GNU Emacs Lisp Reference Manual

For Emacs Version 21
Revision 2.8, January 2002

by Bil Lewis, Dan LaLiberte, Richard Stallman
and the GNU Manual Group

Copyright (© 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002 Free
Software Foundation, Inc.

Edition 2.8
Revised for Emacs Version 21.2,
January 2002.

ISBN 1-882114-73-6

Published by the Free Software Foundation

59 Temple Place, Suite 330

Boston, MA 02111-1307 USA

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Copying”, with the Front-
Cover texts being “A GNU Manual”, and with the Back-Cover Texts as in (a) below. A
copy of the license is included in the section entitled “GNU Free Documentation License”.

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”

Cover art by Etienne Suvasa.

Chapter 1: Introduction 1

1 Introduction

Most of the GNU Emacs text editor is written in the programming language called
Emacs Lisp. You can write new code in Emacs Lisp and install it as an extension to the
editor. However, Emacs Lisp is more than a mere “extension language”; it is a full computer
programming language in its own right. You can use it as you would any other programming
language.

Because Emacs Lisp is designed for use in an editor, it has special features for scanning
and parsing text as well as features for handling files, buffers, displays, subprocesses, and
so on. Emacs Lisp is closely integrated with the editing facilities; thus, editing commands
are functions that can also conveniently be called from Lisp programs, and parameters for
customization are ordinary Lisp variables.

This manual attempts to be a full description of Emacs Lisp. For a beginner’s introduc-
tion to Emacs Lisp, see An Introduction to Emacs Lisp Programming, by Bob Chassell, also
published by the Free Software Foundation. This manual presumes considerable familiarity
with the use of Emacs for editing; see The GNU Emacs Manual for this basic information.

Generally speaking, the earlier chapters describe features of Emacs Lisp that have coun-
terparts in many programming languages, and later chapters describe features that are
peculiar to Emacs Lisp or relate specifically to editing.

This is edition 2.8.

1.1 Caveats

This manual has gone through numerous drafts. It is nearly complete but not flawless.
There are a few topics that are not covered, either because we consider them secondary
(such as most of the individual modes) or because they are yet to be written. Because we
are not able to deal with them completely, we have left out several parts intentionally. This
includes most information about usage on VMS.

The manual should be fully correct in what it does cover, and it is therefore open to
criticism on anything it says—from specific examples and descriptive text, to the ordering
of chapters and sections. If something is confusing, or you find that you have to look at
the sources or experiment to learn something not covered in the manual, then perhaps the
manual should be fixed. Please let us know.

As you use this manual, we ask that you mark pages with corrections so you can later
look them up and send them to us. If you think of a simple, real-life example for a function
or group of functions, please make an effort to write it up and send it in. Please reference
any comments to the chapter name, section name, and function name, as appropriate, since
page numbers and chapter and section numbers will change and we may have trouble finding
the text you are talking about. Also state the number of the edition you are criticizing.

Please mail comments and corrections to
bug-lisp-manual@gnu.org
We let mail to this list accumulate unread until someone decides to apply the corrections.
Months, and sometimes years, go by between updates. So please attach no significance to

the lack of a reply—your mail will be acted on in due time. If you want to contact the
Emacs maintainers more quickly, send mail to bug-gnu-emacs@gnu.org.

2 GNU Emacs Lisp Reference Manual

1.2 Lisp History

Lisp (LISt Processing language) was first developed in the late 1950s at the Mas-
sachusetts Institute of Technology for research in artificial intelligence. The great power
of the Lisp language makes it ideal for other purposes as well, such as writing editing
commands.

Dozens of Lisp implementations have been built over the years, each with its own id-
iosyncrasies. Many of them were inspired by Maclisp, which was written in the 1960s at
MIT’s Project MAC. Eventually the implementors of the descendants of Maclisp came to-
gether and developed a standard for Lisp systems, called Common Lisp. In the meantime,
Gerry Sussman and Guy Steele at MIT developed a simplified but very powerful dialect of
Lisp, called Scheme.

GNU Emacs Lisp is largely inspired by Maclisp, and a little by Common Lisp. If you
know Common Lisp, you will notice many similarities. However, many features of Common
Lisp have been omitted or simplified in order to reduce the memory requirements of GNU
Emacs. Sometimes the simplifications are so drastic that a Common Lisp user might be
very confused. We will occasionally point out how GNU Emacs Lisp differs from Common
Lisp. If you don’t know Common Lisp, don’t worry about it; this manual is self-contained.

A certain amount of Common Lisp emulation is available via the ‘c1’ library. See section
“Common Lisp Extension” in Common Lisp Extensions.

Emacs Lisp is not at all influenced by Scheme; but the GNU project has an imple-
mentation of Scheme, called Guile. We use Guile in all new GNU software that calls for
extensibility.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Some Terms

Throughout this manual, the phrases “the Lisp reader” and “the Lisp printer” refer to
those routines in Lisp that convert textual representations of Lisp objects into actual Lisp
objects, and vice versa. See Section 2.1 [Printed Representation], page 9, for more details.
You, the person reading this manual, are thought of as “the programmer” and are addressed
as “you”. “The user” is the person who uses Lisp programs, including those you write.

Examples of Lisp code are formatted like this: (1ist 1 2 3). Names that represent
metasyntactic variables, or arguments to a function being described, are formatted like
this: first-number.

1.3.2 nil and t

In Lisp, the symbol nil has three separate meanings: it is a symbol with the name ‘nil’;
it is the logical truth value false; and it is the empty list—the list of zero elements. When
used as a variable, nil always has the value nil.

As far as the Lisp reader is concerned, ‘()’ and ‘nil’ are identical: they stand for the
same object, the symbol nil. The different ways of writing the symbol are intended entirely

Chapter 1: Introduction 3

for human readers. After the Lisp reader has read either ‘()’ or ‘nil’, there is no way to
determine which representation was actually written by the programmer.

In this manual, we use () when we wish to emphasize that it means the empty list, and
we use nil when we wish to emphasize that it means the truth value false. That is a good
convention to use in Lisp programs also.

(cons ’foo () ; Emphasize the empty list
(not nil) ; Emphasize the truth value false

In contexts where a truth value is expected, any non-nil value is considered to be true.
However, t is the preferred way to represent the truth value true. When you need to choose
a value which represents true, and there is no other basis for choosing, use t. The symbol
t always has the value t.

In Emacs Lisp, nil and t are special symbols that always evaluate to themselves. This is
so that you do not need to quote them to use them as constants in a program. An attempt
to change their values results in a setting-constant error. The same is true of any symbol
whose name starts with a colon (‘:”). See Section 11.2 [Constant Variables], page 133.

1.3.3 Evaluation Notation

A Lisp expression that you can evaluate is called a form. Evaluating a form always
produces a result, which is a Lisp object. In the examples in this manual, this is indicated
with ‘=":

(car (1 2))
=1
You can read this as “(car ’ (1 2)) evaluates to 1”.

When a form is a macro call, it expands into a new form for Lisp to evaluate. We show
the result of the expansion with ‘—’. We may or may not show the result of the evaluation
of the expanded form.

(third ’(a b c))
— (car (cdr (cdr ’(a b c))))
= C

Sometimes to help describe one form we show another form that produces identical

results. The exact equivalence of two forms is indicated with ‘=".

(make-sparse-keymap) = (list ’keymap)
1.3.4 Printing Notation

Many of the examples in this manual print text when they are evaluated. If you execute
example code in a Lisp Interaction buffer (such as the buffer ‘*scratch*’), the printed text
is inserted into the buffer. If you execute the example by other means (such as by evaluating
the function eval-region), the printed text is displayed in the echo area.

Examples in this manual indicate printed text with ‘ -, irrespective of where that text
goes. The value returned by evaluating the form (here bar) follows on a separate line.
(progn (print ’foo) (print ’bar))
- foo
- bar
= bar

4 GNU Emacs Lisp Reference Manual

1.3.5 Error Messages

Some examples signal errors. This normally displays an error message in the echo area.
We show the error message on a line starting with ‘[error] . Note that ‘[error] * itself does
not appear in the echo area.

(+ 23 ’x)
Wrong type argument: number-or-marker-p, x

1.3.6 Buffer Text Notation

Some examples describe modifications to the contents of a buffer, by showing the “before”
and “after” versions of the text. These examples show the contents of the buffer in question
between two lines of dashes containing the buffer name. In addition, ‘*’ indicates the
location of point. (The symbol for point, of course, is not part of the text in the buffer; it
indicates the place between two characters where point is currently located.)

—————————— Buffer: foo - ———————-
This is the xcontents of foo.
—————————— Buffer: foo --————-——---

(insert "changed ")

= nil
—————————— Buffer: foo ----------
This is the changed xcontents of foo.
—————————— Buffer: foo —-———=-----

1.3.7 Format of Descriptions

Functions, variables, macros, commands, user options, and special forms are described
in this manual in a uniform format. The first line of a description contains the name of the
item followed by its arguments, if any. The category—function, variable, or whatever—is
printed next to the right margin. The description follows on succeeding lines, sometimes
with examples.

1.3.7.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of argument names. These names are also used in the
body of the description, to stand for the values of the arguments.

The appearance of the keyword &optional in the argument list indicates that the sub-
sequent arguments may be omitted (omitted arguments default to nil). Do not write
&optional when you call the function.

The keyword &rest (which must be followed by a single argument name) indicates that
any number of arguments can follow. The single following argument name will have a value,
as a variable, which is a list of all these remaining arguments. Do not write &rest when
you call the function.

Here is a description of an imaginary function foo:

Chapter 1: Introduction 5

foo integerl &optional integer2 &rest integers Function
The function foo subtracts integerl from integer2, then adds all the rest of the
arguments to the result. If integer2 is not supplied, then the number 19 is used by
default.
(foo 1 5 3 9)
= 16
(foo 5)
= 14
More generally,

(foo w x y...)

(_+ (-xw) y...)

Any argument whose name contains the name of a type (e.g., integer, integerl or buffer)
is expected to be of that type. A plural of a type (such as buffers) often means a list of
objects of that type. Arguments named object may be of any type. (See Chapter 2 [Lisp
Data Types]|, page 9, for a list of Emacs object types.) Arguments with other sorts of names
(e.g., new-file) are discussed specifically in the description of the function. In some sections,
features common to the arguments of several functions are described at the beginning.

See Section 12.2 [Lambda Expressions|, page 156, for a more complete description of
optional and rest arguments.

Command, macro, and special form descriptions have the same format, but the word
‘Function’ is replaced by ‘Command’, ‘Macro’, or ‘Special Form’, respectively. Commands
are simply functions that may be called interactively; macros process their arguments dif-
ferently from functions (the arguments are not evaluated), but are presented the same way.

Special form descriptions use a more complex notation to specify optional and repeated
arguments because they can break the argument list down into separate arguments in
more complicated ways. ‘[optional-arg]’ means that optional-arg is optional and ‘repeated-
args... stands for zero or more arguments. Parentheses are used when several arguments
are grouped into additional levels of list structure. Here is an example:

count-loop (var [from to [inc]]) body. . . Special Form
This imaginary special form implements a loop that executes the body forms and
then increments the variable var on each iteration. On the first iteration, the variable
has the value from; on subsequent iterations, it is incremented by one (or by inc if
that is given). The loop exits before executing body if var equals to. Here is an
example:
(count-loop (i 0 10)
(prinil i) (princ " ")
(prinl (aref vector i))
(terpri))
If from and to are omitted, var is bound to nil before the loop begins, and the loop
exits if var is non-nil at the beginning of an iteration. Here is an example:
(count-loop (done)
(if (pending)
(fixit)

6 GNU Emacs Lisp Reference Manual

(setq done t)))

In this special form, the arguments from and to are optional, but must both be present
or both absent. If they are present, inc may optionally be specified as well. These
arguments are grouped with the argument var into a list, to distinguish them from
body, which includes all remaining elements of the form.

1.3.7.2 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, certain variables that exist specifically so that users can change them are called user
options. Ordinary variables and user options are described using a format like that for
functions except that there are no arguments.

Here is a description of the imaginary electric-future-map variable.

electric-future-map Variable
The value of this variable is a full keymap used by Electric Command Future mode.
The functions in this map allow you to edit commands you have not yet thought
about executing.

User option descriptions have the same format, but ‘Variable’ is replaced by ‘User Op-
tion’.

1.4 Version Information

These facilities provide information about which version of Emacs is in use.

emacs-version Command
This function returns a string describing the version of Emacs that is running. It is
useful to include this string in bug reports.
(emacs-version)
= "GNU Emacs 20.3.5 (i486-pc-linux-gnulibcl, X toolkit)
of Sat Feb 14 1998 on psilocin.gnu.org"

Called interactively, the function prints the same information in the echo area.

emacs-build-time Variable
The value of this variable indicates the time at which Emacs was built at the local
site. It is a list of three integers, like the value of current-time (see Section 40.5
[Time of Day|, page 732).
emacs-build-time
= (13623 62065 344633)

emacs-version Variable
The value of this variable is the version of Emacs being run. It is a string such as
"20.3.1". The last number in this string is not really part of the Emacs release
version number; it is incremented each time you build Emacs in any given directory.
A value with four numeric components, such as "20.3.9.1", indicates an unreleased
test version.

Chapter 1: Introduction 7

The following two variables have existed since Emacs version 19.23:

emacs-major-version Variable
The major version number of Emacs, as an integer. For Emacs version 20.3, the value
is 20.

emacs-minor-version Variable
The minor version number of Emacs, as an integer. For Emacs version 20.3, the value
is 3.

1.5 Acknowledgements

This manual was written by Robert Krawitz, Bil Lewis, Dan LalLiberte, Richard M.
Stallman and Chris Welty, the volunteers of the GNU manual group, in an effort extending
over several years. Robert J. Chassell helped to review and edit the manual, with the
support of the Defense Advanced Research Projects Agency, ARPA Order 6082, arranged
by Warren A. Hunt, Jr. of Computational Logic, Inc.

Corrections were supplied by Karl Berry, Jim Blandy, Bard Bloom, Stephane Boucher,
David Boyes, Alan Carroll, Richard Davis, Lawrence R. Dodd, Peter Doornbosch, David A.
Duff, Chris Eich, Beverly Erlebacher, David Eckelkamp, Ralf Fassel, Eirik Fuller, Stephen
Gildea, Bob Glickstein, Eric Hanchrow, George Hartzell, Nathan Hess, Masayuki Ida, Dan
Jacobson, Jak Kirman, Bob Knighten, Frederick M. Korz, Joe Lammens, Glenn M. Lewis,
K. Richard Magill, Brian Marick, Roland McGrath, Skip Montanaro, John Gardiner Myers,
Thomas A. Peterson, Francesco Potorti, Friedrich Pukelsheim, Arnold D. Robbins, Raul
Rockwell, Per Starbéck, Shinichirou Sugou, Kimmo Suominen, Edward Tharp, Bill Trost,
Rickard Westman, Jean White, Matthew Wilding, Carl Witty, Dale Worley, Rusty Wright,
and David D. Zuhn.

GNU Emacs Lisp Reference Manual

Chapter 2: Lisp Data Types 9

2 Lisp Data Types

A Lisp object is a piece of data used and manipulated by Lisp programs. For our
purposes, a type or data type is a set of possible objects.

Every object belongs to at least one type. Objects of the same type have similar struc-
tures and may usually be used in the same contexts. Types can overlap, and objects can
belong to two or more types. Consequently, we can ask whether an object belongs to a
particular type, but not for “the” type of an object.

A few fundamental object types are built into Emacs. These, from which all other
types are constructed, are called primitive types. Each object belongs to one and only one
primitive type. These types include integer, float, cons, symbol, string, vector, hash-table,
subr, and byte-code function, plus several special types, such as buffer, that are related to
editing. (See Section 2.4 [Editing Types], page 23.)

Each primitive type has a corresponding Lisp function that checks whether an object is
a member of that type.

Note that Lisp is unlike many other languages in that Lisp objects are self-typing: the
primitive type of the object is implicit in the object itself. For example, if an object is a
vector, nothing can treat it as a number; Lisp knows it is a vector, not a number.

In most languages, the programmer must declare the data type of each variable, and
the type is known by the compiler but not represented in the data. Such type declarations
do not exist in Emacs Lisp. A Lisp variable can have any type of value, and it remembers
whatever value you store in it, type and all.

This chapter describes the purpose, printed representation, and read syntax of each of
the standard types in GNU Emacs Lisp. Details on how to use these types can be found in
later chapters.

2.1 Printed Representation and Read Syntax

The printed representation of an object is the format of the output generated by the Lisp
printer (the function prini) for that object. The read syntax of an object is the format of
the input accepted by the Lisp reader (the function read) for that object. See Chapter 19
[Read and Print], page 255.

Most objects have more than one possible read syntax. Some types of object have no
read syntax, since it may not make sense to enter objects of these types directly in a Lisp
program. Except for these cases, the printed representation of an object is also a read
syntax for it.

In other languages, an expression is text; it has no other form. In Lisp, an expression
is primarily a Lisp object and only secondarily the text that is the object’s read syntax.
Often there is no need to emphasize this distinction, but you must keep it in the back of
your mind, or you will occasionally be very confused.

Every type has a printed representation. Some types have no read syntax—for example,
the buffer type has none. Objects of these types are printed in hash notation: the characters
‘“#<’ followed by a descriptive string (typically the type name followed by the name of the
object), and closed with a matching ‘>’. Hash notation cannot be read at all, so the Lisp
reader signals the error invalid-read-syntax whenever it encounters ‘#<’.

10 GNU Emacs Lisp Reference Manual

(current-buffer)
= #<buffer objects.texi>

When you evaluate an expression interactively, the Lisp interpreter first reads the textual
representation of it, producing a Lisp object, and then evaluates that object (see Chapter 9
[Evaluation], page 107). However, evaluation and reading are separate activities. Reading
returns the Lisp object represented by the text that is read; the object may or may not be
evaluated later. See Section 19.3 [Input Functions], page 257, for a description of read, the
basic function for reading objects.

2.2 Comments

A comment is text that is written in a program only for the sake of humans that read the
program, and that has no effect on the meaning of the program. In Lisp, a semicolon (*;’)
starts a comment if it is not within a string or character constant. The comment continues
to the end of line. The Lisp reader discards comments; they do not become part of the Lisp
objects which represent the program within the Lisp system.

The ‘#@count’ construct, which skips the next count characters, is useful for program-
generated comments containing binary data. The Emacs Lisp byte compiler uses this in its
output files (see Chapter 16 [Byte Compilation], page 205). It isn’t meant for source files,
however.

See Section D.4 [Comment Tips], page 773, for conventions for formatting comments.

2.3 Programming Types

There are two general categories of types in Emacs Lisp: those having to do with Lisp
programming, and those having to do with editing. The former exist in many Lisp imple-
mentations, in one form or another. The latter are unique to Emacs Lisp.

2.3.1 Integer Type

The range of values for integers in Emacs Lisp is —134217728 to 134217727 (28 bits;
i.e., —2%7 to 2%® — 1) on most machines. (Some machines may provide a wider range.) It
is important to note that the Emacs Lisp arithmetic functions do not check for overflow.
Thus (1+ 134217727) is —134217728 on most machines.

The read syntax for integers is a sequence of (base ten) digits with an optional sign at
the beginning and an optional period at the end. The printed representation produced by
the Lisp interpreter never has a leading ‘+’ or a final ‘.’ .

-1 ; The integer -1.

1 ; The integer 1.

1. ; Also the integer 1.

+1 ; Also the integer 1.

268435457 ; Also the integer 1 on a 28-bit implementation.

See Chapter 3 [Numbers], page 33, for more information.

Chapter 2: Lisp Data Types 11

2.3.2 Floating Point Type

Floating point numbers are the computer equivalent of scientific notation. The precise
number of significant figures and the range of possible exponents is machine-specific; Emacs
always uses the C data type double to store the value.

The printed representation for floating point numbers requires either a decimal point
(with at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’,
‘15.0e2’, ‘1.5e3’, and ‘. 15e4’ are five ways of writing a floating point number whose value
is 1500. They are all equivalent.

See Chapter 3 [Numbers], page 33, for more information.

2.3.3 Character Type

A character in Emacs Lisp is nothing more than an integer. In other words, characters
are represented by their character codes. For example, the character A is represented as the
integer 65.

Individual characters are not often used in programs. It is far more common to work
with strings, which are sequences composed of characters. See Section 2.3.8 [String Type],
page 18.

Characters in strings, buffers, and files are currently limited to the range of 0 to 524287—
nineteen bits. But not all values in that range are valid character codes. Codes 0 through 127
are ASCII codes; the rest are non-AsclI (see Chapter 33 [Non-ASCII Characters|, page 583).
Characters that represent keyboard input have a much wider range, to encode modifier keys
such as Control, Meta and Shift.

Since characters are really integers, the printed representation of a character is a decimal
number. This is also a possible read syntax for a character, but writing characters that way
in Lisp programs is a very bad idea. You should always use the special read syntax formats
that Emacs Lisp provides for characters. These syntax formats start with a question mark.

The usual read syntax for alphanumeric characters is a question mark followed by the
character; thus, ‘?A’ for the character 4, ‘?B’ for the character B, and ‘?7a’ for the character
a.

For example:

7Q = 81 7q = 113

You can use the same syntax for punctuation characters, but it is often a good idea
to add a ‘\’ so that the Emacs commands for editing Lisp code don’t get confused. For
example, ‘?\ ’ is the way to write the space character. If the character is ‘\’, you must use
a second ‘\’ to quote it: ‘?\\’.

You can express the characters Control-g, backspace, tab, newline, vertical tab, formfeed,
return, del, and escape as ‘?\a’, ‘?\b’, ‘?\t’, ‘?\n’, ‘?\v’, ‘?\f’, ‘?\r’, ‘?\d’, and ‘?\e’,
respectively. Thus,

\a =7 ; C-g

?\b = 8 ; backspace, BS), C-h
2\t = 9 ; tab, (TAB), C-i

?\n = 10 ; newline, C-j

\v = 11 ; vertical tab, C-k

12 GNU Emacs Lisp Reference Manual

2\f = 12 ; formfeed character, C-1
?\r = 13 ; carriage return, (RET), C-m
2\e = 27 ; escape character, (ESC), C-[
2\\ = 92 ; backslash character, \

\d = 127 ; delete character,

These sequences which start with backslash are also known as escape sequences, because
backslash plays the role of an escape character; this usage has nothing to do with the

character (ESC).

Control characters may be represented using yet another read syntax. This consists of a
question mark followed by a backslash, caret, and the corresponding non-control character,
in either upper or lower case. For example, both ‘?\"I” and ‘?\"1i’ are valid read syntax
for the character C-i, the character whose value is 9.

Instead of the ‘°’, you can use ‘C-’; thus, ‘?\C-1’ is equivalent to ‘?\"I’" and to ‘“?\"1i”:
\"I = 9 ?\C-I = 9

In strings and buffers, the only control characters allowed are those that exist in ASCII;
but for keyboard input purposes, you can turn any character into a control character with
‘C-". The character codes for these non-ASCII control characters include the 22¢ bit as well
as the code for the corresponding non-control character. Ordinary terminals have no way of
generating non-ASCII control characters, but you can generate them straightforwardly using
X and other window systems.

For historical reasons, Emacs treats the character as the control equivalent of ?:
2\"7 = 127 ?2\C-? = 127

As a result, it is currently not possible to represent the character Control-?, which is a
meaningful input character under X, using ‘\C-’. It is not easy to change this, as various
Lisp files refer to in this way.

For representing control characters to be found in files or strings, we recommend the ‘~
syntax; for control characters in keyboard input, we prefer the ‘C-’ syntax. Which one you
use does not affect the meaning of the program, but may guide the understanding of people
who read it.

A meta character is a character typed with the modifier key. The integer that
represents such a character has the 227 bit set (which on most machines makes it a negative
number). We use high bits for this and other modifiers to make possible a wide range of
basic character codes.

i

In a string, the 27 bit attached to an ASCII character indicates a meta character; thus,
the meta characters that can fit in a string have codes in the range from 128 to 255, and
are the meta versions of the ordinary ASCII characters. (In Emacs versions 18 and older,
this convention was used for characters outside of strings as well.)

The read syntax for meta characters uses ‘\M-’. For example, ‘?\M-A’ stands for M-
A. You can use ‘\M-’ together with octal character codes (see below), with ‘\C-’, or with
any other syntax for a character. Thus, you can write M-4 as ‘?\M-A’, or as ‘?\M-\101".
Likewise, you can write C-M-b as ‘?\M-\C-b’, ‘?\C-\M-b’, or ‘?\M-\002’.

The case of a graphic character is indicated by its character code; for example, ASCII
distinguishes between the characters ‘a’ and ‘A’. But ASCII has no way to represent whether
a control character is upper case or lower case. Emacs uses the 22° bit to indicate that the

Chapter 2: Lisp Data Types 13

shift key was used in typing a control character. This distinction is possible only when you
use X terminals or other special terminals; ordinary terminals do not report the distinction
to the computer in any way. The Lisp syntax for the shift bit is ‘\S-’; thus, ‘?\C-\S-0’ or
“?\C-\S-0’ represents the shifted-control-o character.

The X Window System defines three other modifier bits that can be set in a character:
hyper, super and alt. The syntaxes for these bits are ‘\H-’, ‘\s-" and ‘\A-". (Case is signif-
icant in these prefixes.) Thus, ‘?\H-\M-\A-x’ represents Alt-Hyper-Meta-x. Numerically,
the bit values are 222 for alt, 222 for super and 22* for hyper.

Finally, the most general read syntax for a character represents the character code in
either octal or hex. To use octal, write a question mark followed by a backslash and the
octal character code (up to three octal digits); thus, ‘?\101’ for the character 4, ‘?\001’ for
the character C-a, and ?\002 for the character C-b. Although this syntax can represent any
ASCII character, it is preferred only when the precise octal value is more important than
the ASCII representation.

7\012 = 10 \n = 10 72\C-j = 10
7\101 = 65 7A = 65

To use hex, write a question mark followed by a backslash, ‘x’, and the hexadecimal
character code. You can use any number of hex digits, so you can represent any character
code in this way. Thus, ‘?\x41’ for the character 4, ‘?\x1’ for the character C-a, and 7\x8e0
for the Latin-1 character ‘a’.

