the spike spacing peaks at about �
=3.0, and its average is 3.25, in reasonable agreement with
the theoretical expectation �t� / �t�=2
��3.5 �see Eqs.
�3.42� and �3.43�� for a totally chaotic optical field. Also
shown in Figs. 8�a� and 8�b� are the results of the numerical
simulation �dashed lines�.

The experimental result for the distribution of rms widths
compares favorably with the analytic result derived in Eq.
�2.33�

dp���
d�

=
ab

�a��5�
0

� d�

�3 − 2/�a��2 + �1/�a��2 + �2�2�5/2 ,

�4.1�

where �=�t / �t�, a�0.8685, and b�9.510, shown in solid
line in Fig. 8�a�. This distribution is normalized and its av-
erage value is unity. As noted in Sec. II, for the analytical
theory the rms width of an intensity spike has been approxi-

mated by 
−I / I�, where the intensity I and its second time
derivative I� are evaluated at the intensity maximum. For the
experimental data and simulation, the rms width is estimated
by measuring the full width at half maximum of those spikes
with measurable FWHM and dividing by 2.35. In all cases,
the spikes are assumed to have a Gaussian shape. Note the
analytical calculation assumes an infinitely long pulse.

Intuitively, since an individual intensity spike corresponds
to a coherent region, the phase within the spike is expected
to be correlated. On the other hand, due to the lack of com-
munication between different coherence regions, there can be
a phase jump in the transition region between two spikes, as
illustrated in Fig. 1. We quantified this phase behavior by
measuring the time derivative of the phase ���� of the slowly
varying envelope at the intensity maxima and minima. The
measured distributions �symbols� are presented in Figs. 8�c�
and 8�d�, which show that indeed the phase drift rate is small
at the intensity maxima but may be much larger at the inten-
sity minima. Also in Figs. 8�c� and 8�d� are the results of
simulation �dashed lines�. Both simulation and the experi-
ment data are seen to be in good agreement with the theoret-
ical distribution �shown in solid lines� derived in Eq. �2.34�,

dp±���
d�

=
d


3 + �4�
3 + �4 ± ��2 − 1��2
, �4.2�

where �=�� /��, d�0.7925 is a normalizing factor, and p+
and p− are the distributions at the intensity maxima and
minima, respectively. Note that the distribution of phase drift
rate is symmetric with respect to zero �Fig. 5�. We only show
the positive half of the distribution. Of interest is the ob-
served off-zero maximum of the distribution for the phase
drift at the intensity minima, which implies there is a most
probable decoherence rate between the coherence regions.

It is of interest to compare the approximate relations
given in Eqs. �3.41�–�3.49� with experimental measurements
in the time and frequency domains �17�. This is done in
Table II, which displays both the experimentally measured
value and the value calculated from its reciprocal counterpart
�t↔�� for the rms spike width, spike separation, and coher-
ence range. The agreement is in general excellent. It is seen
that the simple relations developed in Sec. III �valid for a
long pulse with many coherence regions� do provide a satis-
factory first approximation to the experimental behavior. We
note that for a short temporal pulse containing only a few
spikes, measuring the average spike width ��� yielded a
better estimate of the pulse duration �̄t than did the measure-
ment of the average spike separation ���.

V. CONCLUDING REMARKS

The SASE FEL is a filtered chaotic light source, possess-
ing high intensity and relatively long coherence length. In
previous work �22,23�, it has been established that the SASE
pulse energy is described by the 	 distribution �13,14�. This
type of measurement is an example of the conventional pho-
ton counting statistics. The time- and frequency-domain re-
sults of Refs. �16,17� present a new class of experimental
data on the behavior of the SASE chaotic optical field. The

FIG. 8. �Color online� Time-domain statistics measurement.
Distribution of �a� the spike width �t and �b� the peak-to-peak spac-
ing �t between the intensity spikes normalized to the average spike
width �t�. Phase derivative at the intensity maxima �c� and minima
�d� normalized to the rms SASE FEL bandwidth. Experimental data
�symbols�, theoretical calculation �solid line�, and simulation results
�dashed lines� are all presented when possible. Note the different
horizontal scales for �c� and �d�.
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analysis of random noise presented in Secs. II and III pro-
vides a good initial description of the new experiments. It
remains as a challenge for future theoretical work to include
the effect of the dependence of gain on the local electron
density, and in particular to determine the temporal duration
of the output radiation pulse as a function of the electron
bunch length.
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APPENDIX: DERIVATION OF EQ. (2.26)

Here we review Rice’s �13� derivation of the probability
distribution �Eq. �2.26�� for intensity extrema. Consider the
stochastic function,

y = F��1,�2, . . . ,�N;t� �A1�

and its derivative

y� =
�F

�t
, �A2�

where �1 , . . . ,�N are random variables. Let P�� ,� ; t�d� d� be
the probability of finding y between � and �+d�, and y�
between � and �+d� at time t. We first wish to determine
the probability that there is a zero of the function F having
positive slope somewhere in the interval t1� t� t1+dt. Sup-
pose y=��0 at t1 and y=0 somewhere in t1� t� t1+dt. If
the slope at t1 is �0, then F passes through zero �see Fig.
9� at t= t1−� /�. Hence, we require t1� t1−� /�� t1+dt, i.e.,
−� dt���0. Therefore, the probability that there is a zero

of F with positive slope in t1� t� t1+dt is given by

�
0

�

d��
−�dt

0

d� P��,�;t1� = dt�
0

�

� d� P�0,�;t1� .