A backslash is allowed, and harmless, preceding any character without a special escape
meaning; thus, ‘?\+’ is equivalent to ‘?+’. There is no reason to add a backslash before most
characters. However, you should add a backslash before any of the characters ‘O\|[;? < "#.,’
to avoid confusing the Emacs commands for editing Lisp code. Also add a backslash before
whitespace characters such as space, tab, newline and formfeed. However, it is cleaner to
use one of the easily readable escape sequences, such as ‘\t’, instead of an actual whitespace
character such as a tab.

2.3.4 Symbol Type

A symbol in GNU Emacs Lisp is an object with a name. The symbol name serves as the
printed representation of the symbol. In ordinary use, the name is unique—mno two symbols
have the same name.

A symbol can serve as a variable, as a function name, or to hold a property list. Or
it may serve only to be distinct from all other Lisp objects, so that its presence in a data
structure may be recognized reliably. In a given context, usually only one of these uses is
intended. But you can use one symbol in all of these ways, independently.

A symbol whose name starts with a colon (‘:’) is called a keyword symbol. These symbols
automatically act as constants, and are normally used only by comparing an unknown
symbol with a few specific alternatives.

A symbol name can contain any characters whatever. Most symbol names are written
with letters, digits, and the punctuation characters ‘-+=*/’. Such names require no special
punctuation; the characters of the name suffice as long as the name does not look like a
number. (If it does, write a ‘\’ at the beginning of the name to force interpretation as a
symbol.) The characters ‘_~10$% &:<>{}?’ are less often used but also require no special

14 GNU Emacs Lisp Reference Manual

punctuation. Any other characters may be included in a symbol’s name by escaping them
with a backslash. In contrast to its use in strings, however, a backslash in the name of a
symbol simply quotes the single character that follows the backslash. For example, in a
string, ‘\t’ represents a tab character; in the name of a symbol, however, ‘\t’ merely quotes
the letter ‘t’. To have a symbol with a tab character in its name, you must actually use a
tab (preceded with a backslash). But it’s rare to do such a thing.

Common Lisp note: In Common Lisp, lower case letters are always “folded” to
upper case, unless they are explicitly escaped. In Emacs Lisp, upper case and
lower case letters are distinct.

Here are several examples of symbol names. Note that the ‘+’ in the fifth example is
escaped to prevent it from being read as a number. This is not necessary in the sixth
example because the rest of the name makes it invalid as a number.

foo ; A symbol named ‘foo’.
FOO ; A symbol named ‘FOQ’, different from ‘foo’.
char-to-string ; A symbol named ‘char-to-string’.
1+ ; A symbol named 1+’
; (not ‘+1’, which is an integer).
\+1 ; A symbol named ‘+1’
; (not a very readable name).
NG\ 1\ 2)) ; A symbol named ‘(* 1 2)’ (a worse name).

+—x/_"10$%"&=:<>{} ; A symbol named ‘+-*/_"108$%"&=:<>{}".
; These characters need not be escaped.

Normally the Lisp reader interns all symbols (see Section 8.3 [Creating Symbols],
page 101). To prevent interning, you can write ‘#:’ before the name of the symbol.

2.3.5 Sequence Types

A sequence is a Lisp object that represents an ordered set of elements. There are two
kinds of sequence in Emacs Lisp, lists and arrays. Thus, an object of type list or of type
array is also considered a sequence.

Arrays are further subdivided into strings, vectors, char-tables and bool-vectors. Vectors
can hold elements of any type, but string elements must be characters, and bool-vector
elements must be t or nil. Char-tables are like vectors except that they are indexed by
any valid character code. The characters in a string can have text properties like characters
in a buffer (see Section 32.19 [Text Properties|, page 562), but vectors do not support text
properties, even when their elements happen to be characters.

Lists, strings and the other array types are different, but they have important similarities.
For example, all have a length I, and all have elements which can be indexed from zero to I
minus one. Several functions, called sequence functions, accept any kind of sequence. For
example, the function elt can be used to extract an element of a sequence, given its index.
See Chapter 6 [Sequences Arrays Vectors], page 83.

It is generally impossible to read the same sequence twice, since sequences are always
created anew upon reading. If you read the read syntax for a sequence twice, you get two
sequences with equal contents. There is one exception: the empty list () always stands for
the same object, nil.

Chapter 2: Lisp Data Types 15

2.3.6 Cons Cell and List Types

A cons cell is an object that consists of two slots, called the CAR slot and the CDR slot.
Each slot can hold or refer to any Lisp object. We also say that “the CAR of this cons cell
is” whatever object its CAR slot currently holds, and likewise for the CDR.

A note to C programmers: in Lisp, we do not distinguish between “holding” a
value and “pointing to” the value, because pointers in Lisp are implicit.

A list is a series of cons cells, linked together so that the CDR slot of each cons cell holds
either the next cons cell or the empty list. See Chapter 5 [Lists], page 63, for functions that
work on lists. Because most cons cells are used as part of lists, the phrase list structure has
come to refer to any structure made out of cons cells.

The names CAR and CDR derive from the history of Lisp. The original Lisp implementa-
tion ran on an IBM 704 computer which divided words into two parts, called the “address”
part and the “decrement”; CAR was an instruction to extract the contents of the address
part of a register, and CDR an instruction to extract the contents of the decrement. By
contrast, “cons cells” are named for the function cons that creates them, which in turn was
named for its purpose, the construction of cells.

Because cons cells are so central to Lisp, we also have a word for “an object which is not
a cons cell”. These objects are called atoms.

The read syntax and printed representation for lists are identical, and consist of a left
parenthesis, an arbitrary number of elements, and a right parenthesis.

Upon reading, each object inside the parentheses becomes an element of the list. That
is, a cons cell is made for each element. The CAR slot of the cons cell holds the element,
and its CDR slot refers to the next cons cell of the list, which holds the next element in the
list. The CDR slot of the last cons cell is set to hold nil.

A list can be illustrated by a diagram in which the cons cells are shown as pairs of
boxes, like dominoes. (The Lisp reader cannot read such an illustration; unlike the textual
notation, which can be understood by both humans and computers, the box illustrations
can be understood only by humans.) This picture represents the three-element list (rose
violet buttercup):

--> rose --> violet --> buttercup

In this diagram, each box represents a slot that can hold or refer to any Lisp object.
Each pair of boxes represents a cons cell. Each arrow represents a reference to a Lisp object,
either an atom or another cons cell.

In this example, the first box, which holds the CAR of the first cons cell, refers to or
“holds” rose (a symbol). The second box, holding the CDR of the first cons cell, refers to
the next pair of boxes, the second cons cell. The CAR of the second cons cell is violet, and
its CDR is the third cons cell. The CDR of the third (and last) cons cell is nil.

Here is another diagram of the same list, (rose violet buttercup), sketched in a dif-
ferent manner:

16 GNU Emacs Lisp Reference Manual

| car | cdr | | car | cdr | | car | cdr |

A list with no elements in it is the empty list; it is identical to the symbol nil. In other
words, nil is both a symbol and a list.

Here are examples of lists written in Lisp syntax:

(A2 "A"M) ;A list of three elements.

O ; A list of no elements (the empty list).

nil ; A list of no elements (the empty list).

Mma O™ ; A list of one element: the string "A ()".

@ O) ; A list of two elements: A and the empty list.
(A nil) ; Equivalent to the previous.

((A B O)) ; A list of one element

; (which is a list of three elements).

Here is the list (A ()), or equivalently (A nil), depicted with boxes and arrows:

2.3.6.1 Dotted Pair Notation

Dotted pair notation is an alternative syntax for cons cells that represents the CAR and
CDR explicitly. In this syntax, (a . b) stands for a cons cell whose CAR is the object a, and
whose CDR is the object b. Dotted pair notation is therefore more general than list syntax.
In the dotted pair notation, the list ‘(1 2 3)’ is written as ‘(1 . (2 . (3 . nil)))’. For
nil-terminated lists, you can use either notation, but list notation is usually clearer and
more convenient. When printing a list, the dotted pair notation is only used if the CDR of
a cons cell is not a list.

Here’s an example using boxes to illustrate dotted pair notation. This example shows
the pair (rose . violet):

| | |--> violet

-=> rose

You can combine dotted pair notation with list notation to represent conveniently a
chain of cons cells with a non-nil final CDR. You write a dot after the last element of the
list, followed by the CDR of the final cons cell. For example, (rose violet . buttercup)
is equivalent to (rose . (violet . buttercup)). The object looks like this:

Chapter 2: Lisp Data Types 17

| | |==> | | |--> buttercup

-—> rose --> violet
The syntax (rose . violet . buttercup) is invalid because there is nothing that it
could mean. If anything, it would say to put buttercup in the CDR of a cons cell whose
CDR is already used for violet.

The list (rose violet) is equivalent to (rose . (violet)), and looks like this:

--> rose --> violet

Similarly, the three-element list (rose violet buttercup) is equivalent to (rose .
(violet . (buttercup))).

2.3.6.2 Association List Type

An association list or alist is a specially-constructed list whose elements are cons cells.
In each element, the CAR is considered a key, and the CDR is considered an associated value.
(In some cases, the associated value is stored in the CAR of the CDR.) Association lists are
often used as stacks, since it is easy to add or remove associations at the front of the list.

For example,
(setq alist-of-colors
’((rose . red) (lily . white) (buttercup . yellow)))
sets the variable alist-of-colors to an alist of three elements. In the first element, rose
is the key and red is the value.

See Section 5.8 [Association Lists|, page 79, for a further explanation of alists and for
functions that work on alists. See Chapter 7 [Hash Tables], page 93, for another kind of
lookup table, which is much faster for handling a large number of keys.

2.3.7 Array Type

An array is composed of an arbitrary number of slots for holding or referring to other
Lisp objects, arranged in a contiguous block of memory. Accessing any element of an array
takes approximately the same amount of time. In contrast, accessing an element of a list
requires time proportional to the position of the element in the list. (Elements at the end
of a list take longer to access than elements at the beginning of a list.)

Emacs defines four types of array: strings, vectors, bool-vectors, and char-tables.

A string is an array of characters and a vector is an array of arbitrary objects. A bool-
vector can hold only t or nil. These kinds of array may have any length up to the largest
integer. Char-tables are sparse arrays indexed by any valid character code; they can hold
arbitrary objects.

18 GNU Emacs Lisp Reference Manual

The first element of an array has index zero, the second element has index 1, and so on.
This is called zero-origin indexing. For example, an array of four elements has indices 0, 1,
2, and 3. The largest possible index value is one less than the length of the array. Once an
array is created, its length is fixed.

All Emacs Lisp arrays are one-dimensional. (Most other programming languages support
multidimensional arrays, but they are not essential; you can get the same effect with an
array of arrays.) Each type of array has its own read syntax; see the following sections for
details.

The array type is contained in the sequence type and contains the string type, the vector
type, the bool-vector type, and the char-table type.

2.3.8 String Type

A string is an array of characters. Strings are used for many purposes in Emacs, as can
be expected in a text editor; for example, as the names of Lisp symbols, as messages for the
user, and to represent text extracted from buffers. Strings in Lisp are constants: evaluation
of a string returns the same string.

See Chapter 4 [Strings and Characters|, page 49, for functions that operate on strings.

2.3.8.1 Syntax for Strings

The read syntax for strings is a double-quote, an arbitrary number of characters, and
another double-quote, "1like this". To include a double-quote in a string, precede it with
a backslash; thus, "\"" is a string containing just a single double-quote character. Likewise,
you can include a backslash by preceding it with another backslash, like this: "this \\ is
a single embedded backslash".

The newline character is not special in the read syntax for strings; if you write a new line
between the double-quotes, it becomes a character in the string. But an escaped newline—
one that is preceded by ‘\’—does not become part of the string; i.e., the Lisp reader ignores
an escaped newline while reading a string. An escaped space ‘\ ’ is likewise ignored.

"It is useful to include newlines
in documentation strings,
but the newline is \
ignored if escaped."
= "It is useful to include newlines
in documentation strings,
but the newline is ignored if escaped."

2.3.8.2 Non-ascii Characters in Strings

You can include a non-ASCII international character in a string constant by writing it
literally. There are two text representations for non-AScII characters in Emacs strings (and
in buffers): unibyte and multibyte. If the string constant is read from a multibyte source,
such as a multibyte buffer or string, or a file that would be visited as multibyte, then the
character is read as a multibyte character, and that makes the string multibyte. If the
string constant is read from a unibyte source, then the character is read as unibyte and that
makes the string unibyte.

Chapter 2: Lisp Data Types 19

You can also represent a multibyte non-AsciI character with its character code: use a
hex escape, ‘\xnnnnnnn’, with as many digits as necessary. (Multibyte non-ASCII character
codes are all greater than 256.) Any character which is not a valid hex digit terminates
this construct. If the next character in the string could be interpreted as a hex digit, write
‘\ 7 (backslash and space) to terminate the hex escape—for example, ‘\x8e0\ ’ represents
one character, ‘a’ with grave accent. ‘\ ’in a string constant is just like backslash-newline;
it does not contribute any character to the string, but it does terminate the preceding hex
escape.

Using a multibyte hex escape forces the string to multibyte. You can represent a unibyte
non-AScCII character with its character code, which must be in the range from 128 (0200
octal) to 255 (0377 octal). This forces a unibyte string.

See Section 33.1 [Text Representations|, page 583, for more information about the two
text representations.

2.3.8.3 Nonprinting Characters in Strings

You can use the same backslash escape-sequences in a string constant as in character
literals (but do not use the question mark that begins a character constant). For example,
you can write a string containing the nonprinting characters tab and C-a, with commas and
spaces between them, like this: "\t, \C-a". See Section 2.3.3 [Character Type], page 11,
for a description of the read syntax for characters.

However, not all of the characters you can write with backslash escape-sequences are
valid in strings. The only control characters that a string can hold are the AsciI control
characters. Strings do not distinguish case in ASCII control characters.

Properly speaking, strings cannot hold meta characters; but when a string is to be used
as a key sequence, there is a special convention that provides a way to represent meta
versions of ASCII characters in a string. If you use the ‘\M-’ syntax to indicate a meta
character in a string constant, this sets the 27 bit of the character in the string. If the string
is used in define-key or lookup-key, this numeric code is translated into the equivalent
meta character. See Section 2.3.3 [Character Type], page 11.

Strings cannot hold characters that have the hyper, super, or alt modifiers.

2.3.8.4 Text Properties in Strings

A string can hold properties for the characters it contains, in addition to the characters
themselves. This enables programs that copy text between strings and buffers to copy the
text’s properties with no special effort. See Section 32.19 [Text Properties|, page 562, for an
explanation of what text properties mean. Strings with text properties use a special read
and print syntax:

#("characters" property-data. . .)
where property-data consists of zero or more elements, in groups of three as follows:
beg end plist

The elements beg and end are integers, and together specify a range of indices in the string;
plist is the property list for that range. For example,

20 GNU Emacs Lisp Reference Manual

#("foo bar" 0 3 (face bold) 3 4 nil 4 7 (face italic))

represents a string whose textual contents are ‘foo bar’, in which the first three characters
have a face property with value bold, and the last three have a face property with value
italic. (The fourth character has no text properties, so its property list is nil. It is not
actually necessary to mention ranges with nil as the property list, since any characters not
mentioned in any range will default to having no properties.)

2.3.9 Vector Type

A vector is a one-dimensional array of elements of any type. It takes a constant amount
of time to access any element of a vector. (In a list, the access time of an element is
proportional to the distance of the element from the beginning of the list.)

The printed representation of a vector consists of a left square bracket, the elements,
and a right square bracket. This is also the read syntax. Like numbers and strings, vectors
are considered constants for evaluation.

[1 "two" (three)] ;A vector of three elements.
= [1 "two" (three)]

See Section 6.4 [Vectors], page 87, for functions that work with vectors.

2.3.10 Char-Table Type

A char-table is a one-dimensional array of elements of any type, indexed by character
codes. Char-tables have certain extra features to make them more useful for many jobs
that involve assigning information to character codes—for example, a char-table can have a
parent to inherit from, a default value, and a small number of extra slots to use for special
purposes. A char-table can also specify a single value for a whole character set.

The printed representation of a char-table is like a vector except that there is an extra
‘#-7 at the beginning.
See Section 6.6 [Char-Tables|, page 89, for special functions to operate on char-tables.
Uses of char-tables include:
e Case tables (see Section 4.9 [Case Tables], page 60).
e Character category tables (see Section 35.9 [Categories], page 632).
e Display tables (see Section 38.17 [Display Tables], page 704).
e Syntax tables (see Chapter 35 [Syntax Tables], page 621).

2.3.11 Bool-Vector Type

A bool-vector is a one-dimensional array of elements that must be t or nil.

The printed representation of a bool-vector is like a string, except that it begins with
‘#& followed by the length. The string constant that follows actually specifies the contents
of the bool-vector as a bitmap—each “character” in the string contains 8 bits, which specify
the next 8 elements of the bool-vector (1 stands for t, and 0 for nil). The least significant
bits of the character correspond to the lowest indices in the bool-vector. If the length is
not a multiple of 8, the printed representation shows extra elements, but these extras really
make no difference.

Chapter 2: Lisp Data Types 21

(make-bool-vector 3 t)
= #&3"\007"
(make-bool-vector 3 nil)
= #&sn\ou
;3 These are equal since only the first 3 bits are used.
(equal #&3"\377" #&3"\007")
= t

2.3.12 Hash Table Type

A hash table is a very fast kind of lookup table, somewhat like an alist in that it maps
keys to corresponding values, but much faster. Hash tables are a new feature in Emacs
21; they have no read syntax, and print using hash notation. See Chapter 7 [Hash Tables],
page 93.

(make-hash-table)
= #<hash-table ’eql nil 0/65 0x83af980>

2.3.13 Function Type

Just as functions in other programming languages are executable, Lisp function objects
are pieces of executable code. However, functions in Lisp are primarily Lisp objects, and only
secondarily the text which represents them. These Lisp objects are lambda expressions: lists
whose first element is the symbol lambda (see Section 12.2 [Lambda Expressions], page 156).

In most programming languages, it is impossible to have a function without a name. In
Lisp, a function has no intrinsic name. A lambda expression is also called an anonymous
function (see Section 12.7 [Anonymous Functions], page 164). A named function in Lisp
is actually a symbol with a valid function in its function cell (see Section 12.4 [Defining
Functions], page 160).

Most of the time, functions are called when their names are written in Lisp expressions
in Lisp programs. However, you can construct or obtain a function object at run time
and then call it with the primitive functions funcall and apply. See Section 12.5 [Calling
Functions], page 161.

2.3.14 Macro Type

A Lisp macro is a user-defined construct that extends the Lisp language. It is represented
as an object much like a function, but with different argument-passing semantics. A Lisp
macro has the form of a list whose first element is the symbol macro and whose CDR is a
Lisp function object, including the lambda symbol.

Lisp macro objects are usually defined with the built-in defmacro function, but any list
that begins with macro is a macro as far as Emacs is concerned. See Chapter 13 [Macros],
page 171, for an explanation of how to write a macro.

Warning: Lisp macros and keyboard macros (see Section 21.15 [Keyboard Macros],
page 322) are entirely different things. When we use the word “macro” without qualification,
we mean a Lisp macro, not a keyboard macro.

22 GNU Emacs Lisp Reference Manual

2.3.15 Primitive Function Type

A primitive function is a function callable from Lisp but written in the C programming
language. Primitive functions are also called subrs or built-in functions. (The word “subr”
is derived from “subroutine”.) Most primitive functions evaluate all their arguments when
they are called. A primitive function that does not evaluate all its arguments is called a
special form (see Section 9.1.7 [Special Forms|, page 111).

It does not matter to the caller of a function whether the function is primitive. However,
this does matter if you try to redefine a primitive with a function written in Lisp. The
reason is that the primitive function may be called directly from C code. Calls to the
redefined function from Lisp will use the new definition, but calls from C code may still use
the built-in definition. Therefore, we discourage redefinition of primitive functions.

The term function refers to all Emacs functions, whether written in Lisp or C. See
Section 2.3.13 [Function Type|, page 21, for information about the functions written in
Lisp.

Primitive functions have no read syntax and print in hash notation with the name of the
subroutine.

(symbol-function ’car) ; Access the function cell
; of the symbol.
= #<subr car>
(subrp (symbol-function ’car)) ; Is this a primitive function?
=t ; Yes.

2.3.16 Byte-Code Function Type

The byte compiler produces byte-code function objects. Internally, a byte-code function
object is much like a vector; however, the evaluator handles this data type specially when
it appears as a function to be called. See Chapter 16 [Byte Compilation|, page 205, for
information about the byte compiler.

The printed representation and read syntax for a byte-code function object is like that
for a vector, with an additional ‘#’ before the opening ‘[’.

2.3.17 Autoload Type

An autoload object is a list whose first element is the symbol autoload. It is stored as
the function definition of a symbol, where it serves as a placeholder for the real definition.
The autoload object says that the real definition is found in a file of Lisp code that should
be loaded when necessary. It contains the name of the file, plus some other information
about the real definition.

After the file has been loaded, the symbol should have a new function definition that is
not an autoload object. The new definition is then called as if it had been there to begin
with. From the user’s point of view, the function call works as expected, using the function
definition in the loaded file.

An autoload object is usually created with the function autoload, which stores the
object in the function cell of a symbol. See Section 15.4 [Autoload], page 197, for more
details.

Chapter 2: Lisp Data Types 23

2.4 Editing Types

The types in the previous section are used for general programming purposes, and most
of them are common to most Lisp dialects. Emacs Lisp provides several additional data
types for purposes connected with editing.

2.4.1 Buffer Type

A buffer is an object that holds text that can be edited (see Chapter 27 [Buffers],
page 439). Most buffers hold the contents of a disk file (see Chapter 25 [Files], page 397)
so they can be edited, but some are used for other purposes. Most buffers are also meant
to be seen by the user, and therefore displayed, at some time, in a window (see Chapter 28
[Windows|, page 453). But a buffer need not be displayed in any window.

The contents of a buffer are much like a string, but buffers are not used like strings in
Emacs Lisp, and the available operations are different. For example, you can insert text
efficiently into an existing buffer, altering the buffer’s contents, whereas “inserting” text into
a string requires concatenating substrings, and the result is an entirely new string object.

Each buffer has a designated position called point (see Chapter 30 [Positions], page 509).
At any time, one buffer is the current buffer. Most editing commands act on the contents
of the current buffer in the neighborhood of point. Many of the standard Emacs functions
manipulate or test the characters in the current buffer; a whole chapter in this manual is
devoted to describing these functions (see Chapter 32 [Text|, page 531).

Several other data structures are associated with each buffer:

e a local syntax table (see Chapter 35 [Syntax Tables], page 621);

e alocal keymap (see Chapter 22 [Keymaps], page 325); and,

e a list of buffer-local variable bindings (see Section 11.10 [Buffer-Local Variables],
page 146).

e overlays (see Section 38.9 [Overlays|, page 671).

e text properties for the text in the buffer (see Section 32.19 [Text Properties]|, page 562).

The local keymap and variable list contain entries that individually override global bindings
or values. These are used to customize the behavior of programs in different buffers, without
actually changing the programs.

A buffer may be indirect, which means it shares the text of another buffer, but presents
it differently. See Section 27.11 [Indirect Buffers|, page 451.

Buffers have no read syntax. They print in hash notation, showing the buffer name.

(current-buffer)
= #<buffer objects.texi>

2.4.2 Marker Type

A marker denotes a position in a specific buffer. Markers therefore have two components:
one for the buffer, and one for the position. Changes in the buffer’s text automatically
relocate the position value as necessary to ensure that the marker always points between
the same two characters in the buffer.

Markers have no read syntax. They print in hash notation, giving the current character
position and the name of the buffer.

24 GNU Emacs Lisp Reference Manual

(point-marker)
= #<marker at 10779 in objects.texi>

See Chapter 31 [Markers|, page 523, for information on how to test, create, copy, and
move markers.

2.4.3 Window Type

A window describes the portion of the terminal screen that Emacs uses to display a
buffer. Every window has one associated buffer, whose contents appear in the window. By
contrast, a given buffer may appear in one window, no window, or several windows.

Though many windows may exist simultaneously, at any time one window is designated
the selected window. This is the window where the cursor is (usually) displayed when Emacs
is ready for a command. The selected window usually displays the current buffer, but this
is not necessarily the case.

Windows are grouped on the screen into frames; each window belongs to one and only
one frame. See Section 2.4.4 [Frame Type|, page 24.

Windows have no read syntax. They print in hash notation, giving the window number
and the name of the buffer being displayed. The window numbers exist to identify windows
uniquely, since the buffer displayed in any given window can change frequently.

(selected-window)
= #<window 1 on objects.texi>

See Chapter 28 [Windows|, page 453, for a description of the functions that work on
windows.

2.4.4 Frame Type

A frame is a rectangle on the screen that contains one or more Emacs windows. A frame
initially contains a single main window (plus perhaps a minibuffer window) which you can
subdivide vertically or horizontally into smaller windows.

Frames have no read syntax. They print in hash notation, giving the frame’s title, plus
its address in core (useful to identify the frame uniquely).

(selected-frame)
= #<frame emacs@psilocin.gnu.org 0Oxdac80>

See Chapter 29 [Frames|, page 483, for a description of the functions that work on frames.

2.4.5 Window Configuration Type

A window configuration stores information about the positions, sizes, and contents of
the windows in a frame, so you can recreate the same arrangement of windows later.

Window configurations do not have a read syntax; their print syntax looks like
‘#<window-configuration>’. See Section 28.17 [Window Configurations|, page 479, for a
description of several functions related to window configurations.

Chapter 2: Lisp Data Types 25

2.4.6 Frame Configuration Type

A frame configuration stores information about the positions, sizes, and contents of the
windows in all frames. It is actually a list whose CAR is frame-configuration and whose
CDR is an alist. Each alist element describes one frame, which appears as the CAR of that
element.

See Section 29.12 [Frame Configurations|, page 498, for a description of several functions
related to frame configurations.

2.4.7 Process Type

The word process usually means a running program. Emacs itself runs in a process of
this sort. However, in Emacs Lisp, a process is a Lisp object that designates a subprocess
created by the Emacs process. Programs such as shells, GDB, ftp, and compilers, running
in subprocesses of Emacs, extend the capabilities of Emacs.

An Emacs subprocess takes textual input from Emacs and returns textual output to
Emacs for further manipulation. Emacs can also send signals to the subprocess.

Process objects have no read syntax. They print in hash notation, giving the name of
the process:

(process-list)
= (#<process shell>)

See Chapter 37 [Processes], page 641, for information about functions that create, delete,

return information about, send input or signals to, and receive output from processes.

2.4.8 Stream Type

A stream is an object that can be used as a source or sink for characters—either to supply
characters for input or to accept them as output. Many different types can be used this
way: markers, buffers, strings, and functions. Most often, input streams (character sources)
obtain characters from the keyboard, a buffer, or a file, and output streams (character sinks)
send characters to a buffer, such as a ‘*Help*’ buffer, or to the echo area.

The object nil, in addition to its other meanings, may be used as a stream. It stands
for the value of the variable standard-input or standard-output. Also, the object t as
a stream specifies input using the minibuffer (see Chapter 20 [Minibuffers], page 265) or
output in the echo area (see Section 38.4 [The Echo Areal, page 663).

Streams have no special printed representation or read syntax, and print as whatever
primitive type they are.

See Chapter 19 [Read and Print], page 255, for a description of functions related to
streams, including parsing and printing functions.

2.4.9 Keymap Type

A keymap maps keys typed by the user to commands. This mapping controls how the
user’s command input is executed. A keymap is actually a list whose CAR is the symbol
keymap.

See Chapter 22 [Keymaps|, page 325, for information about creating keymaps, handling
prefix keys, local as well as global keymaps, and changing key bindings.

26 GNU Emacs Lisp Reference Manual

2.4.10 Overlay Type

An overlay specifies properties that apply to a part of a buffer. Each overlay applies
to a specified range of the buffer, and contains a property list (a list whose elements are
alternating property names and values). Overlay properties are used to present parts of the
buffer temporarily in a different display style. Overlays have no read syntax, and print in
hash notation, giving the buffer name and range of positions.

See Section 38.9 [Overlays], page 671, for how to create and use overlays.

2.5 Read Syntax for Circular Objects

In Emacs 21, to represent shared or circular structure within a complex of Lisp objects,
you can use the reader constructs ‘#n="and ‘#n#’.

Use #n= before an object to label it for later reference; subsequently, you can use #n# to
refer the same object in another place. Here, n is some integer. For example, here is how
to make a list in which the first element recurs as the third element:

(#1=(a) b #1#)
This differs from ordinary syntax such as this
((d) b (a))

which would result in a list whose first and third elements look alike but are not the same
Lisp object. This shows the difference:

(progl nil
(setq x ’(#1=(a) b #1#)))
(eq (nth 0 x) (nth 2 x))
=t
(setq x ’((a) b (a)))
(eq (nth 0 x) (nth 2 x))
= nil

You can also use the same syntax to make a circular structure, which appears as an
“element” within itself. Here is an example:

#1=(a #1#)

This makes a list whose second element is the list itself. Here’s how you can see that it
really works:

(progl nil
(setq x ’#1=(a #1#)))
(eq x (cadr x))
=t

The Lisp printer can produce this syntax to record circular and shared structure in a
Lisp object, if you bind the variable print-circle to a non-nil value. See Section 19.6
[Output Variables], page 262.

Chapter 2: Lisp Data Types 27

2.6 Type Predicates

The Emacs Lisp interpreter itself does not perform type checking on the actual arguments
passed to functions when they are called. It could not do so, since function arguments in
Lisp do not have declared data types, as they do in other programming languages. It is
therefore up to the individual function to test whether each actual argument belongs to a
type that the function can use.

All built-in functions do check the types of their actual arguments when appropriate,
and signal a wrong-type-argument error if an argument is of the wrong type. For example,
here is what happens if you pass an argument to + that it cannot handle:

(+ 2 ’a)
Wrong type argument: number-or-marker-p, a

If you want your program to handle different types differently, you must do explicit
type checking. The most common way to check the type of an object is to call a type
predicate function. Emacs has a type predicate for each type, as well as some predicates
for combinations of types.

A type predicate function takes one argument; it returns t if the argument belongs to
the appropriate type, and nil otherwise. Following a general Lisp convention for predicate
functions, most type predicates’ names end with ‘p’.

Here is an example which uses the predicates 1istp to check for a list and symbolp to
check for a symbol.
(defun add-on (x)
(cond ((symbolp x)

;3 If X is a symbol, put it on LIST.
(setq list (comns x list)))
((listp x)
;; If X is a list, add its elements to LIST.
(setq list (append x list)))
(t
;3 We handle only symbols and lists.
(error "Invalid argument %s in add-on" x))))

Here is a table of predefined type predicates, in alphabetical order, with references to
further information.

atom See Section 5.3 [List-related Predicates|, page 64.
arrayp See Section 6.3 [Array Functions]|, page 86.

bool-vector-p
See Section 6.7 [Bool-Vectors], page 91.

bufferp See Section 27.1 [Buffer Basics], page 439.

byte-code-function-p
See Section 2.3.16 [Byte-Code Type], page 22.

case-table-p

See Section 4.9 [Case Tables], page 60.
char-or-string-p

See Section 4.2 [Predicates for Strings], page 50.

28 GNU Emacs Lisp Reference Manual

char-table-p
See Section 6.6 [Char-Tables], page 89.

commandp See Section 21.3 [Interactive Call], page 292.
consp See Section 5.3 [List-related Predicates|, page 64.

display-table-p
See Section 38.17 [Display Tables|, page 704.

floatp See Section 3.3 [Predicates on Numbers|, page 35.

frame-configuration-p
See Section 29.12 [Frame Configurations], page 498.

frame-live-p
See Section 29.5 [Deleting Frames|, page 493.

framep See Chapter 29 [Frames|, page 483.

functionp
See Chapter 12 [Functions|, page 155.

integer-or-marker-p
See Section 31.2 [Predicates on Markers|, page 524.

integerp See Section 3.3 [Predicates on Numbers], page 35.
keymapp See Section 22.3 [Creating Keymaps|, page 327.
keywordp See Section 11.2 [Constant Variables|, page 133.
listp See Section 5.3 [List-related Predicates|, page 64.
markerp See Section 31.2 [Predicates on Markers], page 524.

wholenump
See Section 3.3 [Predicates on Numbers|, page 35.

nlistp See Section 5.3 [List-related Predicates|, page 64.
numberp See Section 3.3 [Predicates on Numbers], page 35.

number-or-marker-p
See Section 31.2 [Predicates on Markers], page 524.

overlayp See Section 38.9 [Overlays|, page 671.
processp See Chapter 37 [Processes|, page 641.

sequencep
See Section 6.1 [Sequence Functions], page 83.

stringp See Section 4.2 [Predicates for Strings], page 50.
subrp See Section 12.8 [Function Cells], page 166.
symbolp See Chapter 8 [Symbols|, page 99.

syntax-table-p
See Chapter 35 [Syntax Tables|, page 621.

Chapter 2: Lisp Data Types 29

user—-variable-p
See Section 11.5 [Defining Variables|, page 137.

vectorp See Section 6.4 [Vectors|, page 87.

window-configuration-p
See Section 28.17 [Window Configurations], page 479.

window-live-p
See Section 28.3 [Deleting Windows|, page 456.

windowp See Section 28.1 [Basic Windows]|, page 453.

The most general way to check the type of an object is to call the function type-of.
Recall that each object belongs to one and only one primitive type; type-of tells you which
one (see Chapter 2 [Lisp Data Types|, page 9). But type-of knows nothing about non-
primitive types. In most cases, it is more convenient to use type predicates than type-of.

type-of object Function
This function returns a symbol naming the primitive type of object. The value is one
of the symbols symbol, integer, float, string, cons, vector, char-table, bool-
vector, hash-table, subr, compiled-function, marker, overlay, window, buffer,
frame, process, or window-configuration.
(type-of 1)
= integer
(type-of ’nil)
= symbol
(type-of *(0)) ; O isnil.
= symbol
(type-of ’(x))
= cons

2.7 Equality Predicates

Here we describe two functions that test for equality between any two objects. Other
functions test equality between objects of specific types, e.g., strings. For these predicates,
see the appropriate chapter describing the data type.

eq objectl object2 Function
This function returns t if objectl and object2 are the same object, nil otherwise.
The “same object” means that a change in one will be reflected by the same change
in the other.

eq returns t if object] and object2 are integers with the same value. Also, since
symbol names are normally unique, if the arguments are symbols with the same
name, they are eq. For other types (e.g., lists, vectors, strings), two arguments with
the same contents or elements are not necessarily eq to each other: they are eq only
if they are the same object.
(eq ’foo ’foo)
=t

30 GNU Emacs Lisp Reference Manual

(eq 456 456)

=t

(eq "asdf" "asdf")
= nil

(eq 7(1 (2 (3))) ’(1 (2 (3))))
= nil

(setq foo (1 (2 (3))))
= (1 (2 3N
(eq foo foo)

= t

(eq foo (1 (2 (3))))
= nil

(eq [(1 2) 3] [(1 2) 3])
= nil

(eq (point-marker) (point-marker))
= nil
The make-symbol function returns an uninterned symbol, distinct from the symbol
that is used if you write the name in a Lisp expression. Distinct symbols with the
same name are not eq. See Section 8.3 [Creating Symbols], page 101.

(eq (make-symbol "foo") ’foo)
= nil

equal objectl object2 Function
This function returns t if objectl and object2 have equal components, nil otherwise.
Whereas eq tests if its arguments are the same object, equal looks inside nonidentical
arguments to see if their elements or contents are the same. So, if two objects are eq,
they are equal, but the converse is not always true.

(equal ’foo ’foo)
=t

(equal 456 456)
=t

(equal "asdf" "asdf")
=t

(eq "asdf" "asdf")
= nil

(equal (1 (2 (3))) > (1 (2 (3))))
=t

(eq 7(1 (2 (3))) ’(1 (2 (3))))
= nil

(equal [(1 2) 3] [(1 2) 3])
=t

(eq [(1 2) 3] [(1 2) 3])
= nil

Chapter 2: Lisp Data Types 31

(equal (point-marker) (point-marker))
=t

(eq (point-marker) (point-marker))
= nil
Comparison of strings is case-sensitive, but does not take account of text properties—
it compares only the characters in the strings. A unibyte string never equals a multi-
byte string unless the contents are entirely ASCII (see Section 33.1 [Text Representa-
tions|, page 583).
(equal "asdf" "ASDF")
= nil
However, two distinct buffers are never considered equal, even if their textual contents
are the same.

The test for equality is implemented recursively; for example, given two cons cells x and
v, (equal x y) returns t if and only if both the expressions below return t:

(equal (car x) (car y))
(equal (cdr x) (cdr y))
Because of this recursive method, circular lists may therefore cause infinite recursion
(leading to an error).

32

GNU Emacs Lisp Reference Manual

Chapter 3: Numbers 33

3 Numbers

GNU Emacs supports two numeric data types: integers and floating point numbers.
Integers are whole numbers such as —3, 0, 7, 13, and 511. Their values are exact. Floating
point numbers are numbers with fractional parts, such as —4.5, 0.0, or 2.71828. They can
also be expressed in exponential notation: 1.5e2 equals 150; in this example, ‘€2’ stands for
ten to the second power, and that is multiplied by 1.5. Floating point values are not exact;
they have a fixed, limited amount of precision.

3.1 Integer Basics

The range of values for an integer depends on the machine. The minimum range is
—134217728 to 134217727 (28 bits; i.e., =27 to 227 — 1), but some machines may provide a
wider range. Many examples in this chapter assume an integer has 28 bits.

The Lisp reader reads an integer as a sequence of digits with optional initial sign and
optional final period.

1 ; The integer 1.
1. ; The integer 1.
+1 ; Also the integer 1.
-1 ; The integer —1.
268435457 ; Also the integer 1, due to overflow.
0 ; The integer 0.
-0 ; The integer O.

In addition, the Lisp reader recognizes a syntax for integers in bases other than 10:
‘#Binteger’ reads integer in binary (radix 2), ‘#0integer’ reads integer in octal (radix 8),
‘#Xinteger’ reads integer in hexadecimal (radix 16), and ‘#radixrinteger’ reads integer in
radix radix (where radix is between 2 and 36, inclusivley). Case is not significant for the
letter after ‘#’ (‘B’, ‘0’, etc.) that denotes the radix.

To understand how various functions work on integers, especially the bitwise operators
(see Section 3.8 [Bitwise Operations|, page 42), it is often helpful to view the numbers in
their binary form.

In 28-bit binary, the decimal integer 5 looks like this:
0000 0000 0000 0000 0000 0000 0101

(We have inserted spaces between groups of 4 bits, and two spaces between groups of 8 bits,
to make the binary integer easier to read.)

The integer —1 looks like this:
1111 1111 1111 1111 1111 1111 1111
—1 is represented as 28 ones. (This is called two’s complement notation.)
The negative integer, —5, is creating by subtracting 4 from —1. In binary, the decimal
integer 4 is 100. Consequently, —5 looks like this:
1111 1111 1111 1111 1111 1111 1011

In this implementation, the largest 28-bit binary integer value is 134,217,727 in decimal.
In binary, it looks like this:

34 GNU Emacs Lisp Reference Manual

0111 1111 1111 1111 1111 1111 1111

Since the arithmetic functions do not check whether integers go outside their range,
when you add 1 to 134,217,727, the value is the negative integer —134,217,728:
(+ 1 134217727)
= -134217728
= 1000 0000 0000 0000 0000 0000 0000

Many of the functions described in this chapter accept markers for arguments in place
of numbers. (See Chapter 31 [Markers|, page 523.) Since the actual arguments to such
functions may be either numbers or markers, we often give these arguments the name
number-or-marker. When the argument value is a marker, its position value is used and its
buffer is ignored.

3.2 Floating Point Basics

Floating point numbers are useful for representing numbers that are not integral. The
precise range of floating point numbers is machine-specific; it is the same as the range of
the C data type double on the machine you are using.

The read-syntax for floating point numbers requires either a decimal point (with at least
one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’, ‘15.0e2’, ‘1.5e3’,
and ‘.15e4’ are five ways of writing a floating point number whose value is 1500. They are
all equivalent. You can also use a minus sign to write negative floating point numbers, as
in ‘-1.0".

Most modern computers support the IEEE floating point standard, which provides for
positive infinity and negative infinity as floating point values. It also provides for a class
of values called NaN or “not-a-number”; numerical functions return such values in cases
where there is no correct answer. For example, (sqrt -1.0) returns a NaN. For practical
purposes, there’s no significant difference between different NaN values in Emacs Lisp, and
there’s no rule for precisely which NaN value should be used in a particular case, so Emacs
Lisp doesn’t try to distinguish them. Here are the read syntaxes for these special floating
point values:

positive infinity
‘1.0e+INF’

negative infinity
‘~1.0e+INF’

Not-a-number
‘0.0e+NaN’.

In addition, the value -0.0 is distinguishable from ordinary zero in IEEE floating point
(although equal and = consider them equal values).

You can use logb to extract the binary exponent of a floating point number (or estimate
the logarithm of an integer):

logb number Function
This function returns the binary exponent of number. More precisely, the value is the
logarithm of number base 2, rounded down to an integer.

Chapter 3: Numbers 35

(logb 10)
= 3
(logb 10.0e20)
= 69

3.3 Type Predicates for Numbers

The functions in this section test whether the argument is a number or whether it is
a certain sort of number. The functions integerp and floatp can take any type of Lisp
object as argument (the predicates would not be of much use otherwise); but the zerop
predicate requires a number as its argument. See also integer-or-marker-p and number-
or-marker-p, in Section 31.2 [Predicates on Markers|, page 524.

floatp object Function
This predicate tests whether its argument is a floating point number and returns t if
so, nil otherwise.

floatp does not exist in Emacs versions 18 and earlier.

integerp object Function
This predicate tests whether its argument is an integer, and returns t if so, nil
otherwise.

numberp object Function

This predicate tests whether its argument is a number (either integer or floating
point), and returns t if so, nil otherwise.

wholenump object Function
The wholenump predicate (whose name comes from the phrase “whole-number-p”)
tests to see whether its argument is a nonnegative integer, and returns t if so, nil
otherwise. 0 is considered non-negative.

natnump is an obsolete synonym for wholenump.

zerop number Function
This predicate tests whether its argument is zero, and returns t if so, nil otherwise.
The argument must be a number.

These two forms are equivalent: (zerop x) = (= x 0).

3.4 Comparison of Numbers

To test numbers for numerical equality, you should normally use =, not eq. There can
be many distinct floating point number objects with the same numeric value. If you use
eq to compare them, then you test whether two values are the same object. By contrast, =
compares only the numeric values of the objects.

At present, each integer value has a unique Lisp object in Emacs Lisp. Therefore, eq
is equivalent to = where integers are concerned. It is sometimes convenient to use eq for

36 GNU Emacs Lisp Reference Manual

comparing an unknown value with an integer, because eq does not report an error if the
unknown value is not a number—it accepts arguments of any type. By contrast, = signals
an error if the arguments are not numbers or markers. However, it is a good idea to use = if
you can, even for comparing integers, just in case we change the representation of integers
in a future Emacs version.

Sometimes it is useful to compare numbers with equal; it treats two numbers as equal
if they have the same data type (both integers, or both floating point) and the same value.
By contrast, = can treat an integer and a floating point number as equal.

There is another wrinkle: because floating point arithmetic is not exact, it is often a
bad idea to check for equality of two floating point values. Usually it is better to test for
approximate equality. Here’s a function to do this:

(defvar fuzz-factor 1.0e-6)
(defun approx-equal (x y)

(or (and (= x 0) (=y 0))

(< (/ (abs (- x y))
(max (abs x) (abs y)))
fuzz-factor)))

Common Lisp note: Comparing numbers in Common Lisp always requires =
because Common Lisp implements multi-word integers, and two distinct integer
objects can have the same numeric value. Emacs Lisp can have just one integer
object for any given value because it has a limited range of integer values.

= number-or-markerl number-or-marker2 Function
This function tests whether its arguments are numerically equal, and returns t if so,
nil otherwise.

/= number-or-marker1 number-or-marker2 Function
This function tests whether its arguments are numerically equal, and returns t if they
are not, and nil if they are.

< number-or-markerl number-or-marker2 Function
This function tests whether its first argument is strictly less than its second argument.
It returns t if so, nil otherwise.

= number-or-markerl number-or-marker2 Function
This function tests whether its first argument is less than or equal to its second
argument. It returns t if so, nil otherwise.

> number-or-marker]l number-or-marker2 Function
This function tests whether its first argument is strictly greater than its second argu-
ment. It returns t if so, nil otherwise.

>= number-or-markerl number-or-marker2 Function
This function tests whether its first argument is greater than or equal to its second
argument. It returns t if so, nil otherwise.

Chapter 3: Numbers 37

max number-or-marker &rest numbers-or-markers Function
This function returns the largest of its arguments. If any of the argument is floating-
point, the value is returned as floating point, even if it was given as an integer.
(max 20)
= 20
(max 1 2.5)
= 2.5
(max 1 3 2.5)
= 3.0

min number-or-marker &rest numbers-or-markers Function
This function returns the smallest of its arguments. If any of the argument is floating-
point, the value is returned as floating point, even if it was given as an integer.
(min -4 1)
= -4

abs number Function
This function returns the absolute value of number.

3.5 Numeric Conversions

To convert an integer to floating point, use the function float.

float number Function
This returns number converted to floating point. If number is already a floating point
number, float returns it unchanged.

There are four functions to convert floating point numbers to integers; they differ in
how they round. These functions accept integer arguments also, and return such arguments
unchanged.

truncate number Function
This returns number, converted to an integer by rounding towards zero.

(truncate 1.2)

= 1

(truncate 1.7)
=1

(truncate -1.2)
= -1

(truncate -1.7)
= -1

floor number &optional divisor Function

This returns number, converted to an integer by rounding downward (towards nega-
tive infinity).

If divisor is specified, floor divides number by divisor and then converts to an integer;
this uses the kind of division operation that corresponds to mod, rounding downward.
An arith-error results if divisor is 0.

38 GNU Emacs Lisp Reference Manual

(floor 1.2)
=1
(floor 1.7)
=1
(floor -1.2)
= -2
(floor -1.7)
= -2
(floor 5.99 3)
=1
ceiling number Function
This returns number, converted to an integer by rounding upward (towards positive
infinity).
(ceiling 1.2)
= 2
(ceiling 1.7)
= 2
(ceiling -1.2)
= -1
(ceiling -1.7)
= -1
round number Function

This returns number, converted to an integer by rounding towards the nearest integer.
Rounding a value equidistant between two integers may choose the integer closer to
zero, or it may prefer an even integer, depending on your machine.
(round 1.2)
=1
(round 1.7)
= 2
(round -1.2)
= -1
(round -1.7)
= -2

3.6 Arithmetic Operations

Emacs Lisp provides the traditional four arithmetic operations: addition, subtraction,
multiplication, and division. Remainder and modulus functions supplement the division
functions. The functions to add or subtract 1 are provided because they are traditional in
Lisp and commonly used.

All of these functions except % return a floating point value if any argument is floating,.

It is important to note that in Emacs Lisp, arithmetic functions do not check for overflow.
Thus (1+ 134217727) may evaluate to —134217728, depending on your hardware.

1+ number-or-marker Function
This function returns number-or-marker plus 1. For example,

Chapter 3: Numbers 39

(setq foo 4)
= 4
(1+ foo)
= b

This function is not analogous to the C operator ++—it does not increment a variable.
It just computes a sum. Thus, if we continue,

foo
= 4

If you want to increment the variable, you must use setq, like this:

(setq foo (1+ foo))
= 5

1- number-or-marker Function
This function returns number-or-marker minus 1.

+ &rest numbers-or-markers Function
This function adds its arguments together. When given no arguments, + returns 0.

(+)
= 0

+ 1
=1

(+ 1234
= 10

- &optional number-or-marker &rest more-numbers-or-markers Function
The - function serves two purposes: negation and subtraction. When - has a single
argument, the value is the negative of the argument. When there are multiple ar-
guments, - subtracts each of the more-numbers-or-markers from number-or-marker,
cumulatively. If there are no arguments, the result is 0.

(-101234)
= 0
(- 10)
= -10
=)
=0

* &rest numbers-or-markers Function
This function multiplies its arguments together, and returns the product. When given
no arguments, * returns 1.
(%)
=1
(* 1)
=1
(* 123 4)
= 24

40 GNU Emacs Lisp Reference Manual

/ dividend divisor &rest divisors Function
This function divides dividend by divisor and returns the quotient. If there are
additional arguments divisors, then it divides dividend by each divisor in turn. Each
argument may be a number or a marker.

If all the arguments are integers, then the result is an integer too. This means the
result has to be rounded. On most machines, the result is rounded towards zero after
each division, but some machines may round differently with negative arguments.
This is because the Lisp function / is implemented using the C division operator,
which also permits machine-dependent rounding. As a practical matter, all known
machines round in the standard fashion.

If you divide an integer by 0, an arith-error error is signaled. (See Section 10.5.3
[Errors], page 125.) Floating point division by zero returns either infinity or a NaN
if your machine supports IEEE floating point; otherwise, it signals an arith-error
erTor.

(/ 6 2)
= 3

(/ 5 2)
= 2
(/ 5.0 2)
= 2.5
(/ 5 2.0)
= 2.5
(/ 5.0 2.0)
= 2.5
(/ 25 32)
= 4
(/ -17 6)
= -2

The result of (/ =17 6) could in principle be -3 on some machines.

% dividend divisor Function
This function returns the integer remainder after division of dividend by divisor. The
arguments must be integers or markers.

For negative arguments, the remainder is in principle machine-dependent since the
quotient is; but in practice, all known machines behave alike.

An arith-error results if divisor is 0.

h 94
= 1
Ch -9 4)
= -1
Ch 9 -4)
= 1
(% -9 -4)
= -1

For any two integers dividend and divisor,

Chapter 3: Numbers 41

(+ (% dividend divisor)
(x (/ dividend divisor) divisor))

always equals dividend.

mod dividend divisor Function
This function returns the value of dividend modulo divisor; in other words, the re-
mainder after division of dividend by divisor, but with the same sign as divisor. The
arguments must be numbers or markers.

Unlike %, mod returns a well-defined result for negative arguments. It also permits
floating point arguments; it rounds the quotient downward (towards minus infinity)
to an integer, and uses that quotient to compute the remainder.
An arith-error results if divisor is 0.
(mod 9 4)
= 1
(mod -9 4)
= 3
(mod 9 -4)
= -3
(mod -9 -4)
= -1
(mod 5.5 2.5)
= .5
For any two numbers dividend and divisor,
(+ (mod dividend divisor)
(* (floor dividend divisor) divisor))
always equals dividend, subject to rounding error if either argument is floating point.
For floor, see Section 3.5 [Numeric Conversions|, page 37.

3.7 Rounding Operations

The functions ffloor, fceiling, fround, and ftruncate take a floating point argument
and return a floating point result whose value is a nearby integer. ffloor returns the nearest
integer below; fceiling, the nearest integer above; ftruncate, the nearest integer in the
direction towards zero; fround, the nearest integer.

fHoor float Function
This function rounds float to the next lower integral value, and returns that value as
a floating point number.

fceiling float Function
This function rounds float to the next higher integral value, and returns that value
as a floating point number.

ftruncate float Function
This function rounds float towards zero to an integral value, and returns that value
as a floating point number.

42 GNU Emacs Lisp Reference Manual

fround float Function
This function rounds float to the nearest integral value, and returns that value as a

floating point number.

3.8 Bitwise Operations on Integers

In a computer, an integer is represented as a binary number, a sequence of bits (digits
which are either zero or one). A bitwise operation acts on the individual bits of such a
sequence. For example, shifting moves the whole sequence left or right one or more places,
reproducing the same pattern “moved over”.

The bitwise operations in Emacs Lisp apply only to integers.

Ish integerl count Function

1sh, which is an abbreviation for logical shift, shifts the bits in integerl to the left
count places, or to the right if count is negative, bringing zeros into the vacated bits.
If count is negative, 1sh shifts zeros into the leftmost (most-significant) bit, producing
a positive result even if integerl is negative. Contrast this with ash, below.