�A3�

We can now determine the probability p�y1�dt dy that F has
a maximum with value between y1 and y1+dy in the time
interval t1� t1+dt. At a maximum, the derivative of F is zero
and its second derivative is negative. From the result of Eq.
�A3�, we see that

p�y1;t1�dt dy = − dt dy�
−�

0

 d P�y1,0, ;t1� , �A4�

where P�� ,� , ; t1� is the probability density function for the
variables, �=F��1 , . . . ,�N ; t1�, �= ��F /�t�t=t1

, and  

= ��2F /�t2�t=t1
.

TABLE II. Correlation numbers between time and frequency domains.

Measured Calculated

rms width Time �̄t �fs� 112

Frequency �̄� �mrad/fs� 12

rms spike width Time �t� �fs� 52 �t�=1/
2�̄�=58
Eq. �3.43�

Frequency ��� �mrad/fs� 8.9 ���=1/
2�̄t=6.3
Eq. �3.47�

Average spike spacing Time �t� �fs� 169 �t�=
2� / �̄�=208
Eq. �3.42�

Frequency ��� �mrad/fs� 19 ���=
2� / �̄t=22
Eq. �3.46�

Coherence range Time Tcoh �fs� Tcoh=
2��t�=130 Tcoh=
� / �̄�=147
Eq. �3.44�

Frequency �coh �mrad/fs� �coh=
2����=22 �coh=
� / �̄t=21
Eq. �3.48�

Mode no. M M =2�̄��̄t=2.8

FIG. 9. Illustration of the behavior of a function y
=F��1 ,�2 , . . . ,�N ; t� in the neighborhood of a zero with positive
slope.
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The central limit theorem �13� states that the distribution
of the normalized sum of N independent K-component vec-
tors approaches the normal law as N→�. In particular, con-
sider the vectors rj = �xj1 , . . . ,xjK��j=1, . . . ,N� and suppose
rj�=0 and xjaxkb�=0 for j�k. Define the vector

V = �r1 + ¯ + rN�/
N . �A5�

In the limit N→�, the distribution P�V� approaches the nor-
mal law:

P�V� → �2��−K/2�det M�−1/2 exp	−
1

2
VTM−1V� , �A6�

where M is the matrix of moments,

M = ��11 �12 ¯ �1K

]

�K1 �K2 ¯ �KK
� , �A7�

with

�ab = VaVb� =� dKV�VaVb�P�V� . �A8�

The radiation amplitude and its first and second time de-
rivatives can be expressed as the sum of independent random
terms. Therefore, the central limit theorem determines the
distribution describing their statistical behavior. We consider
the real and imaginary parts of the scaled amplitude and their
derivatives a=x+ iy, a�=x�+ iy�, a�=x�+ iy�, where the
prime denotes differentiation with respect to time t. Introduc-
ing the notation a�m�=�ma /�tm, it follows from Eqs. �2.19�
and �2.22� that

a�m��t�a�n��t�� = 0 �A9a�

and

a�m��t�a�n�*�t�� = 2�− i�m−nbm+n, �A9b�

where

2bm = �
−�

�

d� w����m. �A10�

The normalization is chosen so that b0=1/2. The distri-
bution P�x ,y ,x� ,y� ,x� ,y�� is given by Eq. �A6�, with the
vector VT= �x ,y� ,x� ,y ,x� ,y�� and the matrix M of second
moments,

M = �
b0 b1 − b2 0 0 0

b1 b2 − b3 0 0 0

− b2 − b3 b4 0 0 0

0 0 0 b0 − b1 − b2

0 0 0 − b1 b2 b3

0 0 0 − b2 b3 b4

� . �A11�

We now introduce the magnitude R and phase � of the
scaled amplitude via

a�t� = R�t�ei��t�. �A12�

It follows that

x = R cos � , �A13a�

x� = R� cos � − R sin ���, �A13b�

x� = R� cos � − 2R� sin ��� − R cos ���2 − R sin ���,

�A13c�

y = R sin � , �A13d�

y� = R� sin � + R cos ���, �A13e�

y� = R� sin � + 2R� cos ��� − R� sin ���2 + R cos ���,

�A13f�

dx dx�dx�dy dy�dy� = R3dR dR�dR�d� d��d��.

�A13g�

The distribution describing the amplitude, the phase, and
their time derivatives is determined by

P̂�R,R�,R�,�,��,���dR dR�dR�d� d��d��

= P�x,y,x�,y�,x�,y��dx dy dx�dy�dx�dy�. �A14�

Recalling the discussion leading to Eq. �A4�, we see that the
probability of finding an extremum of intensity �R�=0� in the
interval dR dR� d! d!� d!� dt is given by

�R���
0

2�

d�P̂�R,R� = 0,R�,�,��,��� . �A15�

Introducing the normalized variables

� =
R

2

, � =
− R�

��
2 
2

, � =
��

��

, � =
��

��
2 , �A16�

it follows that the probability p�� ,� ,� ,��d� d� d� d� dt for
finding an extremum of intensity in the interval
d� d� d� d� dt is given by �13�

p��,�,�,�� =
8��

�2 ����3 exp�− 3�2 + 2�� − �� + �2��2

− �2�2� . �A17�

Maxima correspond to �0 and minima to ��0.
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