Here are two examples of 1sh, shifting a pattern of bits one place to the left. We
show only the low-order eight bits of the binary pattern; the rest are all zero.

(1sh 5 1)

= 10
;3 Decimal 5 becomes decimal 10.
00000101 = 00001010

(1sh 7 1)
= 14
;5 Decimal 7 becomes decimal 14.
00000111 = 00001110
As the examples illustrate, shifting the pattern of bits one place to the left produces
a number that is twice the value of the previous number.

Shifting a pattern of bits two places to the left produces results like this (with 8-bit
binary numbers):

(1sh 3 2)

= 12
;3 Decimal 3 becomes decimal 12.
00000011 = 00001100

On the other hand, shifting one place to the right looks like this:

(1sh 6 -1)

= 3
;3 Decimal 6 becomes decimal 3.
00000110 = 00000011

(1sh 5 -1)

= 2
;3 Decimal 5 becomes decimal 2.
00000101 = 00000010

Chapter 3: Numbers 43

ash integerl count

As the example illustrates, shifting one place to the right divides the value of a positive
integer by two, rounding downward.

The function 1sh, like all Emacs Lisp arithmetic functions, does not check for overflow,
so shifting left can discard significant bits and change the sign of the number. For
example, left shifting 134,217,727 produces —2 on a 28-bit machine:
(1sh 134217727 1) ; left shift
= -2
In binary, in the 28-bit implementation, the argument looks like this:

;3 Decimal 134,217,727
0111 1111 1111 1111 1111 1111 1111

which becomes the following when left shifted:

;3 Decimal —2
1111 1111 1111 1111 1111 1111 1110

ash (arithmetic shift) shifts the bits in integerl to the left count places, or to the
right if count is negative.

ash gives the same results as 1sh except when integerl and count are both negative.
In that case, ash puts ones in the empty bit positions on the left, while 1sh puts zeros
in those bit positions.
Thus, with ash, shifting the pattern of bits one place to the right looks like this:

(ash -6 -1) = -3

;3 Decimal —6 becomes decimal —3.

1111 1111 1111 1111 1111 1111 1010

=
1111 1111 1111 1111 1111 1111 1101

In contrast, shifting the pattern of bits one place to the right with 1sh looks like this:

(1sh -6 -1) = 134217725

;5 Decimal —6 becomes decimal 134,217,725.

1111 1111 1111 1111 1111 1111 1010
=

0111 1111 1111 1111 1111 1111 1101

Here are other examples:
; 28-bit binary values

(1sh 5 2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
= 20 ; = (0000 0000 0000 0000 0000 0001 0100
(ash 5 2)
= 20
(1sh -5 2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
= -20 ; = 1111 1111 1111 1111 1111 1110 1100
(ash -5 2)
= =20
(1sh 5 -2) ; 5 = 0000 0000 0000 0000 0000 0000 0101

=1 ; = (0000 0000 0000 0000 0000 0000 0001

Function

44 GNU Emacs Lisp Reference Manual

(ash 5 -2)
=1
(1sh -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
= 4194302 ; = (0011 1111 1111 1111 1111 1111 1110
(ash -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
= -2 ; = 1111 11111111 1111 1111 1111 1110
logand &rest ints-or-markers Function

This function returns the “logical and” of the arguments: the nth bit is set in the
result if, and only if, the nth bit is set in all the arguments. (“Set” means that the
value of the bit is 1 rather than 0.)

For example, using 4-bit binary numbers, the “logical and” of 13 and 12 is 12: 1101
combined with 1100 produces 1100. In both the binary numbers, the leftmost two
bits are set (i.e., they are 1’s), so the leftmost two bits of the returned value are set.
However, for the rightmost two bits, each is zero in at least one of the arguments, so
the rightmost two bits of the returned value are 0’s.

Therefore,

(logand 13 12)
= 12

If logand is not passed any argument, it returns a value of —1. This number is an
identity element for logand because its binary representation consists entirely of ones.
If logand is passed just one argument, it returns that argument.

; 28-bit binary values

(logand 14 13) ; 0000 0000 0000 0000 0000 0000 1110
; 13 = 0000 0000 0000 0000 0000 0000 1101
= 12 ; 12 = 0000 0000 0000 0000 0000 0000 1100

(logand 14 13 4) ; 14 0000 0000 0000 0000 0000 0000 1110
; 13 = 0000 0000 0000 0000 0000 0000 1101

[y
S
1]

;4 = 0000 0000 0000 0000 0000 0000 0100
= 4 ;4 = 0000 0000 0000 0000 0000 0000 0100
(logand)
= -1 ; -1 = 1111 1111 1111 11171 1111 1111 1111
logior &rest ints-or-markers Function

This function returns the “inclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in at least one of the arguments. If there are
no arguments, the result is zero, which is an identity element for this operation. If
logior is passed just one argument, it returns that argument.

; 28-bit binary values

(logior 12 5) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101
= 13 ; 13 = 0000 0000 0000 0000 0000 0000 1101

Chapter 3: Numbers 45

(logior 12 5 7) ; 12 = 0000 0000 0000 0000 0000 0000 1100
;5 = 0000 0000 0000 0000 0000 0000 0101

;7 = 0000 0000 0000 0000 0000 0000 0111

= 15 ; 156 = 0000 0000 0000 0000 0000 0000 1111

logxor &rest ints-or-markers Function
This function returns the “exclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in an odd number of the arguments. If there
are no arguments, the result is 0, which is an identity element for this operation. If
logxor is passed just one argument, it returns that argument.

; 28-bit binary values

(logxor 12 5) ; 12 = 0000 0000 0000 0000 0000 0000 1100
;5 = 0000 0000 0000 0000 0000 0000 0101

=9 ;9 = 0000 0000 0000 0000 0000 0000 1001
(logxor 12 5 7) ; 12 = 0000 0000 0000 0000 0000 0000 1100

;5 = 0000 0000 0000 0000 0000 0000 0101
;7 = 0000 0000 0000 0000 0000 0000 0111
= 14 ; 14 = 0000 0000 0000 0000 0000 0000 1110

lognot integer Function

This function returns the logical complement of its argument: the nth bit is one in
the result if, and only if, the nth bit is zero in integer, and vice-versa.

(lognot 5)

= -6

;5 5 = 0000 0000 0000 0000 0000 0000 0101

;3 becomes

;3 -6 = 1111 1111 1111 1111 1111 1111 1010

3.9 Standard Mathematical Functions

These mathematical functions allow integers as well as floating point numbers as argu-
ments.

sin arg Function

Ccos arg Function

tan ar, Function
g

These are the ordinary trigonometric functions, with argument measured in radians.

asin arg Function
The value of (asin arg) is a number between —7/2 and 7/2 (inclusive) whose sine
is arg; if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

acos arg Function
The value of (acos arg) is a number between 0 and 7 (inclusive) whose cosine is arg;
if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

46 GNU Emacs Lisp Reference Manual

atan arg Function
The value of (atan arg) is a number between —7/2 and /2 (exclusive) whose tangent
is arg.

exp arg Function

This is the exponential function; it returns e to the power arg. e is a fundamental
mathematical constant also called the base of natural logarithms.

log arg &optional base Function
This function returns the logarithm of arg, with base base. If you don’t specify base,
the base e is used. If arg is negative, the result is a NaN.

log10 arg Function
This function returns the logarithm of arg, with base 10. If arg is negative, the result
is a NaN. (1og10 x) = (log x 10), at least approximately.

expt xy Function
This function returns x raised to power y. If both arguments are integers and y is
positive, the result is an integer; in this case, it is truncated to fit the range of possible
integer values.

sqrt arg Function
This returns the square root of arg. If arg is negative, the value is a NaN.

3.10 Random Numbers

A deterministic computer program cannot generate true random numbers. For most
purposes, pseudo-random numbers suffice. A series of pseudo-random numbers is generated
in a deterministic fashion. The numbers are not truly random, but they have certain
properties that mimic a random series. For example, all possible values occur equally often
in a pseudo-random series.

In Emacs, pseudo-random numbers are generated from a “seed” number. Starting from
any given seed, the random function always generates the same sequence of numbers. Emacs
always starts with the same seed value, so the sequence of values of random is actually the
same in each Emacs run! For example, in one operating system, the first call to (random)
after you start Emacs always returns -1457731, and the second one always returns -7692030.
This repeatability is helpful for debugging.

If you want random numbers that don’t always come out the same, execute (random
t). This chooses a new seed based on the current time of day and on Emacs’s process 1D
number.

random &optional limit Function
This function returns a pseudo-random integer. Repeated calls return a series of
pseudo-random integers.

If limit is a positive integer, the value is chosen to be nonnegative and less than limit.

Chapter 3: Numbers 47

If Iimit is t, it means to choose a new seed based on the current time of day and on
Emacs’s process ID number.

On some machines, any integer representable in Lisp may be the result of random.
On other machines, the result can never be larger than a certain maximum or less
than a certain (negative) minimum.

48

GNU Emacs Lisp Reference Manual

Chapter 4: Strings and Characters 49

4 Strings and Characters

A string in Emacs Lisp is an array that contains an ordered sequence of characters.
Strings are used as names of symbols, buffers, and files; to send messages to users; to hold
text being copied between buffers; and for many other purposes. Because strings are so
important, Emacs Lisp has many functions expressly for manipulating them. Emacs Lisp
programs use strings more often than individual characters.

See Section 21.6.14 [Strings of Events], page 308, for special considerations for strings of
keyboard character events.

4.1 String and Character Basics

Characters are represented in Emacs Lisp as integers; whether an integer is a character
or not is determined only by how it is used. Thus, strings really contain integers.

The length of a string (like any array) is fixed, and cannot be altered once the string
exists. Strings in Lisp are not terminated by a distinguished character code. (By contrast,
strings in C are terminated by a character with AsciI code 0.)

Since strings are arrays, and therefore sequences as well, you can operate on them with
the general array and sequence functions. (See Chapter 6 [Sequences Arrays Vectors],
page 83.) For example, you can access or change individual characters in a string using the
functions aref and aset (see Section 6.3 [Array Functions|, page 86).

There are two text representations for non-Ascil characters in Emacs strings (and in
buffers): unibyte and multibyte (see Section 33.1 [Text Representations], page 583). An
Ascll character always occupies one byte in a string; in fact, when a string is all Asci,
there is no real difference between the unibyte and multibyte representations. For most
Lisp programming, you don’t need to be concerned with these two representations.

Sometimes key sequences are represented as strings. When a string is a key sequence,
string elements in the range 128 to 255 represent meta characters (which are large integers)
rather than character codes in the range 128 to 255.

Strings cannot hold characters that have the hyper, super or alt modifiers; they can hold
ASCII control characters, but no other control characters. They do not distinguish case in
ASCII control characters. If you want to store such characters in a sequence, such as a key
sequence, you must use a vector instead of a string. See Section 2.3.3 [Character Type],
page 11, for more information about the representation of meta and other modifiers for
keyboard input characters.

Strings are useful for holding regular expressions. You can also match regular expressions
against strings (see Section 34.3 [Regexp Search], page 611). The functions match-string
(see Section 34.6.2 [Simple Match Datal, page 616) and replace-match (see Section 34.6.1
[Replacing Match], page 615) are useful for decomposing and modifying strings based on
regular expression matching.

Like a buffer, a string can contain text properties for the characters in it, as well as
the characters themselves. See Section 32.19 [Text Properties|, page 562. All the Lisp
primitives that copy text from strings to buffers or other strings also copy the properties of
the characters being copied.

50 GNU Emacs Lisp Reference Manual

See Chapter 32 [Text], page 531, for information about functions that display strings
or copy them into buffers. See Section 2.3.3 [Character Type], page 11, and Section 2.3.8
[String Type|, page 18, for information about the syntax of characters and strings. See
Chapter 33 [Non-ASCII Characters|, page 583, for functions to convert between text repre-
sentations and to encode and decode character codes.

4.2 The Predicates for Strings

For more information about general sequence and array predicates, see Chapter 6 [Se-
quences Arrays Vectors|, page 83, and Section 6.2 [Arrays], page 85.

stringp object Function
This function returns t if object is a string, nil otherwise.

char-or-string-p object Function
This function returns t if object is a string or a character (i.e., an integer), nil
otherwise.

4.3 Creating Strings

The following functions create strings, either from scratch, or by putting strings together,
or by taking them apart.

make-string count character Function
This function returns a string made up of count repetitions of character. If count is
negative, an error is signaled.
(make-string 5 7x)
= "xxxxx"
(make-string 0 ?7x)
j nn

Other functions to compare with this one include char-to-string (see Section 4.6
[String Conversion], page 55), make-vector (see Section 6.4 [Vectors], page 87), and
make-1list (see Section 5.5 [Building Lists], page 68).

string &rest characters Function
This returns a string containing the characters characters.
(string ?7a ?b 7c)
= "abc"

substring string start &optional end Function
This function returns a new string which consists of those characters from string in
the range from (and including) the character at the index start up to (but excluding)
the character at the index end. The first character is at index zero.

Chapter 4: Strings and Characters 51

(substring "abcdefg" 0 3)
= "abc"
Here the index for ‘a’ is 0, the index for ‘b’ is 1, and the index for ‘c’ is 2. Thus,
three letters, ‘abc’, are copied from the string "abcdefg". The index 3 marks the
character position up to which the substring is copied. The character whose index is
3 is actually the fourth character in the string.

A negative number counts from the end of the string, so that —1 signifies the index
of the last character of the string. For example:
(substring "abcdefg" -3 -1)
= Mef"
In this example, the index for ‘e’ is —3, the index for ‘£’ is —2, and the index for ‘g’
is —1. Therefore, ‘e’ and ‘f’ are included, and ‘g’ is excluded.

When nil is used as an index, it stands for the length of the string. Thus,
(substring "abcdefg" -3 nil)
= '"efg"
Omitting the argument end is equivalent to specifying nil. It follows that (substring
string 0) returns a copy of all of string.

(substring "abcdefg" 0)
= "abcdefg"

But we recommend copy-sequence for this purpose (see Section 6.1 [Sequence Func-
tions], page 83).

If the characters copied from string have text properties, the properties are copied
into the new string also. See Section 32.19 [Text Properties], page 562.

substring also accepts a vector for the first argument. For example:
(substring [a b (c¢) "d"] 1 3)
= [b ()]
A wrong-type-argument error is signaled if either start or end is not an integer or
nil. An args-out-of-range error is signaled if start indicates a character following
end, or if either integer is out of range for string.

Contrast this function with buffer-substring (see Section 32.2 [Buffer Contents],
page 532), which returns a string containing a portion of the text in the current buffer.
The beginning of a string is at index 0, but the beginning of a buffer is at index 1.

concat &rest sequences Function
This function returns a new string consisting of the characters in the arguments passed
to it (along with their text properties, if any). The arguments may be strings, lists of
numbers, or vectors of numbers; they are not themselves changed. If concat receives
no arguments, it returns an empty string.

(concat "abc" "-def")
= "abc-def"

(concat "abc" (list 120 121) [122])
= "abcxyz"

;3 nil is an empty sequence.
(concat "abc" nil "-def")

52 GNU Emacs Lisp Reference Manual

= "abc-def"
(concat "The " "quick brown " "fox.")
= "The quick brown fox."
(concat)
:> nn

The concat function always constructs a new string that is not eq to any existing
string.

In Emacs versions before 21, when an argument was an integer (not a sequence of
integers), it was converted to a string of digits making up the decimal printed rep-
resentation of the integer. This obsolete usage no longer works. The proper way to
convert an integer to its decimal printed form is with format (see Section 4.7 [For-
matting Strings|, page 56) or number-to-string (see Section 4.6 [String Conversion],
page 55).

For information about other concatenation functions, see the description of mapconcat
in Section 12.6 [Mapping Functions], page 163, vconcat in Section 6.4 [Vectors],
page 87, and append in Section 5.5 [Building Lists], page 68.

split-string string separators Function
This function splits string into substrings at matches for the regular expression sep-
arators. Each match for separators defines a splitting point; the substrings between
the splitting points are made into a list, which is the value returned by split-string.
If separators is nil (or omitted), the default is " [\£\t\n\r\v]+".

For example,
(split-string "Soup is good food" "o")
:> (IIS" llup 1S gll nn ||d f" nn lld")
(split-string "Soup is good food" "o+")
:> (IISH llup is gll Ild fll lld")
When there is a match adjacent to the beginning or end of the string, this does not
cause a null string to appear at the beginning or end of the list:
(split-string "out to moo" "o+")
: (Ilut tll n mll)
Empty matches do count, when not adjacent to another match:

(split-string "Soup is good food" "ox")

:> ("SII llull Ilpll n n.n i n n s n.n n llgll ||d|| n n IIf n lldll)
(split-string "Nice doggy!" "")
i("Nll llill "C“ llell n.n lldll IIOll llgll IIgll llyll n !ll)

4.4 Modifying Strings

The most basic way to alter the contents of an existing string is with aset (see Section 6.3
[Array Functions|, page 86). (aset string idx char) stores char into string at index idx.
Each character occupies one or more bytes, and if char needs a different number of bytes
from the character already present at that index, aset signals an error.

A more powerful function is store-substring:

Chapter 4: Strings and Characters 53

store-substring string idx obj Function
This function alters part of the contents of the string string, by storing obj starting
at index idx. The argument obj may be either a character or a (smaller) string.
Since it is impossible to change the length of an existing string, it is an error if obj
doesn’t fit within string’s actual length, or if any new character requires a different
number of bytes from the character currently present at that point in string.

4.5 Comparison of Characters and Strings

char-equal characterl character2 Function
This function returns t if the arguments represent the same character, nil otherwise.
This function ignores differences in case if case-fold-search is non-nil.
(char-equal ?7x 7x)
=t
(let ((case-fold-search nil))
(char-equal 7x 7X))
= nil

string= stringl string2 Function
This function returns t if the characters of the two strings match exactly. Case is
always significant, regardless of case-fold-search.

(string= "abc" "abc")

=t

(string= "abc" "ABC")
= nil

(string= "ab" "ABC")
= nil

The function string= ignores the text properties of the two strings. When equal (see
Section 2.7 [Equality Predicates], page 29) compares two strings, it uses string=.

If the strings contain non-ASCII characters, and one is unibyte while the other is multi-
byte, then they cannot be equal. See Section 33.1 [Text Representations], page 583.

string-equal stringl string2 Function
string-equal is another name for string=.

string< stringl string2 Function

This function compares two strings a character at a time. It scans both the strings at
the same time to find the first pair of corresponding characters that do not match. If
the lesser character of these two is the character from stringl, then stringl is less, and
this function returns t. If the lesser character is the one from string2, then stringl is
greater, and this function returns nil. If the two strings match entirely, the value is
nil.

Pairs of characters are compared according to their character codes. Keep in mind
that lower case letters have higher numeric values in the ASCII character set than

54 GNU Emacs Lisp Reference Manual

their upper case counterparts; digits and many punctuation characters have a lower
numeric value than upper case letters. An ASCII character is less than any non-ASCII
character; a unibyte non-AscII character is always less than any multibyte non-Ascii
character (see Section 33.1 [Text Representations|, page 583).

(string< "abc" "abd")

=t

(string< "abd" "abc")
= nil

(string< "123" "abc")
=t

When the strings have different lengths, and they match up to the length of stringl,
then the result is t. If they match up to the length of string2, the result is nil. A
string of no characters is less than any other string.
(string< "" "abc")
= t
(string< "ab" "abc")
= t
(String< IlabCH n ll)
= nil
(string< "abc" "ab")
= nil
(string< "" ")
= nil

string-lessp stringl string2 Function
string-lessp is another name for string<.

compare-strings stringl startl endl string2 start2 end2 &optional Function
ignore-case
This function compares the specified part of stringl with the specified part of string?2.
The specified part of stringl runs from index startl up to index endl (nil means the
end of the string). The specified part of string2 runs from index start2 up to index
end2 (nil means the end of the string).

The strings are both converted to multibyte for the comparison (see Section 33.1 [Text
Representations|, page 583) so that a unibyte string can be equal to a multibyte string.
If ignore-case is non-nil, then case is ignored, so that upper case letters can be equal
to lower case letters.

If the specified portions of the two strings match, the value is t. Otherwise, the value
is an integer which indicates how many leading characters agree, and which string
is less. Its absolute value is one plus the number of characters that agree at the
beginning of the two strings. The sign is negative if stringl (or its specified portion)
is less.

assoc-ignore-case key alist Function
This function works like assoc, except that key must be a string, and comparison is
done using compare-strings, ignoring case differences. See Section 5.8 [Association
Lists], page 79.

Chapter 4: Strings and Characters 55

assoc-ignore-representation key alist Function
This function works like assoc, except that key must be a string, and comparison is
done using compare-strings. Case differences are significant.

See also compare-buffer-substrings in Section 32.3 [Comparing Text|, page 534, for
a way to compare text in buffers. The function string-match, which matches a regular
expression against a string, can be used for a kind of string comparison; see Section 34.3
[Regexp Search], page 611.

4.6 Conversion of Characters and Strings

This section describes functions for conversions between characters, strings and integers.
format and prinl-to-string (see Section 19.5 [Output Functions|, page 260) can also
convert Lisp objects into strings. read-from-string (see Section 19.3 [Input Functions],
page 257) can “convert” a string representation of a Lisp object into an object. The functions
string-make-multibyte and string-make-unibyte convert the text representation of a
string (see Section 33.2 [Converting Representations], page 584).

See Chapter 24 [Documentation], page 387, for functions that produce textual descrip-
tions of text characters and general input events (single-key-description and text-
char-description). These functions are used primarily for making help messages.

char-to-string character Function
This function returns a new string containing one character, character. This func-
tion is semi-obsolete because the function string is more general. See Section 4.3
[Creating Strings|, page 50.

string-to-char string Function
This function returns the first character in string. If the string is empty, the function
returns 0. The value is also 0 when the first character of string is the null character,
ASCII code 0.

(string-to-char "ABC")
= 65
(string-to-char "xyz")
= 120
(string-to-char "")
= 0
(string-to-char "\000")
= 0

This function may be eliminated in the future if it does not seem useful enough to
retain.

number-to-string number Function
This function returns a string consisting of the printed base-ten representation of
number, which may be an integer or a floating point number. The returned value
starts with a minus sign if the argument is negative.

56 GNU Emacs Lisp Reference Manual

(number-to-string 256)

= "256"

(number-to-string -23)
= n-23"

(number-to-string -23.5)
= "-23.5"

int-to-string is a semi-obsolete alias for this function.

See also the function format in Section 4.7 [Formatting Strings|, page 56.

string-to-number string &optional base Function
This function returns the numeric value of the characters in string. If base is non-nil,
integers are converted in that base. If base is nil, then base ten is used. Floating
point conversion always uses base ten; we have not implemented other radices for
floating point numbers, because that would be much more work and does not seem
useful. If string looks like an integer but its value is too large to fit into a Lisp integer,
string-to-number returns a floating point result.

The parsing skips spaces and tabs at the beginning of string, then reads as much of
string as it can interpret as a number. (On some systems it ignores other whitespace
at the beginning, not just spaces and tabs.) If the first character after the ignored
whitespace is neither a digit, nor a plus or minus sign, nor the leading dot of a floating
point number, this function returns 0.
(string-to-number "256")
= 256
(string-to-number "25 is a perfect square.")
= 25
(string-to-number "X256")
= 0
(string-to-number "-4.5")
= -4.5
(string-to-number "1e5")
= 100000.0

string-to-int is an obsolete alias for this function.
Here are some other functions that can convert to or from a string:

concat concat can convert a vector or a list into a string. See Section 4.3 [Creating
Strings], page 50.

vconcat vconcat can convert a string into a vector. See Section 6.5 [Vector Functions],
page 88.

append append can convert a string into a list. See Section 5.5 [Building Lists|, page 68.

4.7 Formatting Strings

Formatting means constructing a string by substitution of computed values at various
places in a constant string. This constant string controls how the other values are printed,
as well as where they appear; it is called a format string.

Chapter 4: Strings and Characters 57

Formatting is often useful for computing messages to be displayed. In fact, the functions
message and error provide the same formatting feature described here; they differ from
format only in how they use the result of formatting.

format string &rest objects Function

This function returns a new string that is made by copying string and then replacing
any format specification in the copy with encodings of the corresponding objects. The
arguments objects are the computed values to be formatted.

The characters in string, other than the format specifications, are copied directly into
the output; starting in Emacs 21, if they have text properties, these are copied into
the output also.

A format specification is a sequence of characters beginning with a ‘%’. Thus, if there
is a ‘%d’ in string, the format function replaces it with the printed representation of one of
the values to be formatted (one of the arguments objects). For example:

(format "The value of fill-column is %d." fill-column)
= "The value of fill-column is 72."

If string contains more than one format specification, the format specifications corre-
spond to successive values from objects. Thus, the first format specification in string uses
the first such value, the second format specification uses the second such value, and so on.
Any extra format specifications (those for which there are no corresponding values) cause
unpredictable behavior. Any extra values to be formatted are ignored.

Certain format specifications require values of particular types. If you supply a value
that doesn’t fit the requirements, an error is signaled.

Here is a table of valid format specifications:

s’ Replace the specification with the printed representation of the object, made
without quoting (that is, using princ, not prinl—see Section 19.5 [Output
Functions], page 260). Thus, strings are represented by their contents alone,
with no ‘"’ characters, and symbols appear without ‘\’ characters.

Starting in Emacs 21, if the object is a string, its text properties are copied

into the output. The text properties of the ‘%s’ itself are also copied, but those
of the object take priority.

If there is no corresponding object, the empty string is used.
A Replace the specification with the printed representation of the object, made
with quoting (that is, using prini—see Section 19.5 [Output Functions],

page 260). Thus, strings are enclosed in ‘"’ characters, and ‘\’ characters
appear where necessary before special characters.

If there is no corresponding object, the empty string is used.

‘%o’ Replace the specification with the base-eight representation of an integer.

WAK Replace the specification with the base-ten representation of an integer.

‘%X’

WX Replace the specification with the base-sixteen representation of an integer. ‘%x’

uses lower case and ‘%X’ uses upper case.

58 GNU Emacs Lisp Reference Manual

“he’ Replace the specification with the character which is the value given.

‘e’ Replace the specification with the exponential notation for a floating point
number.

hE’ Replace the specification with the decimal-point notation for a floating point
number.

“he’ Replace the specification with notation for a floating point number, using either

exponential notation or decimal-point notation, whichever is shorter.

vy Replace the specification with a single ‘%’. This format specification is unusual
in that it does not use a value. For example, (format "%% %d" 30) returns "%
30".

Any other format character results in an ‘Invalid format operation’ error.
Here are several examples:

(format "The name of this buffer is ¥%s." (buffer-name))
= "The name of this buffer is strings.texi."

(format "The buffer object prints as %s." (current-buffer))
= "The buffer object prints as strings.texi."

(format "The octal value of %d is %o,
and the hex value is %x." 18 18 18)
= "The octal value of 18 is 22,
and the hex value is 12."

All the specification characters allow an optional numeric prefix between the ‘%’ and the
character. The optional numeric prefix defines the minimum width for the object. If the
printed representation of the object contains fewer characters than this, then it is padded.
The padding is on the left if the prefix is positive (or starts with zero) and on the right if
the prefix is negative. The padding character is normally a space, but if the numeric prefix
starts with a zero, zeros are used for padding. Here are some examples of padding;:

(format "%06d is padded on the left with zeros" 123)
= "000123 is padded on the left with zeros"

(format "%-6d is padded on the right" 123)
= "123 is padded on the right"

format never truncates an object’s printed representation, no matter what width you
specify. Thus, you can use a numeric prefix to specify a minimum spacing between columns
with no risk of losing information.

In the following three examples, ‘%7s’ specifies a minimum width of 7. In the first case,
the string inserted in place of ‘%7s’ has only 3 letters, so 4 blank spaces are inserted for
padding. In the second case, the string "specification" is 13 letters wide but is not
truncated. In the third case, the padding is on the right.

(format "The word ‘J%7s’ actually has J%d letters in it."

"foo" (length "foo"))
= "The word ° foo’ actually has 3 letters in it."

Chapter 4: Strings and Characters 59

(format "The word ‘J%7s’ actually has J%d letters in it."
"specification" (length "specification"))
= "The word ‘specification’ actually has 13 letters in it."
(format "The word ‘%-7s’ actually has %d letters in it."

"foo" (length "foo"))
= "The word ‘foo > actually has 3 letters in it."

4.8 Case Conversion in Lisp

The character case functions change the case of single characters or of the contents of
strings. The functions normally convert only alphabetic characters (the letters ‘A’ through
‘2> and ‘a’ through ‘z’, as well as non-ASCII letters); other characters are not altered. You
can specify a different case conversion mapping by specifying a case table (see Section 4.9
[Case Tables], page 60).

These functions do not modify the strings that are passed to them as arguments.

The examples below use the characters ‘X’ and ‘x’ which have AscII codes 88 and 120
respectively.

downcase string-or-char Function
This function converts a character or a string to lower case.

When the argument to downcase is a string, the function creates and returns a new
string in which each letter in the argument that is upper case is converted to lower
case. When the argument to downcase is a character, downcase returns the corre-
sponding lower case character. This value is an integer. If the original character is
lower case, or is not a letter, then the value equals the original character.

(downcase "The cat in the hat")
= "the cat in the hat"

(downcase 7X)
= 120

upcase string-or-char Function
This function converts a character or a string to upper case.

When the argument to upcase is a string, the function creates and returns a new
string in which each letter in the argument that is lower case is converted to upper
case.

When the argument to upcase is a character, upcase returns the corresponding upper
case character. This value is an integer. If the original character is upper case, or is
not a letter, then the value returned equals the original character.

(upcase "The cat in the hat")
= "THE CAT IN THE HAT"

(upcase 7x)
= 88

60 GNU Emacs Lisp Reference Manual

capitalize string-or-char Function
This function capitalizes strings or characters. If string-or-char is a string, the func-
tion creates and returns a new string, whose contents are a copy of string-or-char in
which each word has been capitalized. This means that the first character of each
word is converted to upper case, and the rest are converted to lower case.

The definition of a word is any sequence of consecutive characters that are assigned
to the word constituent syntax class in the current syntax table (see Section 35.2.1
[Syntax Class Table], page 622).

When the argument to capitalize is a character, capitalize has the same result
as upcase.

(capitalize "The cat in the hat")
= "The Cat In The Hat"

(capitalize "THE 77TH-HATTED CAT")
= "The 77th-Hatted Cat"

(capitalize 7x)
= 88

upcase-initials string Function
This function capitalizes the initials of the words in string, without altering any letters
other than the initials. It returns a new string whose contents are a copy of string,
in which each word has had its initial letter converted to upper case.

The definition of a word is any sequence of consecutive characters that are assigned
to the word constituent syntax class in the current syntax table (see Section 35.2.1
[Syntax Class Table], page 622).

(upcase-initials "The CAT in the hAt")
= "The CAT In The HAt"

See Section 4.5 [Text Comparison], page 53, for functions that compare strings; some of
them ignore case differences, or can optionally ignore case differences.

4.9 The Case Table

You can customize case conversion by installing a special case table. A case table specifies
the mapping between upper case and lower case letters. It affects both the case conversion
functions for Lisp objects (see the previous section) and those that apply to text in the
buffer (see Section 32.18 [Case Changes|, page 560). Each buffer has a case table; there is
also a standard case table which is used to initialize the case table of new buffers.

A case table is a char-table (see Section 6.6 [Char-Tables|, page 89) whose subtype
is case-table. This char-table maps each character into the corresponding lower case
character. It has three extra slots, which hold related tables:

upcase The upcase table maps each character into the corresponding upper case char-
acter.

Chapter 4: Strings and Characters 61

canonicalize
The canonicalize table maps all of a set of case-related characters into a partic-
ular member of that set.

equivalences
The equivalences table maps each one of a set of case-related characters into
the next character in that set.

In simple cases, all you need to specify is the mapping to lower-case; the three related
tables will be calculated automatically from that one.

For some languages, upper and lower case letters are not in one-to-one correspondence.
There may be two different lower case letters with the same upper case equivalent. In these
cases, you need to specify the maps for both lower case and upper case.

The extra table canonicalize maps each character to a canonical equivalent; any two
characters that are related by case-conversion have the same canonical equivalent character.
For example, since ‘a’ and ‘A’ are related by case-conversion, they should have the same
canonical equivalent character (which should be either ‘a’ for both of them, or ‘A’ for both
of them).

The extra table equivalences is a map that cyclicly permutes each equivalence class (of
characters with the same canonical equivalent). (For ordinary Ascii, this would map ‘a’
into ‘A’ and ‘A’ into ‘a’, and likewise for each set of equivalent characters.)

When you construct a case table, you can provide nil for canonicalize; then Emacs fills
in this slot from the lower case and upper case mappings. You can also provide nil for
equivalences; then Emacs fills in this slot from canonicalize. In a case table that is actually
in use, those components are non-nil. Do not try to specify equivalences without also
specifying canonicalize.

Here are the functions for working with case tables:

case-table-p object Function
This predicate returns non-nil if object is a valid case table.

set-standard-case-table table Function
This function makes table the standard case table, so that it will be used in any
buffers created subsequently.

standard-case-table Function
This returns the standard case table.

current-case-table Function
This function returns the current buffer’s case table.

set-case-table table Function
This sets the current buffer’s case table to table.

The following three functions are convenient subroutines for packages that define non-
AscII character sets. They modify the specified case table case-table; they also modify the
standard syntax table. See Chapter 35 [Syntax Tables], page 621. Normally you would use
these functions to change the standard case table.

62 GNU Emacs Lisp Reference Manual

set-case-syntax-pair uc Ic case-table Function
This function specifies a pair of corresponding letters, one upper case and one lower
case.

set-case-syntax-delims [r case-table Function

This function makes characters I and r a matching pair of case-invariant delimiters.

set-case-syntax char syntax case-table Function
This function makes char case-invariant, with syntax syntax.

describe-buffer-case-table Command
This command displays a description of the contents of the current buffer’s case table.

Chapter 5: Lists 63

5 Lists

A list represents a sequence of zero or more elements (which may be any Lisp objects).
The important difference between lists and vectors is that two or more lists can share part
of their structure; in addition, you can insert or delete elements in a list without copying
the whole list.

5.1 Lists and Cons Cells

Lists in Lisp are not a primitive data type; they are built up from cons cells. A cons
cell is a data object that represents an ordered pair. That is, it has two slots, and each slot
holds, or refers to, some Lisp object. One slot is known as the CAR, and the other is known
as the CDR. (These names are traditional; see Section 2.3.6 [Cons Cell Type], page 15.)
CDR is pronounced “could-er.”

We say that “the CAR of this cons cell is” whatever object its CAR slot currently holds,
and likewise for the CDR.

A list is a series of cons cells “chained together,” so that each cell refers to the next one.
There is one cons cell for each element of the list. By convention, the CARs of the cons
cells hold the elements of the list, and the CDRs are used to chain the list: the CDR slot of
each cons cell refers to the following cons cell. The CDR of the last cons cell is nil. This
asymmetry between the CAR and the CDR is entirely a matter of convention; at the level of
cons cells, the CAR and CDR slots have the same characteristics.

Because most cons cells are used as part of lists, the phrase list structure has come to
mean any structure made out of cons cells.

The symbol nil is considered a list as well as a symbol; it is the list with no elements.
For convenience, the symbol nil is considered to have nil as its CDR (and also as its CAR).

The CDR of any nonempty list I is a list containing all the elements of I except the first.

5.2 Lists as Linked Pairs of Boxes

A cons cell can be illustrated as a pair of boxes. The first box represents the CAR and
the second box represents the CDR. Here is an illustration of the two-element list, (tulip
1ily), made from two cons cells:

Each pair of boxes represents a cons cell. Each box “refers to”, “points to” or “holds” a
Lisp object. (These terms are synonymous.) The first box, which describes the CAR of the
first cons cell, contains the symbol tulip. The arrow from the CDR box of the first cons
cell to the second cons cell indicates that the CDR of the first cons cell is the second cons
cell.

The same list can be illustrated in a different sort of box notation like this:

64 GNU Emacs Lisp Reference Manual

--> tulip --> 1lily

Here is a more complex illustration, showing the three-element list, ((pine needles)
oak maple), the first element of which is a two-element list:

== 1 1 I-=>1 | |-=>nil
I I I
I I I
| --> oak --> maple
I
| = ——— e -
- | | [-—> | | [-=> nil
I I
I I
--> pine -—> needles

The same list represented in the first box notation looks like this:

| car | cdr | | car | cdr | | car | cdr |
| o [o—————-- >| oak | o—————-- >| maple | nil |
[I [| I I I I I I
e | mmmmmmmem

I

I

| ______________________________

I | car | cdr | | car | cdr |

—————— >| pine | o---—-—-->| needles | nil |

See Section 2.3.6 [Cons Cell Type], page 15, for the read and print syntax of cons cells
and lists, and for more “box and arrow” illustrations of lists.

5.3 Predicates on Lists

The following predicates test whether a Lisp object is an atom, is a cons cell or is a list,
or whether it is the distinguished object nil. (Many of these predicates can be defined in
terms of the others, but they are used so often that it is worth having all of them.)

consp object Function
This function returns t if object is a cons cell, nil otherwise. nil is not a cons cell,
although it is a list.

Chapter 5: Lists 65

atom object Function
This function returns t if object is an atom, nil otherwise. All objects except cons
cells are atoms. The symbol nil is an atom and is also a list; it is the only Lisp object
that is both.

(atom object) = (not (consp object))

listp object Function
This function returns t if object is a cons cell or nil. Otherwise, it returns nil.

(1istp ’ (1))

=t
(1istp)
=t
nlistp object Function

This function is the opposite of listp: it returns t if object is not a list. Otherwise,
it returns nil.

(listp object) = (not (nlistp object))

null object Function
This function returns t if object is nil, and returns nil otherwise. This function is
identical to not, but as a matter of clarity we use null when object is considered a
list and not when it is considered a truth value (see not in Section 10.3 [Combining
Conditions|, page 120).
(null ° (1))
= nil
(null ° ()
=t

5.4 Accessing Elements of Lists

car cons-cell Function
This function returns the value referred to by the first slot of the cons cell cons-cell.
Expressed another way, this function returns the CAR of cons-cell.

As a special case, if cons-cell is nil, then car is defined to return nil; therefore, any
list is a valid argument for car. An error is signaled if the argument is not a cons cell
or nil.
(car ’(a b c))
= a

(car > ())
= nil

cdr cons-cell Function
This function returns the value referred to by the second slot of the cons cell cons-cell.
Expressed another way, this function returns the CDR of cons-cell.

66 GNU Emacs Lisp Reference Manual

As a special case, if cons-cell is nil, then cdr is defined to return nil; therefore, any
list is a valid argument for cdr. An error is signaled if the argument is not a cons cell
or nil.
(cdr ’(a b c))
= (b ¢)
(cdr 70))
= nil

car-safe object Function

This function lets you take the CAR of a cons cell while avoiding errors for other data
types. It returns the CAR of object if object is a cons cell, nil otherwise. This is in
contrast to car, which signals an error if object is not a list.

(car-safe object)

(let ((x object))

(if (consp x)
(car x)
nil))

cdr-safe object Function
This function lets you take the CDR of a cons cell while avoiding errors for other data
types. It returns the CDR of object if object is a cons cell, nil otherwise. This is in
contrast to cdr, which signals an error if object is not a list.

(cdr-safe object)

(let ((x object))
(if (comsp x)
(cdr x)
nil))

pop listname Macro
This macro is a way of examining the CAR of a list, and taking it off the list, all at
once. It is new in Emacs 21.

It operates on the list which is stored in the symbol listname. It removes this element

from the list by setting listname to the CDR of its old value—but it also returns the
CAR of that list, which is the element being removed.

x
= (a b c)
(pop x)
= a
x
= (b ¢)
nth n list Function

This function returns the nth element of list. Elements are numbered starting with
zero, so the CAR of list is element number zero. If the length of list is n or less, the
value is nil.

Chapter 5: Lists 67

If n is negative, nth returns the first element of list.
(nth 2 °(1 2 3 4))
= 3
(nth 10 °(1 2 3 4))
= nil
(nth -3 ’(1 2 3 4))
=1

(nth n x) = (car (nthcdr n x))
The function elt is similar, but applies to any kind of sequence. For historical reasons,
it takes its arguments in the opposite order. See Section 6.1 [Sequence Functions],
page 83.

nthedr n list Function
This function returns the nth CDR of list. In other words, it skips past the first n
links of list and returns what follows.

If n is zero or negative, nthcdr returns all of list. If the length of list is n or less,
nthcdr returns nil.

(nthedr 1 °(1 2 3 4))

= (2 3 4)
(nthedr 10 (1 2 3 4))
= nil
(nthedr -3 (1 2 3 4))
= (1 234)
last list &optional n Function

This function returns the last link of list. The car of this link is the list’s last element.
If list is null, nil is returned. If n is non-nil the n-th-to-last link is returned instead,
or the whole list if n is bigger than list’s length.

safe-length Ilist Function
This function returns the length of list, with no risk of either an error or an infinite
loop.

If list is not really a list, safe-length returns 0. If list is circular, it returns a finite
value which is at least the number of distinct elements.

The most common way to compute the length of a list, when you are not worried that
it may be circular, is with length. See Section 6.1 [Sequence Functions|, page 83.

caar cons-cell Function
This is the same as (car (car cons-cell)).

cadr cons-cell Function
This is the same as (car (cdr cons-cell)) or (nth 1 cons-cell).

cdar cons-cell Function
This is the same as (cdr (car cons-cell)).

68 GNU Emacs Lisp Reference Manual

cddr cons-cell Function
This is the same as (cdr (cdr cons-cell)) or (nthcdr 2 cons-cell).

butlast x &optional n Function
This function returns the list x with the last element, or the last n elements, removed.
If n is greater than zero it makes a copy of the list so as not to damage the original
list. In general, (append (butlast x n) (last x n)) will return a list equal to x.

nbutlast x &optional n Function
This is a version of butlast that works by destructively modifying the cdr of the
appropriate element, rather than making a copy of the list.

5.5 Building Cons Cells and Lists

Many functions build lists, as lists reside at the very heart of Lisp. cons is the funda-
mental list-building function; however, it is interesting to note that 1ist is used more times
in the source code for Emacs than cons.

cons objectl object?2 Function
This function is the fundamental function used to build new list structure. It creates
a new cons cell, making object]l the CAR, and object2 the CDR. It then returns the
new cons cell. The arguments objectl and object2 may be any Lisp objects, but most
often object2 is a list.
(cons 1 ’(2))
= (1 2)
(cons 1 °())
= (1)
(cons 1 2)
= (1.2
cons is often used to add a single element to the front of a list. This is called consing
the element onto the list.'! For example:

(setq list (cons newelt list))

Note that there is no conflict between the variable named list used in this example
and the function named list described below; any symbol can serve both purposes.

push newelt listname Macro
This macro provides an alternative way to write (setq listname (cons newelt list-
name)). It is new in Emacs 21.

1 There is no strictly equivalent way to add an element to the end of a list. You can use (append listname
(list newelt)), which creates a whole new list by copying listname and adding newelt to its end. Or
you can use (nconc listname (list newelt)), which modifies listname by following all the CDRs and
then replacing the terminating nil. Compare this to adding an element to the beginning of a list with
cons, which neither copies nor modifies the list.

Chapter 5: Lists 69

(setq 1 ’(a b))

= (a b)
(push ’c 1)

= (c a b)
1

= (c a b)

list &rest objects Function
This function creates a list with objects as its elements. The resulting list is always
nil-terminated. If no objects are given, the empty list is returned.
(1ist 1 2 3 4 5)
= (1 2345)
(list 1 2 ’(3 4 5) ’foo)
= (1 2 (3 4 5) foo)
(list)
= nil

make-list length object Function
This function creates a list of length elements, in which each element is object. Com-
pare make-1list with make-string (see Section 4.3 [Creating Strings|, page 50).
(make-list 3 ’pigs)
= (pigs pigs pigs)
(make-list 0 ’pigs)
= nil
(setq 1 (make-list 3 ’(a b))
= ((a b) (a b) (a b))
(eq (car 1) (cadr 1))
=t

append &rest sequences Function

This function returns a list containing all the elements of sequences. The sequences
may be lists, vectors, bool-vectors, or strings, but the last one should usually be a
list. All arguments except the last one are copied, so none of the arguments is altered.
(See nconc in Section 5.6.3 [Rearrangement], page 74, for a way to join lists with no
copying.)

More generally, the final argument to append may be any Lisp object. The final
argument is not copied or converted; it becomes the CDR of the last cons cell in
the new list. If the final argument is itself a list, then its elements become in effect
elements of the result list. If the final element is not a list, the result is a “dotted
list” since its final CDR is not nil as required in a true list.

The append function also allows integers as arguments. It converts them to strings of
digits, making up the decimal print representation of the integer, and then uses the
strings instead of the original integers. Don’t use this feature; we plan to eliminate it.
If you already use this feature, change your programs now! The proper way to convert
an integer to a decimal number in this way is with format (see Section 4.7 [Formatting
Strings|, page 56) or number-to-string (see Section 4.6 [String Conversion], page 55).

70 GNU Emacs Lisp Reference Manual

Here is an example of using append:

(setq trees ’(pine oak))
= (pine oak)

(setq more-trees (append ’(maple birch) trees))
= (maple birch pine oak)

trees
= (pine oak)

more-trees
= (maple birch pine oak)

(eq trees (cdr (cdr more-trees)))
=t
You can see how append works by looking at a box diagram. The variable trees is set
to the list (pine oak) and then the variable more-trees is set to the list (maple birch
pine oak). However, the variable trees continues to refer to the original list:

more-trees trees

[I

/" - == - => - - === —==

-=> 1 | =1 1 I-=>1 1 I-->1 | [|-->nil
I I I I
I I I I
--> maple -=->birch --> pine --> oak

An empty sequence contributes nothing to the value returned by append. As a conse-
quence of this, a final nil argument forces a copy of the previous argument:
trees
= (pine oak)
(setq wood (append trees nil))
= (pine oak)

wood
= (pine oak)

(eq wood trees)
= nil
This once was the usual way to copy a list, before the function copy-sequence was invented.
See Chapter 6 [Sequences Arrays Vectors], page 83.
Here we show the use of vectors and strings as arguments to append:
(append [a b] "cd" nil)
= (a b 99 100)
With the help of apply (see Section 12.5 [Calling Functions], page 161), we can append
all the lists in a list of lists:
(apply ’append ’((a b c¢) nil (x y z) nil))
= (abcxy 2z
If no sequences are given, nil is returned:
(append)
= nil
Here are some examples where the final argument is not a list:

Chapter 5: Lists 71

(append ’(x y) ’z)
= xy . 2)
(append ’(x y) [z])
= (xy . [2DD
The second example shows that when the final argument is a sequence but not a list, the
sequence’s elements do not become elements of the resulting list. Instead, the sequence
becomes the final CDR, like any other non-list final argument.

reverse list Function
This function creates a new list whose elements are the elements of list, but in reverse
order. The original argument list is not altered.

(setq x (1 2 3 4))
= (1 2 3 4)
(reverse x)
= (4321)

= (1234

remgq object list Function
This function returns a copy of list, with all elements removed which are eq to object.
The letter ‘q’ in remq says that it uses eq to compare object against the elements of
list.
(setq sample-list ’(a b c a b c))
= (abcabc)
(remq ’a sample-list)
= (b cbo
sample-list
= (abcabec)
The function delq offers a way to perform this operation destructively. See Section 5.7
[Sets And Lists], page 77.

5.6 Modifying Existing List Structure

You can modify the CAR and CDR contents of a cons cell with the primitives setcar and
setcdr. We call these “destructive” operations because they change existing list structure.

Common Lisp note: Common Lisp uses functions rplaca and rplacd to alter
list structure; they change structure the same way as setcar and setcdr, but
the Common Lisp functions return the cons cell while setcar and setcdr return
the new CAR or CDR.

5.6.1 Altering List Elements with setcar

Changing the CAR of a cons cell is done with setcar. When used on a list, setcar
replaces one element of a list with a different element.

72 GNU Emacs Lisp Reference Manual

setcar cons object Function

This function stores object as the new CAR of cons, replacing its previous CAR. In
other words, it changes the CAR slot of cons to refer to object. It returns the value

object. For example:
(setq x > (1 2))

= (1 2)
(setcar x 4)
= 4
x
= (4 2)

When a cons cell is part of the shared structure of several lists, storing a new CAR into
the cons changes one element of each of these lists. Here is an example:

;3 Create two lists that are partly shared.
(setq x1 ’(a b c))

= (a b o)
(setq x2 (cons ’z (cdr x1)))

= (z b c)

;; Replace the CAR of a shared link.

(setcar (cdr x1) ’foo)
= foo

x1 ; Both lists are changed.
= (a foo c¢)

X2
= (z foo ¢)

;5 Replace the CAR of a link that is not shared.
(setcar x1 ’baz)
= baz
x1 ; Only one list is changed.
= (baz foo c)
x2
= (z foo ¢)
Here is a graphical depiction of the shared structure of the two lists in the variables x1

and x2, showing why replacing b changes them both:

Here is an alternative form of box diagram, showing the same relationship:

Chapter 5: Lists 73

x1
car	cdr		car	cdr		car	cdr
a	o-———-—- > b	o——————- > ¢	nil				
		—=>]					
______________	e e						
x2: |
______________ |
car | cdr | |

5.6.2 Altering the CDR of a List

The lowest-level primitive for modifying a CDR is setcdr:

setcdr cons object Function
This function stores object as the new CDR of cons, replacing its previous CDR. In
other words, it changes the CDR slot of cons to refer to object. It returns the value
object.

Here is an example of replacing the CDR of a list with a different list. All but the first
element of the list are removed in favor of a different sequence of elements. The first element
is unchanged, because it resides in the CAR of the list, and is not reached via the CDR.

(setq x ’(1 2 3))

= (123
(setcdr x ’(4))
= (4)

X
= (14

You can delete elements from the middle of a list by altering the CDRs of the cons cells
in the list. For example, here we delete the second element, b, from the list (a b ¢c), by
changing the CDR of the first cons cell:

(setq x1 ’(a b ¢))
= (a b c)

(setcdr x1 (cdr (cdr x1)))
= (c)

x1
= (a ¢)

74 GNU Emacs Lisp Reference Manual

Here is the result in box notation:

The second cons cell, which previously held the element b, still exists and its CAR is still b,
but it no longer forms part of this list.

It is equally easy to insert a new element by changing CDRs:

(setq x1 ’(a b ©))

= (a b c)

(setcdr x1 (cons ’d (cdr x1)))
= (d b c)

x1
= (adbc)

Here is this result in box notation:

| car | cdr | | car | cdr | | car | cdr |
/| a | o | =-=>I b | o= > ¢ | nil |
[| | [| | | | | |
_________ | —- | e [
| |

|

|

| | car | cdr [

-—=>| 4 | o————--

5.6.3 Functions that Rearrange Lists

Here are some functions that rearrange lists “destructively” by modifying the CDRs of
their component cons cells. We call these functions “destructive” because they chew up the
original lists passed to them as arguments, relinking their cons cells to form a new list that
is the returned value.

The function delq in the following section is another example of destructive list manip-

ulation.

nconc &rest lists Function

This function returns a list containing all the elements of lists. Unlike append (see
Section 5.5 [Building Lists|, page 68), the lists are not copied. Instead, the last CDR
of each of the lists is changed to refer to the following list. The last of the Iists is not

altered. For example:

Chapter 5: Lists 75

(setq x ’(1 2 3))
= (12 3)
(nconc x ’(4 5))
= (1 23 45)

= (1 2345)

Since the last argument of nconc is not itself modified, it is reasonable to use a
constant list, such as > (4 5), as in the above example. For the same reason, the last
argument need not be a list:
(setq x ’(1 2 3))
= (12 3)
(nconc x ’z)
= (123. 2

= (123.2)
However, the other arguments (all but the last) must be lists.

A common pitfall is to use a quoted constant list as a non-last argument to nconc. If
you do this, your program will change each time you run it! Here is what happens:

(defun add-foo (x) ;. We want this function to add
(nconc ’(foo) x)) ; foo to the front of its arg.

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo)) x))

(setq xx (add-foo ’(1 2))) ; It seems to work.
= (foo 1 2)

(setq xy (add-foo ’(3 4))) ; What happened?
= (foo 1 2 3 4)

(eq xx xy)
=t

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo 1 2 3 4) x)))

nreverse list Function
This function reverses the order of the elements of list. Unlike reverse, nreverse
alters its argument by reversing the CDRs in the cons cells forming the list. The cons
cell that used to be the last one in list becomes the first cons cell of the value.
For example:

(setq x ’(a b ¢))

= (a b c)
x
= (a b c)
(nreverse x)
= (c b a)
;3 The cons cell that was first is now last.
x

= (a)

76 GNU Emacs Lisp Reference Manual

To avoid confusion, we usually store the result of nreverse back in the same variable
which held the original list:

(setq x (nreverse x))

Here is the nreverse of our favorite example, (a b ¢), presented graphically:

Original list head: Reversed list:
| car | cdr | | car | cdr | | car | cdr |
| a | nil |<-- | b | o |I<-- | c | o |
I I I (. | (. [| I
————————————— I A IR I
| | | |
sort list predicate Function

This function sorts list stably, though destructively, and returns the sorted list. It
compares elements using predicate. A stable sort is one in which elements with equal
sort keys maintain their relative order before and after the sort. Stability is important
when successive sorts are used to order elements according to different criteria.

The argument predicate must be a function that accepts two arguments. It is called
with two elements of list. To get an increasing order sort, the predicate should return
t if the first element is “less than” the second, or nil if not.

The comparison function predicate must give reliable results for any given pair of
arguments, at least within a single call to sort. It must be antisymmetric; that is,
if a is less than b, b must not be less than a. It must be transitive—that is, if a is
less than b, and b is less than ¢, then a must be less than c. If you use a comparison
function which does not meet these requirements, the result of sort is unpredictable.

The destructive aspect of sort is that it rearranges the cons cells forming list by
changing ¢DRs. A nondestructive sort function would create new cons cells to store the
elements in their sorted order. If you wish to make a sorted copy without destroying
the original, copy it first with copy-sequence and then sort.

Sorting does not change the CARs of the cons cells in list; the cons cell that originally
contained the element a in list still has a in its CAR after sorting, but it now appears
in a different position in the list due to the change of CDRs. For example:
(setq nums (1 3265 4 0))
= (1326540)
(sort nums ’<)
= (012345 6)
nums
= (1 2345 6)
Warning: Note that the list in nums no longer contains 0; this is the same cons cell
that it was before, but it is no longer the first one in the list. Don’t assume a variable
that formerly held the argument now holds the entire sorted list! Instead, save the
result of sort and use that. Most often we store the result back into the variable that
held the original list:

(setq nums (sort nums ’<))

Chapter 5: Lists 7

See Section 32.15 [Sorting], page 552, for more functions that perform sorting. See
documentation in Section 24.2 [Accessing Documentation|, page 388, for a useful
example of sort.

5.7 Using Lists as Sets

A list can represent an unordered mathematical set—simply consider a value an element
of a set if it appears in the list, and ignore the order of the list. To form the union of
two sets, use append (as long as you don’t mind having duplicate elements). Other useful
functions for sets include memq and delq, and their equal versions, member and delete.

Common Lisp note: Common Lisp has functions union (which avoids duplicate
elements) and intersection for set operations, but GNU Emacs Lisp does not
have them. You can write them in Lisp if you wish.

memgq object list Function
This function tests to see whether object is a member of list. If it is, memq returns a
list starting with the first occurrence of object. Otherwise, it returns nil. The letter
‘q’ in memq says that it uses eq to compare object against the elements of the list. For
example:
(memq ’b ’(a b c b a))
= (b cb a)
(memg ’(2) ’((1) (2))) ; (2) and (2) are not eq.
= nil

member-ignore-case object list Function
This function is like member, except that it ignores differences in letter-case and text
representation: upper-case and lower-case letters are treated as equal, and unibyte
strings are converted to multibyte prior to comparison.

delq object list Function
This function destructively removes all elements eq to object from list. The letter ‘q’
in delq says that it uses eq to compare object against the elements of the list, like
memq and remgq.

When delq deletes elements from the front of the list, it does so simply by advancing
down the list and returning a sublist that starts after those elements:
(delq ’a ’(a b c)) = (cdr ’(a b c))
When an element to be deleted appears in the middle of the list, removing it involves
changing the CDRs (see Section 5.6.2 [Setcdr], page 73).
(setq sample-list ’(a b ¢ (4)))
= (abc (4)
(delq ’a sample-list)
= (b c (4)
sample-list
= (a b c (4)
(delq ’c sample-list)
= (a b (4)

78 GNU Emacs Lisp Reference Manual

sample-list
= (a b (4)

Note that (delq ’c sample-1list) modifies sample-1ist to splice out the third element,
but (delq ’a sample-list) does not splice anything—it just returns a shorter list. Don’t
assume that a variable which formerly held the argument list now has fewer elements, or
that it still holds the original list! Instead, save the result of delq and use that. Most often
we store the result back into the variable that held the original list:

(setq flowers (delq ’rose flowers))

In the following example, the (4) that delq attempts to match and the (4) in the
sample-list are not eq:
(delq ’(4) sample-list)
= (a ¢c (1)
The following two functions are like memq and delq but use equal rather than eq to
compare elements. See Section 2.7 [Equality Predicates|, page 29.

member object list Function

The function member tests to see whether object is a member of list, comparing
members with object using equal. If object is a member, member returns a list
starting with its first occurrence in list. Otherwise, it returns nil.
Compare this with memgq:
(member ’(2) >((1) (2))) ; (2) and (2) are equal.
= ((2))
(memg ’(2) > ((1) (2))) ; (2) and (2) are not eq.
= nil
;5 Two strings with the same contents are equal.

(member "foo" ’("foo" "bar"))
:> (llfooﬂ llbarll)

delete object sequence Function

If sequence is a list, this function destructively removes all elements equal to object
from sequence. For lists, delete is to delq as member is to memq: it uses equal to
compare elements with object, like member; when it finds an element that matches, it
removes the element just as delq would.

If sequence is a vector or string, delete returns a copy of sequence with all elements
equal to object removed.

For example:

(delete ’(2) *((2) (1) (2)))
= (1))

(delete ’(2) [(2) (1) D)
= [(D]

remove object sequence Function

This function is the non-destructive counterpart of delete. If returns a copy of
sequence, a list, vector, or string, with elements equal to object removed. For
example:

Chapter 5: Lists 79

(remove ’(2) ’((2) (1) (2)))
= (1))

(remove ’(2) [(2) (1) (2)1)
= [(D]

Common Lisp note: The functions member, delete and remove in GNU Emacs
Lisp are derived from Maclisp, not Common Lisp. The Common Lisp versions
do not use equal to compare elements.

See also the function add-to-list, in Section 11.8 [Setting Variables|, page 142, for
another way to add an element to a list stored in a variable.

5.8 Association Lists

An association list, or alist for short, records a mapping from keys to values. It is a list
of cons cells called associations: the CAR of each cons cell is the key, and the CDR is the
associated value.?

Here is an example of an alist. The key pine is associated with the value cones; the key
oak is associated with acorns; and the key maple is associated with seeds.

((pine . cones)
(oak . acorns)
(maple . seeds))
The associated values in an alist may be any Lisp objects; so may the keys. For example,
in the following alist, the symbol a is associated with the number 1, and the string "b" is
associated with the list (2 3), which is the CDR of the alist element:

((a . 1) ("b" 2 3))

Sometimes it is better to design an alist to store the associated value in the CAR of the
CDR. of the element. Here is an example of such an alist:

((rose red) (1lily white) (buttercup yellow))

Here we regard red as the value associated with rose. One advantage of this kind of alist
is that you can store other related information—even a list of other items—in the CDR of
the CDR. One disadvantage is that you cannot use rassq (see below) to find the element
containing a given value. When neither of these considerations is important, the choice is
a matter of taste, as long as you are consistent about it for any given alist.

Note that the same alist shown above could be regarded as having the associated value
in the CDR of the element; the value associated with rose would be the list (red).

Association lists are often used to record information that you might otherwise keep on
a stack, since new associations may be added easily to the front of the list. When searching
an association list for an association with a given key, the first one found is returned, if
there is more than one.

In Emacs Lisp, it is not an error if an element of an association list is not a cons cell.
The alist search functions simply ignore such elements. Many other versions of Lisp signal
errors in such cases.

2 This usage of “key” is not related to the term “key sequence”; it means a value used to look up an item
in a table. In this case, the table is the alist, and the alist associations are the items.

80

GNU Emacs Lisp Reference Manual

Note that property lists are similar to association lists in several respects. A property
list behaves like an association list in which each key can occur only once. See Section 8.4
[Property Lists], page 104, for a comparison of property lists and association lists.

assoc key alist

This function returns the first association for key in alist. It compares key against
the alist elements using equal (see Section 2.7 [Equality Predicates], page 29). It
returns nil if no association in alist has a CAR equal to key. For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
= ((pine . cones) (oak . acorns) (maple . seeds))
(assoc ’oak trees)
= (oak . acorns)
(cdr (assoc ’oak trees))
= acorns
(assoc ’birch trees)
= nil
Here is another example, in which the keys and values are not symbols:

(setq needles-per-cluster
>((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine")))

(cdr (assoc 3 needles-per-cluster))
= ("Pitch Pine")

(cdr (assoc 2 needles-per-cluster))
= ("Austrian Pine" "Red Pine")

The functions assoc-ignore-representation and assoc-ignore-case are much like
assoc except using compare-strings to do the comparison. See Section 4.5 [Text Com-
parison|, page 53.

rassoc value alist

assq

This function returns the first association with value value in alist. It returns nil if
no association in alist has a CDR equal to value.

rassoc is like assoc except that it compares the CDR of each alist association instead
of the CAR. You can think of this as “reverse assoc”, finding the key for a given
value.

key alist Function

This function is like assoc in that it returns the first association for key in alist, but
it makes the comparison using eq instead of equal. assq returns nil if no association
in alist has a CAR eq to key. This function is used more often than assoc, since eq
is faster than equal and most alists use symbols as keys. See Section 2.7 [Equality
Predicates], page 29.

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

= ((pine . cones) (oak . acorns) (maple . seeds))
(assq ’pine trees)

Function

Function

Chapter 5: Lists 81

= (pine . cones)

On the other hand, assq is not usually useful in alists where the keys may not be

symbols:
(setq leaves
’(("simple leaves" . oak)
("compound leaves" . horsechestnut)))

(assq "simple leaves" leaves)

= nil
(assoc "simple leaves" leaves)
= ("simple leaves" . oak)
rassq value alist Function

This function returns the first association with value value in alist. It returns nil if
no association in alist has a CDR eq to value.

rassq is like assq except that it compares the CDR of each alist association instead
of the CAR. You can think of this as “reverse assq”, finding the key for a given value.

For example:
(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(rassq ’acorns trees)
= (oak . acorns)
(rassq ’spores trees)
= nil
Note that rassq cannot search for a value stored in the CAR of the CDR of an element:

(setq colors ’((rose red) (lily white) (buttercup yellow)))

(rassq ’white colors)
= nil
In this case, the CDR of the association (1ily white) is not the symbol white, but
rather the list (white). This becomes clearer if the association is written in dotted
pair notation:

(1ily white) = (1lily . (white))

assoc-default key alist &optional test default Function
This function searches alist for a match for key. For each element of alist, it compares
the element (if it is an atom) or the element’s CAR (if it is a cons) against key, by
calling test with two arguments: the element or its CAR, and key. The arguments are
passed in that order so that you can get useful results using string-match with an
alist that contains regular expressions (see Section 34.3 [Regexp Search|, page 611).
If test is omitted or nil, equal is used for comparison.

If an alist element matches key by this criterion, then assoc-default returns a value
based on this element. If the element is a cons, then the value is the element’s CDR.
Otherwise, the return value is default.

If no alist element matches key, assoc-default returns nil.

82 GNU Emacs Lisp Reference Manual

copy-alist alist Function
This function returns a two-level deep copy of alist: it creates a new copy of each
association, so that you can alter the associations of the new alist without changing
the old one.

(setq needles-per-cluster
>((2 . ("Austrian Pine" "Red Pine"))
(3 . ("Pitch Pine"))
(5 . ("White Pine"))))
=
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(setq copy (copy-alist needles-per-cluster))
=

((2 "Austrian Pine" "Red Pine")

(3 "Pitch Pine")

(6 "White Pine"))

(eq needles-per-cluster copy)
= nil

(equal needles-per-cluster copy)
=t

(eq (car needles-per-cluster) (car copy))
= nil

(cdr (car (cdr needles-per-cluster)))
= ("Pitch Pine")

(eq (cdr (car (cdr needles-per-cluster)))
(cdr (car (cdr copy))))
=t

This example shows how copy-alist makes it possible to change the associations of
one copy without affecting the other:
(setcdr (assq 3 copy) ’("Martian Vacuum Pine"))

(cdr (assq 3 needles-per-cluster))
= ("Pitch Pine")

assq-delete-all key alist Function
This function deletes from alist all the elements whose CAR is eq to key. It returns
alist, modified in this way. Note that it modifies the original list structure of alist.
(assq-delete-all ’foo

?((foo 1) (bar 2) (foo 3) (lose 4)))
= ((bar 2) (lose 4))

Chapter 6: Sequences, Arrays, and Vectors 83

6 Sequences, Arrays, and Vectors

Recall that the sequence type is the union of two other Lisp types: lists and arrays. In
other words, any list is a sequence, and any array is a sequence. The common property that
all sequences have is that each is an ordered collection of elements.

An array is a single primitive object that has a slot for each of its elements. All the
elements are accessible in constant time, but the length of an existing array cannot be
changed. Strings, vectors, char-tables and bool-vectors are the four types of arrays.

A list is a sequence of elements, but it is not a single primitive object; it is made of cons
cells, one cell per element. Finding the nth element requires looking through n cons cells,
so elements farther from the beginning of the list take longer to access. But it is possible
to add elements to the list, or remove elements.

The following diagram shows the relationship between these types:

| Sequence |
e |
(! I |1
| | List | | Array (I
(. S (.
(I I | | | | (.
I | | Vector | | String | ||
| | | | | | I
| | |1
| |1 |1 l1
| | | Char-table | | Bool-vector | | |
| |
| |

The elements of vectors and lists may be any Lisp objects. The elements of strings are
all characters.

6.1 Sequences

In Emacs Lisp, a sequence is either a list or an array. The common property of all
sequences is that they are ordered collections of elements. This section describes functions
that accept any kind of sequence.

sequencep object Function
Returns t if object is a list, vector, or string, nil otherwise.

length sequence Function
This function returns the number of elements in sequence. If sequence is a cons cell
that is not a list (because the final CDR is not nil), a wrong-type-argument error is
signaled.

See Section 5.4 [List Elements|, page 65, for the related function safe-length.

84

GNU Emacs Lisp Reference Manual

(length > (1 2 3))
= 3
(length O))
= 0
(length "foobar")
= 6
(length [1 2 3]1)
= 3
(length (make-bool-vector 5 nil))
= 5

elt sequence index Function

This function returns the element of sequence indexed by index. Legitimate values
of index are integers ranging from 0 up to one less than the length of sequence. If
sequence is a list, then out-of-range values of index return nil; otherwise, they trigger
an args-out-of-range error.

(elt [1 2 3 4] 2)

= 3
(elt (1 2 3 4) 2)

= 3
;5 We use string to show clearly which character elt returns.
(string (elt "1234" 2))

= "3"
(elt [1 2 3 4] 4)

Args out of range: [1 2 3 4], 4
(elt [1 2 3 4] -1)

Args out of range: [1 2 3 4], -1

This function generalizes aref (see Section 6.3 [Array Functions|, page 86) and nth
(see Section 5.4 [List Elements], page 65).

copy-sequence sequence Function

Returns a copy of sequence. The copy is the same type of object as the original
sequence, and it has the same elements in the same order.

Storing a new element into the copy does not affect the original sequence, and vice
versa. However, the elements of the new sequence are not copies; they are identical
(eq) to the elements of the original. Therefore, changes made within these elements,
as found via the copied sequence, are also visible in the original sequence.

If the sequence is a string with text properties, the property list in the copy is itself
a copy, not shared with the original’s property list. However, the actual values of the
properties are shared. See Section 32.19 [Text Properties]|, page 562.

See also append in Section 5.5 [Building Lists], page 68, concat in Section 4.3 [Cre-
ating Strings|, page 50, and vconcat in Section 6.4 [Vectors|, page 87, for other ways
to copy sequences.

(setq bar ’(1 2))
= (1 2)

Chapter 6: Sequences, Arrays, and Vectors 85

(setq x (vector ’foo bar))
= [foo (1 2)]
(setq y (copy-sequence x))
= [foo (1 2)]
(eq x y)
= nil
(equal x y)
=t
(eq (elt x 1) (elt y 1))
=t
;5 Replacing an element of one sequence.
(aset x 0 ’quux)
x = [quux (1 2)]
y = [foo (1 2)]
;3 Modifying the inside of a shared element.
(setcar (aref x 1) 69)
x = [quux (69 2)]
y = [foo (69 2)]

6.2 Arrays

An array object has slots that hold a number of other Lisp objects, called the elements
of the array. Any element of an array may be accessed in constant time. In contrast, an
element of a list requires access time that is proportional to the position of the element in
the list.

Emacs defines four types of array, all one-dimensional: strings, vectors, bool-vectors and
char-tables. A vector is a general array; its elements can be any Lisp objects. A string is
a specialized array; its elements must be characters. Each type of array has its own read
syntax. See Section 2.3.8 [String Type], page 18, and Section 2.3.9 [Vector Type], page 20.

All four kinds of array share these characteristics:

e The first element of an array has index zero, the second element has index 1, and so on.
This is called zero-origin indexing. For example, an array of four elements has indices
0, 1, 2, and 3.

e The length of the array is fixed once you create it; you cannot change the length of an
existing array.

e The array is a constant, for evaluation—in other words, it evaluates to itself.

e The elements of an array may be referenced or changed with the functions aref and
aset, respectively (see Section 6.3 [Array Functions], page 86).

When you create an array, other than a char-table, you must specify its length. You can-
not specify the length of a char-table, because that is determined by the range of character
codes.

In principle, if you want an array of text characters, you could use either a string or a
vector. In practice, we always choose strings for such applications, for four reasons:

e They occupy one-fourth the space of a vector of the same elements.

86 GNU Emacs Lisp Reference Manual

e Strings are printed in a way that shows the contents more clearly as text.
e Strings can hold text properties. See Section 32.19 [Text Properties], page 562.

e Many of the specialized editing and I/O facilities of Emacs accept only strings. For
example, you cannot insert a vector of characters into a buffer the way you can insert
a string. See Chapter 4 [Strings and Characters|, page 49.

By contrast, for an array of keyboard input characters (such as a key sequence), a vector
may be necessary, because many keyboard input characters are outside the range that will
fit in a string. See Section 21.7.1 [Key Sequence Input], page 309.

6.3 Functions that Operate on Arrays

In this section, we describe the functions that accept all types of arrays.

arrayp object Function
This function returns t if object is an array (i.e., a vector, a string, a bool-vector or
a char-table).
(arrayp [al)
=t
(arrayp "asdf")
=t
(arrayp (syntax-table)) ;3 A char-table.
=t

aref array index Function
This function returns the indexth element of array. The first element is at index zero.
(setq primes [2 3 5 7 11 13])
= [2 357 11 13]
(aref primes 4)
= 11
(aref "abcdefg" 1)
= 98 ; ‘b’ is ASCII code 98.

See also the function elt, in Section 6.1 [Sequence Functions], page 83.

aset array index object Function
This function sets the indexth element of array to be object. It returns object.

(setq w [foo bar baz])
= [foo bar baz]

(aset w 0 ’fu)
= fu

W
= [fu bar baz]

(setq x "asdfasfd")
= "asdfasfd"
(aset x 3 ?7Z)
= 90

= "asdZasfd"

Chapter 6: Sequences, Arrays, and Vectors 87

If array is a string and object is not a character, a wrong-type-argument error results.
The function converts a unibyte string to multibyte if necessary to insert a character.

fillarray array object Function
This function fills the array array with object, so that each element of array is object.
It returns array.

(setg a [abcdef gl

= [abcdefg]
(fillarray a 0)

= [000000 0]
a

= [00 000 0 0]
(setq s "When in the course")

= "When in the course"
(fillarray s 7-)

If array is a string and object is not a character, a wrong-type-argument error results.

The general sequence functions copy-sequence and length are often useful for objects
known to be arrays. See Section 6.1 [Sequence Functions|, page 83.

6.4 Vectors

Arrays in Lisp, like arrays in most languages, are blocks of memory whose elements
can be accessed in constant time. A vector is a general-purpose array of specified length;
its elements can be any Lisp objects. (By contrast, a string can hold only characters as
elements.) Vectors in Emacs are used for obarrays (vectors of symbols), and as part of
keymaps (vectors of commands). They are also used internally as part of the representation
of a byte-compiled function; if you print such a function, you will see a vector in it.

In Emacs Lisp, the indices of the elements of a vector start from zero and count up from
there.

Vectors are printed with square brackets surrounding the elements. Thus, a vector whose
elements are the symbols a, b and a is printed as [a b al. You can write vectors in the
same way in Lisp input.

A vector, like a string or a number, is considered a constant for evaluation: the result
of evaluating it is the same vector. This does not evaluate or even examine the elements of
the vector. See Section 9.1.1 [Self-Evaluating Forms], page 108.

Here are examples illustrating these principles:

(setq avector [1 two ’(three) "four" [five]l)

= [1 two (quote (three)) "four" [five]]
(eval avector)

= [1 two (quote (three)) "four" [fivel]
(eq avector (eval avector))

=t

88 GNU Emacs Lisp Reference Manual

6.5 Functions for Vectors

Here are some functions that relate to vectors:

vectorp object Function
This function returns t if object is a vector.
(vectorp [al)
=t
(vectorp "asdf")
= nil

vector &rest objects Function
This function creates and returns a vector whose elements are the arguments, objects.

(vector ’foo 23 [bar baz] "rats")
= [foo 23 [bar baz] "rats"]

(vector)
= [l
make-vector Iength object Function
This function returns a new vector consisting of length elements, each initialized to
object.

(setq sleepy (make-vector 9 ’Z))
= 2227222727 72Z7]

vconcat &rest sequences Function
This function returns a new vector containing all the elements of the sequences. The
arguments sequences may be any kind of arrays, including lists, vectors, or strings.
If no sequences are given, an empty vector is returned.
The value is a newly constructed vector that is not eq to any existing vector.
(setq a (vconcat (A B C) (D E F)))
= [ABCDEF]
(eq a (vconcat a))
= nil
(vconcat)
= [
(vconcat [A B C] "aa" ’(foo (6 7)))
= [A B C 97 97 foo (6 7)]
The vconcat function also allows byte-code function objects as arguments. This is a
special feature to make it easy to access the entire contents of a byte-code function
object. See Section 16.6 [Byte-Code Objects], page 210.

The vconcat function also allows integers as arguments. It converts them to strings
of digits, making up the decimal print representation of the integer, and then uses the
strings instead of the original integers. Don’t use this feature; we plan to eliminate it.
If you already use this feature, change your programs now! The proper way to convert
an integer to a decimal number in this way is with format (see Section 4.7 [Formatting
Strings|, page 56) or number-to-string (see Section 4.6 [String Conversion], page 55).

Chapter 6: Sequences, Arrays, and Vectors 89

For other concatenation functions, see mapconcat in Section 12.6 [Mapping Func-
tions], page 163, concat in Section 4.3 [Creating Strings], page 50, and append in
Section 5.5 [Building Lists|, page 68.

The append function provides a way to convert a vector into a list with the same elements
(see Section 5.5 [Building Lists]|, page 68):
(setq avector [1 two (quote (three)) "four" [fivell)
= [1 two (quote (three)) "four" [fivel]l]
(append avector nil)
= (1 two (quote (three)) "four" [fivel)

6.6 Char-Tables

A char-table is much like a vector, except that it is indexed by character codes. Any valid
character code, without modifiers, can be used as an index in a char-table. You can access
a char-table’s elements with aref and aset, as with any array. In addition, a char-table
can have extra slots to hold additional data not associated with particular character codes.
Char-tables are constants when evaluated.

Each char-table has a subtype which is a symbol. The subtype has two purposes: to
distinguish char-tables meant for different uses, and to control the number of extra slots.
For example, display tables are char-tables with display-table as the subtype, and syntax
tables are char-tables with syntax-table as the subtype. A valid subtype must have a
char-table-extra-slots property which is an integer between 0 and 10. This integer
specifies the number of extra slots in the char-table.

A char-table can have a parent, which is another char-table. If it does, then whenever
the char-table specifies nil for a particular character c, it inherits the value specified in the
parent. In other words, (aref char-table ¢) returns the value from the parent of char-table
if char-table itself specifies nil.

A char-table can also have a default value. If so, then (aref char-table ¢) returns the
default value whenever the char-table does not specify any other non-nil value.

make-char-table subtype &optional init Function

Return a newly created char-table, with subtype subtype. Each element is initialized
to init, which defaults to nil. You cannot alter the subtype of a char-table after the
char-table is created.

There is no argument to specify the length of the char-table, because all char-tables
have room for any valid character code as an index.

char-table-p object Function

This function returns t if object is a char-table, otherwise nil.

char-table-subtype char-table Function

This function returns the subtype symbol of char-table.

set-char-table-default char-table new-default Function

This function sets the default value of char-table to new-default.

There is no special function to access the default value of a char-table. To do that,
use (char-table-range char-table nil).

90 GNU Emacs Lisp Reference Manual

char-table-parent char-table Function
This function returns the parent of char-table. The parent is always either nil or
another char-table.

set-char-table-parent char-table new-parent Function
This function sets the parent of char-table to new-parent.

char-table-extra-slot char-table n Function
This function returns the contents of extra slot n of char-table. The number of extra
slots in a char-table is determined by its subtype.

set-char-table-extra-slot char-table n value Function
This function stores value in extra slot n of char-table.

A char-table can specify an element value for a single character code; it can also specify
a value for an entire character set.

char-table-range char-table range Function
This returns the value specified in char-table for a range of characters range. Here
are the possibilities for range:

nil Refers to the default value.

char Refers to the element for character char (supposing char is a valid char-
acter code).

charset Refers to the value specified for the whole character set charset (see Sec-
tion 33.5 [Character Sets|, page 586).

generic-char
A generic character stands for a character set; specifying the generic
character as argument is equivalent to specifying the character set name.
See Section 33.7 [Splitting Characters], page 588, for a description of
generic characters.

set-char-table-range char-table range value Function
This function sets the value in char-table for a range of characters range. Here are
the possibilities for range:

nil Refers to the default value.
t Refers to the whole range of character codes.
char Refers to the element for character char (supposing char is a valid char-

acter code).

charset Refers to the value specified for the whole character set charset (see Sec-
tion 33.5 [Character Sets|, page 586).

generic-char
A generic character stands for a character set; specifying the generic
character as argument is equivalent to specifying the character set name.
See Section 33.7 [Splitting Characters], page 588, for a description of
generic characters.

Chapter 6: Sequences, Arrays, and Vectors 91

map-char-table function char-table Function
This function calls function for each element of char-table. function is called with
two arguments, a key and a value. The key is a possible range argument for char-
table-range—either a valid character or a generic character—and the value is (char-
table-range char-table key).

Overall, the key-value pairs passed to function describe all the values stored in char-
table.

The return value is always nil; to make this function useful, function should have
side effects. For example, here is how to examine each element of the syntax table:
(let (accumulator)
(map-char-table
#’ (lambda (key value)
(setq accumulator
(cons (list key value) accumulator)))
(syntax-table))
accumulator)
=

((475008 nil) (474880 nil) (474752 nil) (474624 nil)
(5 (3)) (4 (3)) (8 (3)) (2 (3)) (1 (3)) (0 (3)))

6.7 Bool-vectors

A bool-vector is much like a vector, except that it stores only the values t and nil.
If you try to store any non-nil value into an element of the bool-vector, the effect is to
store t there. As with all arrays, bool-vector indices start from 0, and the length cannot be
changed once the bool-vector is created. Bool-vectors are constants when evaluated.

There are two special functions for working with bool-vectors; aside from that, you
manipulate them with same functions used for other kinds of arrays.

make-bool-vector length initial Function
Return a new bool-vector of length elements, each one initialized to initial.

bool-vector-p object Function
This returns t if object is a bool-vector, and nil otherwise.

Here is an example of creating, examining, and updating a bool-vector. Note that the
printed form represents up to 8 boolean values as a single character.

(setq bv (make-bool-vector 5 t))

= #y5" "
(aref bv 1)
= t
(aset bv 3 nil)
= nil
bv
= #&5""W"

These results make sense because the binary codes for control-_ and control-W are 11111
and 10111, respectively.

92

GNU Emacs Lisp Reference Manual

Chapter 7: Hash Tables 93

7 Hash Tables

A hash table is a very fast kind of lookup table, somewhat like an alist in that it maps
keys to corresponding values. It differs from an alist in these ways:

e Lookup in a hash table is extremely fast for large tables—in fact, the time required
is essentially independent of how many elements are stored in the table. For smaller
tables (a few tens of elements) alists may still be faster because hash tables have a
more-or-less constant overhead.

e The correspondences in a hash table are in no particular order.
e There is no way to share structure between two hash tables, the way two alists can
share a common tail.

Emacs Lisp (starting with Emacs 21) provides a general-purpose hash table data type,
along with a series of functions for operating on them. Hash tables have no read syntax,
and print in hash notation, like this:

(make-hash-table)
= #<hash-table ’eql nil 0/65 0x83af980>

(The term “hash notation” refers to the initial ‘#’ character—see Section 2.1 [Printed Rep-
resentation], page 9—and has nothing to do with the term “hash table.”)

Obarrays are also a kind of hash table, but they are a different type of object and are
used only for recording interned symbols (see Section 8.3 [Creating Symbols], page 101).

7.1 Creating Hash Tables

The principal function for creating a hash table is make-hash-table.

make-hash-table &rest keyword-args Function
This function creates a new hash table according to the specified arguments. The
arguments should consist of alternating keywords (particular symbols recognized spe-
cially) and values corresponding to them.

Several keywords make sense in make-hash-table, but the only two that you really
need to know about are :test and :weakness.

:test test This specifies the method of key lookup for this hash table. The default
is eql; eq and equal are other alternatives:

eql Keys which are numbers are “the same” if they are equal in
value; otherwise, two distinct objects are never “the same”.

eq Any two distinct Lisp objects are “different” as keys.

equal Two Lisp objects are “the same”, as keys, if they are equal
according to equal.

You can use define-hash-table-test (see Section 7.3 [Defining Hash],
page 95) to define additional possibilities for test.

94

GNU Emacs Lisp Reference Manual

:weakness weak

:size size

The weakness of a hash table specifies whether the presence of a key or
value in the hash table preserves it from garbage collection.

The value, weak, must be one of nil, key, value, key-or-value, key-
and-value, or t which is an alias for key-and-value. If weak is key then
the hash table does not prevent its keys from being collected as garbage
(if they are not referenced anywhere else); if a particular key does get
collected, the corresponding association is removed from the hash table.

If weak is value, then the hash table does not prevent values from being
collected as garbage (if they are not referenced anywhere else); if a par-
ticular value does get collected, the corresponding association is removed
from the hash table.

If weak is key-or-value or t, the hash table does not protect either keys
or values from garbage collection; if either one is collected as garbage, the
association is removed.

If weak is key-and-value, associations are removed from the hash table
when both their key and value would be collected as garbage, again not
considering references to the key and value from weak hash tables.

The default for weak is nil, so that all keys and values referenced in the
hash table are preserved from garbage collection. If weak is t, neither
keys nor values are protected (that is, both are weak).

This specifies a hint for how many associations you plan to store in the
hash table. If you know the approximate number, you can make things
a little more efficient by specifying it this way. If you specify too small
a size, the hash table will grow automatically when necessary, but doing
that takes some extra time.

The default size is 65.

:rehash-size rehash-size

When you add an association to a hash table and the table is “full,” it
grows automatically. This value specifies how to make the hash table
larger, at that time.

If rehash-size is an integer, it should be positive, and the hash table grows
by adding that much to the nominal size. If rehash-size is a floating point
number, it had better be greater than 1, and the hash table grows by
multiplying the old size by that number.

The default value is 1.5.

:rehash-threshold threshold

This specifies the criterion for when the hash table is “full.” The value,
threshold, should be a positive floating point number, no greater than 1.
The hash table is “full” whenever the actual number of entries exceeds
this fraction of the nominal size. The default for threshold is 0.8.

Chapter 7: Hash Tables 95

makehash &optional test Function
This is equivalent to make-hash-table, but with a different style argument list. The
argument test specifies the method of key lookup.

If you want to specify other parameters, you should use make-hash-table.

7.2 Hash Table Access

This section describes the functions for accessing and storing associations in a hash table.

gethash key table &optional default Function
This function looks up key in table, and returns its associated value—or default, if
key has no association in table.

puthash key value table Function
This function enters an association for key in table, with value value. If key already
has an association in table, value replaces the old associated value.

remhash key table Function
This function removes the association for key from table, if there is one. If key has
no association, remhash does nothing.

clrhash table Function
This function removes all the associations from hash table table, so that it becomes
empty. This is also called clearing the hash table.

maphash function table Function
This function calls function once for each of the associations in table. The function
function should accept two arguments—a key listed in table, and its associated value.

7.3 Defining Hash Comparisons

You can define new methods of key lookup by means of define-hash-table-test. In
order to use this feature, you need to understand how hash tables work, and what a hash
code means.

You can think of a hash table conceptually as a large array of many slots, each capable
of holding one association. To look up a key, gethash first computes an integer, the hash
code, from the key. It reduces this integer modulo the length of the array, to produce an
index in the array. Then it looks in that slot, and if necessary in other nearby slots, to see
if it has found the key being sought.

Thus, to define a new method of key lookup, you need to specify both a function to
compute the hash code from a key, and a function to compare two keys directly.

96 GNU Emacs Lisp Reference Manual

define-hash-table-test name test-fn hash-fn Function
This function defines a new hash table test, named name.

After defining name in this way, you can use it as the test argument in make-hash-
table. When you do that, the hash table will use test-fn to compare key values, and
hash-fn to compute a “hash code” from a key value.

The function test-fn should accept two arguments, two keys, and return non-nil if
they are considered “the same.”

The function hash-fn should accept one argument, a key, and return an integer that
is the “hash code” of that key. For good results, the function should use the whole
range of integer values for hash codes, including negative integers.

The specified functions are stored in the property list of name under the property
hash-table-test; the property value’s form is (test-fn hash-fn).

sxhash obj Function
This function returns a hash code for Lisp object obj. This is an integer which reflects
the contents of obj and the other Lisp objects it points to.

If two objects objl and obj2 are equal, then (sxhash objl) and (sxhash obj2) are
the same integer.

If the two objects are not equal, the values returned by sxhash are usually different,
but not always; but once in a rare while, by luck, you will encounter two distinct-
looking objects that give the same result from sxhash.

This example creates a hash table whose keys are strings that are compared case-
insensitively.

(defun case-fold-string= (a b)
(compare-strings a nil nil b nil nil t))

(defun case-fold-string-hash (a)
(sxhash (upcase a)))

(define-hash-table-test ’case-fold ’case-fold-string=
’case-fold-string-hash))

(make-hash-table :test ’case-fold)

Here is how you could define a hash table test equivalent to the predefined test value
equal. The keys can be any Lisp object, and equal-looking objects are considered the same
key.

(define-hash-table-test ’contents-hash ’equal ’sxhash)

(make-hash-table :test ’contents-hash)

Chapter 7: Hash Tables 97

7.4 Other Hash Table Functions

Here are some other functions for working with hash tables.

hash-table-p table Function
This returns non-nil if table is a hash table object.

copy-hash-table table Function
This function creates and returns a copy of table. Only the table itself is copied—the
keys and values are shared.

hash-table-count table Function
This function returns the actual number of entries in table.

hash-table-test table Function
This returns the test value that was given when table was created, to specify how
to hash and compare keys. See make-hash-table (see Section 7.1 [Creating Hash],
page 93).

hash-table-weakness table Function
This function returns the weak value that was specified for hash table table.

hash-table-rehash-size table Function
This returns the rehash size of table.

hash-table-rehash-threshold table Function
This returns the rehash threshold of table.

hash-table-size table Function
This returns the current nominal size of table.

98

GNU Emacs Lisp Reference Manual

Chapter 8: Symbols 99

8 Symbols

A symbol is an object with a unique name. This chapter describes symbols, their com-
ponents, their property lists, and how they are created and interned. Separate chapters
describe the use of symbols as variables and as function names; see Chapter 11 [Variables],
page 133, and Chapter 12 [Functions|, page 155. For the precise read syntax for symbols,
see Section 2.3.4 [Symbol Type], page 13.

You can test whether an arbitrary Lisp object is a symbol with symbolp:

symbolp object Function
This function returns t if object is a symbol, nil otherwise.

8.1 Symbol Components

Each symbol has four components (or “cells”), each of which references another object:

Print name
The print name cell holds a string that names the symbol for reading and
printing. See symbol-name in Section 8.3 [Creating Symbols], page 101.

Value The value cell holds the current value of the symbol as a variable. When a
symbol is used as a form, the value of the form is the contents of the symbol’s
value cell. See symbol-value in Section 11.7 [Accessing Variables|, page 141.

Function The function cell holds the function definition of the symbol. When a symbol
is used as a function, its function definition is used in its place. This cell is
also used to make a symbol stand for a keymap or a keyboard macro, for editor
command execution. Because each symbol has separate value and function cells,
variables names and function names do not conflict. See symbol-function in
Section 12.8 [Function Cells|, page 166.

Property list
The property list cell holds the property list of the symbol. See symbol-plist
in Section 8.4 [Property Lists], page 104.

The print name cell always holds a string, and cannot be changed. The other three cells
can be set individually to any specified Lisp object.

The print name cell holds the string that is the name of the symbol. Since symbols
are represented textually by their names, it is important not to have two symbols with the
same name. The Lisp reader ensures this: every time it reads a symbol, it looks for an
existing symbol with the specified name before it creates a new one. (In GNU Emacs Lisp,
this lookup uses a hashing algorithm and an obarray; see Section 8.3 [Creating Symbols],
page 101.)

The value cell holds the symbol’s value as a variable (see Chapter 11 [Variables],
page 133). That is what you get if you evaluate the symbol as a Lisp expression (see
Chapter 9 [Evaluation], page 107). Any Lisp object is a legitimate value. Certain symbols
have values that cannot be changed; these include nil and t, and any symbol whose name
starts with ‘:” (those are called keywords). See Section 11.2 [Constant Variables|, page 133.

100 GNU Emacs Lisp Reference Manual

We often refer to “the function foo” when we really mean the function stored in the
function cell of the symbol foo. We make the distinction explicit only when necessary.
In normal usage, the function cell usually contains a function (see Chapter 12 [Functions],
page 155) or a macro (see Chapter 13 [Macros], page 171), as that is what the Lisp inter-
preter expects to see there (see Chapter 9 [Evaluation], page 107). Keyboard macros (see
Section 21.15 [Keyboard Macros], page 322), keymaps (see Chapter 22 [Keymaps], page 325)
and autoload objects (see Section 9.1.8 [Autoloading], page 112) are also sometimes stored
in the function cells of symbols.

The property list cell normally should hold a correctly formatted property list (see
Section 8.4 [Property Lists], page 104), as a number of functions expect to see a property
list there.

The function cell or the value cell may be void, which means that the cell does not
reference any object. (This is not the same thing as holding the symbol void, nor the same
as holding the symbol nil.) Examining a function or value cell that is void results in an
error, such as ‘Symbol’s value as variable is void’.

The four functions symbol-name, symbol-value, symbol-plist, and symbol-function
return the contents of the four cells of a symbol. Here as an example we show the contents
of the four cells of the symbol buffer-file-name:

(symbol-name ’buffer-file-name)

= "buffer-file-name"
(symbol-value ’buffer-file-name)

= "/gnu/elisp/symbols.texi"
(symbol-plist ’buffer-file-name)

= (variable-documentation 29529)
(symbol-function ’buffer-file-name)

= #<subr buffer-file-name>

Because this symbol is the variable which holds the name of the file being visited in the
current buffer; the value cell contents we see are the name of the source file of this chapter of
the Emacs Lisp Manual. The property list cell contains the list (variable-documentation
29529) which tells the documentation functions where to find the documentation string
for the variable buffer-file-name in the ‘DOC-version’ file. (29529 is the offset from
the beginning of the ‘DOC-version’ file to where that documentation string begins—see
Section 24.1 [Documentation Basics], page 387.) The function cell contains the function for
returning the name of the file. buffer-file-name names a primitive function, which has
no read syntax and prints in hash notation (see Section 2.3.15 [Primitive Function Type],
page 22). A symbol naming a function written in Lisp would have a lambda expression (or
a byte-code object) in this cell.

8.2 Defining Symbols

A definition in Lisp is a special form that announces your intention to use a certain
symbol in a particular way. In Emacs Lisp, you can define a symbol as a variable, or define
it as a function (or macro), or both independently.

A definition construct typically specifies a value or meaning for the symbol for one kind
of use, plus documentation for its meaning when used in this way. Thus, when you define a

Chapter 8: Symbols 101

symbol as a variable, you can supply an initial value for the variable, plus documentation
for the variable.

defvar and defconst are special forms that define a symbol as a global variable. They
are documented in detail in Section 11.5 [Defining Variables|, page 137. For defining user
option variables that can be customized, use defcustom (see Chapter 14 [Customization],
page 179).

defun defines a symbol as a function, creating a lambda expression and storing it in the
function cell of the symbol. This lambda expression thus becomes the function definition of
the symbol. (The term “function definition”, meaning the contents of the function cell, is
derived from the idea that defun gives the symbol its definition as a function.) defsubst
and defalias are two other ways of defining a function. See Chapter 12 [Functions],
page 155.

defmacro defines a symbol as a macro. It creates a macro object and stores it in the
function cell of the symbol. Note that a given symbol can be a macro or a function, but
not both at once, because both macro and function definitions are kept in the function cell,
and that cell can hold only one Lisp object at any given time. See Chapter 13 [Macros],
page 171.

In Emacs Lisp, a definition is not required in order to use a symbol as a variable or
function. Thus, you can make a symbol a global variable with setq, whether you define
it first or not. The real purpose of definitions is to guide programmers and programming
tools. They inform programmers who read the code that certain symbols are intended to be
used as variables, or as functions. In addition, utilities such as ‘etags’ and ‘make-docfile’
recognize definitions, and add appropriate information to tag tables and the ‘DOC-version’
file. See Section 24.2 [Accessing Documentation|, page 388.

8.3 Creating and Interning Symbols

To understand how symbols are created in GNU Emacs Lisp, you must know how Lisp
reads them. Lisp must ensure that it finds the same symbol every time it reads the same
set of characters. Failure to do so would cause complete confusion.

When the Lisp reader encounters a symbol, it reads all the characters of the name. Then
it “hashes” those characters to find an index in a table called an obarray. Hashing is an
efficient method of looking something up. For example, instead of searching a telephone
book cover to cover when looking up Jan Jones, you start with the J’s and go from there.
That is a simple version of hashing. Each element of the obarray is a bucket which holds
all the symbols with a given hash code; to look for a given name, it is sufficient to look
through all the symbols in the bucket for that name’s hash code. (The same idea is used for
general Emacs hash tables, but they are a different data type; see Chapter 7 [Hash Tables],
page 93.)

If a symbol with the desired name is found, the reader uses that symbol. If the obarray
does not contain a symbol with that name, the reader makes a new symbol and adds it to
the obarray. Finding or adding a symbol with a certain name is called interning it, and the
symbol is then called an interned symbol.

Interning ensures that each obarray has just one symbol with any particular name. Other
like-named symbols may exist, but not in the same obarray. Thus, the reader gets the same
symbols for the same names, as long as you keep reading with the same obarray.

102 GNU Emacs Lisp Reference Manual

Interning usually happens automatically in the reader, but sometimes other programs
need to do it. For example, after the M-x command obtains the command name as a string
using the minibuffer, it then interns the string, to get the interned symbol with that name.

No obarray contains all symbols; in fact, some symbols are not in any obarray. They are
called uninterned symbols. An uninterned symbol has the same four cells as other symbols;
however, the only way to gain access to it is by finding it in some other object or as the
value of a variable.

Creating an uninterned symbol is useful in generating Lisp code, because an uninterned
symbol used as a variable in the code you generate cannot clash with any variables used in
other Lisp programs.

In Emacs Lisp, an obarray is actually a vector. Each element of the vector is a bucket;
its value is either an interned symbol whose name hashes to that bucket, or 0 if the bucket is
empty. Each interned symbol has an internal link (invisible to the user) to the next symbol
in the bucket. Because these links are invisible, there is no way to find all the symbols in an
obarray except using mapatoms (below). The order of symbols in a bucket is not significant.

In an empty obarray, every element is 0, so you can create an obarray with (make-vector
length 0). This is the only valid way to create an obarray. Prime numbers as lengths tend
to result in good hashing; lengths one less than a power of two are also good.

Do not try to put symbols in an obarray yourself. This does not work—only intern
can enter a symbol in an obarray properly.

Common Lisp note: In Common Lisp, a single symbol may be interned in
several obarrays.

Most of the functions below take a name and sometimes an obarray as arguments. A
wrong-type-argument error is signaled if the name is not a string, or if the obarray is not
a vector.

symbol-name symbol Function
This function returns the string that is symbol’s name. For example:

(symbol-name ’foo)
= "foo"

Warning: Changing the string by substituting characters does change the name of
the symbol, but fails to update the obarray, so don’t do it!

make-symbol name Function
This function returns a newly-allocated, uninterned symbol whose name is name
(which must be a string). Its value and function definition are void, and its property
list is nil. In the example below, the value of sym is not eq to foo because it is a
distinct uninterned symbol whose name is also ‘foo’.

(setq sym (make-symbol "foo"))
= foo

(eq sym ’foo)
= nil

Chapter 8: Symbols 103

intern name &optional obarray Function
This function returns the interned symbol whose name is name. If there is no such
symbol in the obarray obarray, intern creates a new one, adds it to the obarray, and
returns it. If obarray is omitted, the value of the global variable obarray is used.
(setq sym (intern "foo"))
= foo
(eq sym ’foo)
=t

(setq syml (intern "foo" other-obarray))
= foo

(eq syml ’foo)
= nil

Common Lisp note: In Common Lisp, you can intern an existing symbol in an
obarray. In Emacs Lisp, you cannot do this, because the argument to intern
must be a string, not a symbol.

intern-soft name &optional obarray Function
This function returns the symbol in obarray whose name is name, or nil if obarray
has no symbol with that name. Therefore, you can use intern-soft to test whether
a symbol with a given name is already interned. If obarray is omitted, the value of
the global variable obarray is used.

The argument name may also be a symbol; in that case, the function returns name
if name is interned in the specified obarray, and otherwise nil.

(intern-soft "frazzle") ; No such symbol exists.
= nil

(make-symbol "frazzle") ; Create an uninterned one.
= frazzle

(intern-soft "frazzle") ; That one cannot be found.
= nil

(setq sym (intern "frazzle")) ; Create an interned one.
= frazzle

(intern-soft "frazzle") ; That one can be found!
= frazzle

(eq sym ’frazzle) ; And it is the same one.
=t

obarray Variable

This variable is the standard obarray for use by intern and read.

mapatoms function &optional obarray Function
This function calls function once with each symbol in the obarray obarray. Then it
returns nil. If obarray is omitted, it defaults to the value of obarray, the standard
obarray for ordinary symbols.

(setq count 0)
=0

104 GNU Emacs Lisp Reference Manual

(defun count-syms (s)
(setq count (1+ count)))
= count-syms
(mapatoms ’count-syms)
= nil
count
= 1871

See documentation in Section 24.2 [Accessing Documentation], page 388, for another
example using mapatoms.

unintern symbol &optional obarray Function
This function deletes symbol from the obarray obarray. If symbol is not actually in
the obarray, unintern does nothing. If obarray is nil, the current obarray is used.

If you provide a string instead of a symbol as symbol, it stands for a symbol name.
Then unintern deletes the symbol (if any) in the obarray which has that name. If
there is no such symbol, unintern does nothing.

If unintern does delete a symbol, it returns t. Otherwise it returns nil.

8.4 Property Lists

A property list (plist for short) is a list of paired elements stored in the property list
cell of a symbol. Each of the pairs associates a property name (usually a symbol) with a
property or value. Property lists are generally used to record information about a symbol,
such as its documentation as a variable, the name of the file where it was defined, or perhaps
even the grammatical class of the symbol (representing a word) in a language-understanding
system.

Character positions in a string or buffer can also have property lists. See Section 32.19
[Text Properties|, page 562.

The property names and values in a property list can be any Lisp objects, but the names
are usually symbols. Property list functions compare the property names using eq. Here is
an example of a property list, found on the symbol progn when the compiler is loaded:

(lisp-indent-function O byte-compile byte-compile-progn)
Here lisp-indent-function and byte-compile are property names, and the other two
elements are the corresponding values.

8.4.1 Property Lists and Association Lists

Association lists (see Section 5.8 [Association Lists], page 79) are very similar to property
lists. In contrast to association lists, the order of the pairs in the property list is not
significant since the property names must be distinct.

Property lists are better than association lists for attaching information to various Lisp
function names or variables. If your program keeps all of its associations in one association
list, it will typically need to search that entire list each time it checks for an association.
This could be slow. By contrast, if you keep the same information in the property lists
of the function names or variables themselves, each search will scan only the length of

Chapter 8: Symbols 105

one property list, which is usually short. This is why the documentation for a variable is
recorded in a property named variable-documentation. The byte compiler likewise uses
properties to record those functions needing special treatment.

However, association lists have their own advantages. Depending on your application,
it may be faster to add an association to the front of an association list than to update
a property. All properties for a symbol are stored in the same property list, so there is
a possibility of a conflict between different uses of a property name. (For this reason, it
is a good idea to choose property names that are probably unique, such as by beginning
the property name with the program’s usual name-prefix for variables and functions.) An
association list may be used like a stack where associations are pushed on the front of the
list and later discarded; this is not possible with a property list.

8.4.2 Property List Functions for Symbols

symbol-plist symbol Function

This function returns the property list of symbol.

setplist symbol plist Function

This function sets symbol’s property list to plist. Normally, plist should be a well-
formed property list, but this is not enforced.
(setplist ’foo ’(a 1 b (2 3) c nil))
= (a1b (23) cnil)
(symbol-plist ’foo)
= (a1b (2 3) ¢ nil)
For symbols in special obarrays, which are not used for ordinary purposes, it may
make sense to use the property list cell in a nonstandard fashion; in fact, the abbrev
mechanism does so (see Chapter 36 [Abbrevs|, page 635).

get symbol property Function

This function finds the value of the property named property in symbol’s property
list. If there is no such property, nil is returned. Thus, there is no distinction between
a value of nil and the absence of the property.

The name property is compared with the existing property names using eq, so any
object is a legitimate property.

See put for an example.

put symbol property value Function

This function puts value onto symbol’s property list under the property name prop-
erty, replacing any previous property value. The put function returns value.
(put ’fly ’verb ’transitive)
=’transitive
(put ’fly ’noun ’(a buzzing little bug))
= (a buzzing little bug)
(get ’fly ’verb)
= transitive
(symbol-plist ’fly)
= (verb transitive noun (a buzzing little bug))

106 GNU Emacs Lisp Reference Manual

8.4.3 Property Lists Outside Symbols

These functions are useful for manipulating property lists that are stored in places other
than symbols:

plist-get plist property Function
This returns the value of the property property stored in the property list plist. For
example,
(plist-get ’(foo 4) ’foo)
= 4
plist-put plist property value Function

This stores value as the value of the property property in the property list plist.
It may modify plist destructively, or it may construct a new list structure without
altering the old. The function returns the modified property list, so you can store
that back in the place where you got plist. For example,
(setq my-plist ’(bar t foo 4))
= (bar t foo 4)
(setq my-plist (plist-put my-plist ’foo 69))
= (bar t foo 69)
(setq my-plist (plist-put my-plist ’quux ’(a)))
= (bar t foo 69 quux (a))

You could define put in terms of plist-put as follows:
(defun put (symbol prop value)
(setplist symbol
(plist-put (symbol-plist symbol) prop value)))

plist-member plist property Function
This returns non-nil if plist contains the given property. Unlike plist-get, this
allows you to distinguish between a missing property and a property with the value
nil. The value is actually the tail of plist whose car is property.

Chapter 9: Evaluation 107

9 Ewvaluation

The evaluation of expressions in Emacs Lisp is performed by the Lisp interpreter—a
program that receives a Lisp object as input and computes its value as an expression. How
it does this depends on the data type of the object, according to rules described in this
chapter. The interpreter runs automatically to evaluate portions of your program, but can
also be called explicitly via the Lisp primitive function eval.

A Lisp object that is intended for evaluation is called an expression or a form. The
fact that expressions are data objects and not merely text is one of the fundamental differ-
ences between Lisp-like languages and typical programming languages. Any object can be
evaluated, but in practice only numbers, symbols, lists and strings are evaluated very often.

It is very common to read a Lisp expression and then evaluate the expression, but reading
and evaluation are separate activities, and either can be performed alone. Reading per se
does not evaluate anything; it converts the printed representation of a Lisp object to the
object itself. It is up to the caller of read whether this object is a form to be evaluated, or
serves some entirely different purpose. See Section 19.3 [Input Functions|, page 257.

Do not confuse evaluation with command key interpretation. The editor command
loop translates keyboard input into a command (an interactively callable function) using
the active keymaps, and then uses call-interactively to invoke the command. The
execution of the command itself involves evaluation if the command is written in Lisp, but
that is not a part of command key interpretation itself. See Chapter 21 [Command Loop],
page 287.

Evaluation is a recursive process. That is, evaluation of a form may call eval to evaluate
parts of the form. For example, evaluation of a function call first evaluates each argument
of the function call, and then evaluates each form in the function body. Consider evaluation
of the form (car x): the subform x must first be evaluated recursively, so that its value can
be passed as an argument to the function car.

Evaluation of a function call ultimately calls the function specified in it. See Chapter 12
[Functions], page 155. The execution of the function may itself work by evaluating the
function definition; or the function may be a Lisp primitive implemented in C, or it may be
a byte-compiled function (see Chapter 16 [Byte Compilation], page 205).

The evaluation of forms takes place in a context called the environment, which consists of
the current values and bindings of all Lisp variables.! Whenever a form refers to a variable
without creating a new binding for it, the value of the variable’s binding in the current
environment is used. See Chapter 11 [Variables], page 133.

Evaluation of a form may create new environments for recursive evaluation by binding
variables (see Section 11.3 [Local Variables|, page 134). These environments are temporary
and vanish by the time evaluation of the form is complete. The form may also make changes
that persist; these changes are called side effects. An example of a form that produces side
effects is (setq foo 1).

The details of what evaluation means for each kind of form are described below (see
Section 9.1 [Forms|, page 108).

! This definition of “environment” is specifically not intended to include all the data that can affect the
result of a program.

108 GNU Emacs Lisp Reference Manual

9.1 Kinds of Forms

A Lisp object that is intended to be evaluated is called a form. How Emacs evaluates a
form depends on its data type. Emacs has three different kinds of form that are evaluated
differently: symbols, lists, and “all other types”. This section describes all three kinds, one
by one, starting with the “all other types” which are self-evaluating forms.

9.1.1 Self-Evaluating Forms

A self-evaluating form is any form that is not a list or symbol. Self-evaluating forms
evaluate to themselves: the result of evaluation is the same object that was evaluated.
Thus, the number 25 evaluates to 25, and the string "foo" evaluates to the string "foo".
Likewise, evaluation of a vector does not cause evaluation of the elements of the vector—it
returns the same vector with its contents unchanged.

7123 ;A number, shown without evaluation.
= 123

123 ; Evaluated as usual—result is the same.
= 123

(eval ’123) ; Evaluated “by hand”—result is the same.
= 123

(eval (eval ’123)) ; Evaluating twice changes nothing.
= 123

It is common to write numbers, characters, strings, and even vectors in Lisp code, taking
advantage of the fact that they self-evaluate. However, it is quite unusual to do this for
types that lack a read syntax, because there’s no way to write them textually. It is possible
to construct Lisp expressions containing these types by means of a Lisp program. Here is
an example:

;3 Build an expression containing a buffer object.
(setq print-exp (list ’print (current-buffer)))
= (print #<buffer eval.texi>)
;3 Evaluate it.
(eval print-exp)
- #<buffer eval.texi>
= #<buffer eval.texi>

9.1.2 Symbol Forms

When a symbol is evaluated, it is treated as a variable. The result is the variable’s
value, if it has one. If it has none (if its value cell is void), an error is signaled. For more
information on the use of variables, see Chapter 11 [Variables], page 133.

In the following example, we set the value of a symbol with setq. Then we evaluate the
symbol, and get back the value that setq stored.

(setq a 123)
= 123
(eval ’a)
= 123

= 123

Chapter 9: Evaluation 109

The symbols nil and t are treated specially, so that the value of nil is always nil, and
the value of t is always t; you cannot set or bind them to any other values. Thus, these two
symbols act like self-evaluating forms, even though eval treats them like any other symbol.
A symbol whose name starts with ‘:’ also self-evaluates in the same way; likewise, its value
ordinarily cannot be changed. See Section 11.2 [Constant Variables], page 133.

9.1.3 Classification of List Forms

A form that is a nonempty list is either a function call, a macro call, or a special form,
according to its first element. These three kinds of forms are evaluated in different ways,
described below. The remaining list elements constitute the arguments for the function,
macro, or special form.

The first step in evaluating a nonempty list is to examine its first element. This element
alone determines what kind of form the list is and how the rest of the list is to be processed.
The first element is not evaluated, as it would be in some Lisp dialects such as Scheme.

9.1.4 Symbol Function Indirection

If the first element of the list is a symbol then evaluation examines the symbol’s function
cell, and uses its contents instead of the original symbol. If the contents are another symbol,
this process, called symbol function indirection, is repeated until it obtains a non-symbol.
See Section 12.3 [Function Names]|, page 159, for more information about using a symbol
as a name for a function stored in the function cell of the symbol.

One possible consequence of this process is an infinite loop, in the event that a symbol’s
function cell refers to the same symbol. Or a symbol may have a void function cell, in
which case the subroutine symbol-function signals a void-function error. But if neither
of these things happens, we eventually obtain a non-symbol, which ought to be a function
or other suitable object.

More precisely, we should now have a Lisp function (a lambda expression), a byte-code
function, a primitive function, a Lisp macro, a special form, or an autoload object. Each of
these types is a case described in one of the following sections. If the object is not one of
these types, the error invalid-function is signaled.

The following example illustrates the symbol indirection process. We use fset to set
the function cell of a symbol and symbol-function to get the function cell contents (see
Section 12.8 [Function Cells], page 166). Specifically, we store the symbol car into the
function cell of first, and the symbol first into the function cell of erste.

;3 | #<subr car> | <-- | car | <-- | first | <-- | erste |
(symbol-function ’car)
= #<subr car>
(fset ’first ’car)
= car
(fset ’erste ’first)
= first

110 GNU Emacs Lisp Reference Manual

(erste ’(1 2 3)) ; Call the function referenced by erste.
=1
By contrast, the following example calls a function without any symbol function indi-
rection, because the first element is an anonymous Lisp function, not a symbol.

((lambda (arg) (erste arg))
(1 2 3))
=1
Executing the function itself evaluates its body; this does involve symbol function indirection
when calling erste.

The built-in function indirect-function provides an easy way to perform symbol func-
tion indirection explicitly.

indirect-function function Function

This function returns the meaning of function as a function. If function is a symbol,
then it finds function’s function definition and starts over with that value. If function

is not a symbol, then it returns function itself.

Here is how you could define indirect-function in Lisp:

(defun indirect-function (function)
(if (symbolp function)
(indirect-function (symbol-function function))
function))

9.1.5 Evaluation of Function Forms

If the first element of a list being evaluated is a Lisp function object, byte-code object
or primitive function object, then that list is a function call. For example, here is a call to
the function +:

(+ 1 %)

The first step in evaluating a function call is to evaluate the remaining elements of
the list from left to right. The results are the actual argument values, one value for each
list element. The next step is to call the function with this list of arguments, effectively
using the function apply (see Section 12.5 [Calling Functions|, page 161). If the function
is written in Lisp, the arguments are used to bind the argument variables of the function
(see Section 12.2 [Lambda Expressions], page 156); then the forms in the function body are
evaluated in order, and the value of the last body form becomes the value of the function
call.

9.1.6 Lisp Macro Evaluation

If the first element of a list being evaluated is a macro object, then the list is a macro
call. When a macro call is evaluated, the elements of the rest of the list are not initially
evaluated. Instead, these elements themselves are used as the arguments of the macro. The
macro definition computes a replacement form, called the expansion of the macro, to be
evaluated in place of the original form. The expansion may be any sort of form: a self-
evaluating constant, a symbol, or a list. If the expansion is itself a macro call, this process
of expansion repeats until some other sort of form results.

Chapter 9: Evaluation 111

Ordinary evaluation of a macro call finishes by evaluating the expansion. However, the
macro expansion is not necessarily evaluated right away, or at all, because other programs
also expand macro calls, and they may or may not evaluate the expansions.

Normally, the argument expressions are not evaluated as part of computing the macro
expansion, but instead appear as part of the expansion, so they are computed when the
expansion is evaluated.

For example, given a macro defined as follows:

(defmacro cadr (x)
(list ’car (list ’cdr x)))

an expression such as (cadr (assq ’handler list)) is a macro call, and its expansion is:
(car (cdr (assq ’handler list)))
Note that the argument (assq *handler list) appears in the expansion.

See Chapter 13 [Macros|, page 171, for a complete description of Emacs Lisp macros.

9.1.7 Special Forms

A special form is a primitive function specially marked so that its arguments are not all
evaluated. Most special forms define control structures or perform variable bindings—things
which functions cannot do.

Each special form has its own rules for which arguments are evaluated and which are
used without evaluation. Whether a particular argument is evaluated may depend on the
results of evaluating other arguments.

Here is a list, in alphabetical order, of all of the special forms in Emacs Lisp with a
reference to where each is described.

and see Section 10.3 [Combining Conditions], page 120
catch see Section 10.5.1 [Catch and Throw], page 123
cond see Section 10.2 [Conditionals], page 118

condition-case
see Section 10.5.3.3 [Handling Errors], page 127

defconst see Section 11.5 [Defining Variables|, page 137
defmacro see Section 13.4 [Defining Macros]|, page 173
defun see Section 12.4 [Defining Functions], page 160
defvar see Section 11.5 [Defining Variables], page 137
function see Section 12.7 [Anonymous Functions|, page 164
if see Section 10.2 [Conditionals|, page 118

interactive
see Section 21.3 [Interactive Call|, page 292

let
letx see Section 11.3 [Local Variables], page 134

or see Section 10.3 [Combining Conditions|, page 120

112 GNU Emacs Lisp Reference Manual

progl

prog?2

progn see Section 10.1 [Sequencing], page 117
quote see Section 9.2 [Quoting], page 113

save-current-buffer
see Section 27.2 [Current Buffer], page 439

save-excursion
see Section 30.3 [Excursions|, page 518

save-restriction
see Section 30.4 [Narrowing], page 519

save-window—-excursion
see Section 28.17 [Window Configurations], page 479

setq see Section 11.8 [Setting Variables|, page 142

setq-default
see Section 11.10.2 [Creating Buffer-Local], page 148

track-mouse
see Section 29.13 [Mouse Tracking], page 498

unwind-protect
see Section 10.5 [Nonlocal Exits|, page 123

while see Section 10.4 [Iteration], page 121

with-output-to-temp-buffer
see Section 38.8 [Temporary Displays]|, page 669

Common Lisp note: Here are some comparisons of special forms in GNU Emacs
Lisp and Common Lisp. setq, if, and catch are special forms in both Emacs
Lisp and Common Lisp. defun is a special form in Emacs Lisp, but a macro in
Common Lisp. save-excursion is a special form in Emacs Lisp, but doesn’t
exist in Common Lisp. throw is a special form in Common Lisp (because it
must be able to throw multiple values), but it is a function in Emacs Lisp (which
doesn’t have multiple values).

9.1.8 Autoloading

The autoload feature allows you to call a function or macro whose function definition
has not yet been loaded into Emacs. It specifies which file contains the definition. When an
autoload object appears as a symbol’s function definition, calling that symbol as a function
automatically loads the specified file; then it calls the real definition loaded from that file.
See Section 15.4 [Autoload], page 197.

Chapter 9: Evaluation 113

9.2 Quoting

The special form quote returns its single argument, as written, without evaluating it.
This provides a way to include constant symbols and lists, which are not self-evaluating
objects, in a program. (It is not necessary to quote self-evaluating objects such as numbers,
strings, and vectors.)

quote object Special Form
This special form returns object, without evaluating it.

Because quote is used so often in programs, Lisp provides a convenient read syntax for
it. An apostrophe character (‘’’) followed by a Lisp object (in read syntax) expands to a
list whose first element is quote, and whose second element is the object. Thus, the read
syntax ’x is an abbreviation for (quote x).

Here are some examples of expressions that use quote:

(quote (+ 1 2))

= (+12)
(quote foo)

= foo
’foo

= foo
’?foo

= (quote foo)
> (quote foo)

= (quote foo)
[’fool

= [(quote foo)]

Other quoting constructs include function (see Section 12.7 [Anonymous Functions],
page 164), which causes an anonymous lambda expression written in Lisp to be compiled,
and ‘7 (see Section 13.5 [Backquote], page 173), which is used to quote only part of a list,
while computing and substituting other parts.

9.3 Eval

Most often, forms are evaluated automatically, by virtue of their occurrence in a program
being run. On rare occasions, you may need to write code that evaluates a form that is
computed at run time, such as after reading a form from text being edited or getting one
from a property list. On these occasions, use the eval function.

The functions and variables described in this section evaluate forms, specify limits to the
evaluation process, or record recently returned values. Loading a file also does evaluation
(see Chapter 15 [Loading], page 193).

Note: it is generally cleaner and more flexible to store a function in a data structure,
and call it with funcall or apply, than to store an expression in the data structure and
evaluate it. Using functions provides the ability to pass information to them as arguments.

114 GNU Emacs Lisp Reference Manual

eval form Function
This is the basic function evaluating an expression. It evaluates form in the current
environment and returns the result. How the evaluation proceeds depends on the
type of the object (see Section 9.1 [Forms], page 108).

Since eval is a function, the argument expression that appears in a call to eval is
evaluated twice: once as preparation before eval is called, and again by the eval
function itself. Here is an example:

(setq foo ’bar)
= bar
(setq bar ’baz)
= baz
;5 Here eval receives argument foo
(eval ’foo)
= bar
;3 Here eval receives argument bar, which is the value of foo
(eval foo)

= baz
The number of currently active calls to eval is limited to max-1lisp-eval-depth (see
below).
eval-region start end &optional stream read-function Command

This function evaluates the forms in the current buffer in the region defined by the
positions start and end. It reads forms from the region and calls eval on them until
the end of the region is reached, or until an error is signaled and not handled.

If stream is non-nil, the values that result from evaluating the expressions in the
region are printed using stream. See Section 19.4 [Output Streams|, page 258.

If read-function is non-nil, it should be a function, which is used instead of read to
read expressions one by one. This function is called with one argument, the stream for
reading input. You can also use the variable load-read-function (see Section 15.1
[How Programs Do Loading], page 193) to specify this function, but it is more robust
to use the read-function argument.

eval-region always returns nil.

eval-current-buffer &optional stream Command
This is like eval-region except that it operates on the whole buffer.

max-lisp-eval-depth Variable
This variable defines the maximum depth allowed in calls to eval, apply, and funcall
before an error is signaled (with error message "Lisp nesting exceeds max-lisp-
eval-depth"). This limit, with the associated error when it is exceeded, is one way
that Lisp avoids infinite recursion on an ill-defined function.

The depth limit counts internal uses of eval, apply, and funcall, such as for calling
the functions mentioned in Lisp expressions, and recursive evaluation of function call
arguments and function body forms, as well as explicit calls in Lisp code.

Chapter 9: Evaluation 115

The default value of this variable is 300. If you set it to a value less than 100, Lisp
will reset it to 100 if the given value is reached. Entry to the Lisp debugger increases
the value, if there is little room left, to make sure the debugger itself has room to
execute.

max-specpdl-size provides another limit on nesting. See Section 11.3 [Local Vari-
ables|, page 134.

values Variable
The value of this variable is a list of the values returned by all the expressions that were
read, evaluated, and printed from buffers (including the minibuffer) by the standard
Emacs commands which do this. The elements are ordered most recent first.
(setq x 1)
=1
(list ’A (1+ 2) auto-save-default)
= (A 3 t)
values
= (A3t)1 ..
This variable is useful for referring back to values of forms recently evaluated. It is
generally a bad idea to print the value of values itself, since this may be very long.
Instead, examine particular elements, like this:

;3 Refer to the most recent evaluation result.
(nth 0 values)
= (A 3 t)
;5 That put a new element on,
K so all elements move back one.
(nth 1 values)
= (A 3 t)
;35 This gets the element that was next-to-most-recent
;5 before this example.
(nth 3 values)
=1

116 GNU Emacs Lisp Reference Manual

Chapter 10: Control Structures 117

10 Control Structures

A Lisp program consists of expressions or forms (see Section 9.1 [Forms|, page 108).
We control the order of execution of these forms by enclosing them in control structures.
Control structures are special forms which control when, whether, or how many times to
execute the forms they contain.

The simplest order of execution is sequential execution: first form a, then form b, and
so on. This is what happens when you write several forms in succession in the body of a
function, or at top level in a file of Lisp code—the forms are executed in the order written.
We call this textual order. For example, if a function body consists of two forms a and b,
evaluation of the function evaluates first a and then b. The result of evaluating b becomes
the value of the function.

Explicit control structures make possible an order of execution other than sequential.

Emacs Lisp provides several kinds of control structure, including other varieties of se-
quencing, conditionals, iteration, and (controlled) jumps—all discussed below. The built-in
control structures are special forms since their subforms are not necessarily evaluated or not
evaluated sequentially. You can use macros to define your own control structure constructs
(see Chapter 13 [Macros|, page 171).

10.1 Sequencing

Evaluating forms in the order they appear is the most common way control passes
from one form to another. In some contexts, such as in a function body, this happens
automatically. Elsewhere you must use a control structure construct to do this: progn, the
simplest control construct of Lisp.

A progn special form looks like this:
(progn a b ¢ ...)

and it says to execute the forms a, b, ¢, and so on, in that order. These forms are called
the body of the progn form. The value of the last form in the body becomes the value of
the entire progn. (progn) returns nil.

In the early days of Lisp, progn was the only way to execute two or more forms in
succession and use the value of the last of them. But programmers found they often needed
to use a progn in the body of a function, where (at that time) only one form was allowed.
So the body of a function was made into an “implicit progn”: several forms are allowed
just as in the body of an actual progn. Many other control structures likewise contain an
implicit progn. As a result, progn is not used as much as it was many years ago. It is
needed now most often inside an unwind-protect, and, or, or in the then-part of an if.

progn forms. . . Special Form
This special form evaluates all of the forms, in textual order, returning the result of
the final form.

118 GNU Emacs Lisp Reference Manual

(progn (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
-4 "The second form"
-4 "The third form"
= "The third form"

Two other control constructs likewise evaluate a series of forms but return a different
value:

progl forml forms. . . Special Form
This special form evaluates form1 and all of the forms, in textual order, returning the
result of forml.
(progl (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The first form"
Here is a way to remove the first element from a list in the variable x, then return
the value of that former element:

(progl (car x) (setq x (cdr x)))

prog?2 forml form?2 forms. . . Special Form
This special form evaluates forml, form2, and all of the following forms, in textual
order, returning the result of form2.
(prog2 (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The second form"

10.2 Conditionals

Conditional control structures choose among alternatives. Emacs Lisp has four condi-
tional forms: if, which is much the same as in other languages; when and unless, which
are variants of if; and cond, which is a generalized case statement.

if condition then-form else-forms. . . Special Form
if chooses between the then-form and the else-forms based on the value of condition.
If the evaluated condition is non-nil, then-form is evaluated and the result returned.
Otherwise, the else-forms are evaluated in textual order, and the value of the last one
is returned. (The else part of if is an example of an implicit progn. See Section 10.1
[Sequencing], page 117.)

Chapter 10: Control Structures 119

If condition has the value nil, and no else-forms are given, if returns nil.

if is a special form because the branch that is not selected is never evaluated—it

is ignored. Thus, in the example below, true is not printed because print is never
called.
(if nil
(print ’true)
>very-false)
= very-false

when condition then-forms. . . Macro
This is a variant of if where there are no else-forms, and possibly several then-forms.
In particular,

(when condition a b ¢)
is entirely equivalent to

(if condition (progn a b c¢) nil)

unless condition forms. . . Macro
This is a variant of if where there is no then-form:

(unless condition a b ¢)
is entirely equivalent to

(if condition nil

abc)

cond clause. . . Special Form
cond chooses among an arbitrary number of alternatives. Each clause in the cond
must be a list. The CAR of this list is the condition; the remaining elements, if any,
the body-forms. Thus, a clause looks like this:

(condition body-forms. . .)

cond tries the clauses in textual order, by evaluating the condition of each clause.
If the value of condition is non-nil, the clause “succeeds”; then cond evaluates its
body-forms, and the value of the last of body-forms becomes the value of the cond.
The remaining clauses are ignored.

If the value of condition is nil, the clause “fails”, so the cond moves on to the following
clause, trying its condition.

If every condition evaluates to nil, so that every clause fails, cond returns nil.
A clause may also look like this:
(condition)

Then, if condition is non-nil when tested, the value of condition becomes the value
of the cond form.

The following example has four clauses, which test for the cases where the value of x
is a number, string, buffer and symbol, respectively:

120 GNU Emacs Lisp Reference Manual

(cond ((numberp x) x)
((stringp x) x)
((bufferp x)
(setq temporary-hack x) ; multiple body-forms
(buffer-name x)) ; in one clause
((symbolp x) (symbol-value x)))
Often we want to execute the last clause whenever none of the previous clauses was
successful. To do this, we use t as the condition of the last clause, like this: (t
body-forms). The form t evaluates to t, which is never nil, so this clause never
fails, provided the cond gets to it at all.
For example,
(setq a 5)
(cond ((eq a ’hack) ’foo)
(t "default"))
= "default"
This cond expression returns foo if the value of a is hack, and returns the string
"default" otherwise.

Any conditional construct can be expressed with cond or with if. Therefore, the choice
between them is a matter of style. For example:

(if a b ¢)
(cond (a b) (t)

10.3 Constructs for Combining Conditions

This section describes three constructs that are often used together with if and cond to
express complicated conditions. The constructs and and or can also be used individually
as kinds of multiple conditional constructs.

not condition Function
This function tests for the falsehood of condition. It returns t if condition is nil, and
nil otherwise. The function not is identical to null, and we recommend using the
name null if you are testing for an empty list.

and conditions. . . Special Form
The and special form tests whether all the conditions are true. It works by evaluating
the conditions one by one in the order written.

If any of the conditions evaluates to nil, then the result of the and must be nil
regardless of the remaining conditions; so and returns nil right away, ignoring the
remaining conditions.

If all the conditions turn out non-nil, then the value of the last of them becomes the
value of the and form. Just (and), with no conditions, returns t, appropriate because
all the conditions turned out non-nil. (Think about it; which one did not?)

Here is an example. The first condition returns the integer 1, which is not nil.
Similarly, the second condition returns the integer 2, which is not nil. The third
condition is nil, so the remaining condition is never evaluated.

Chapter 10: Control Structures 121

(and (print 1) (print 2) nil (print 3))
41
4 2
= nil
Here is a more realistic example of using and:

(if (and (comnsp foo) (eq (car foo) ’x))
(message "foo is a list starting with x"))

Note that (car foo) is not executed if (consp foo) returns nil, thus avoiding an
€rror.

and can be expressed in terms of either if or cond. For example:

(and argl arg2 arg3)
(_if argl (if arg2 arg3))
(_cond (argl (cond (arg2 arg3))))

or conditions. . . Special Form
The or special form tests whether at least one of the conditions is true. It works by
evaluating all the conditions one by one in the order written.

If any of the conditions evaluates to a non-nil value, then the result of the or must
be non-nil; so or returns right away, ignoring the remaining conditions. The value
it returns is the non-nil value of the condition just evaluated.

If all the conditions turn out nil, then the or expression returns nil. Just (or),
with no conditions, returns nil, appropriate because all the conditions turned out
nil. (Think about it; which one did not?)
For example, this expression tests whether x is either nil or the integer zero:

(or (eq x nil) (eq x 0))
Like the and construct, or can be written in terms of cond. For example:

(or argl arg2 arg3)

(cond (argl)
(arg2)
(arg3))
You could almost write or in terms of if, but not quite:
(if argl argl
(if arg2 arg2
arg3))
This is not completely equivalent because it can evaluate argl or arg2 twice. By
contrast, (or argl arg2 arg3) never evaluates any argument more than once.

10.4 Iteration

Iteration means executing part of a program repetitively. For example, you might want
to repeat some computation once for each element of a list, or once for each integer from 0
to n. You can do this in Emacs Lisp with the special form while:

122 GNU Emacs Lisp Reference Manual

while condition forms. . . Special Form
while first evaluates condition. If the result is non-nil, it evaluates forms in textual
order. Then it reevaluates condition, and if the result is non-nil, it evaluates forms
again. This process repeats until condition evaluates to nil.

There is no limit on the number of iterations that may occur. The loop will continue
until either condition evaluates to nil or until an error or throw jumps out of it (see
Section 10.5 [Nonlocal Exits|, page 123).
The value of a while form is always nil.
(setq num 0)
= 0
(while (< num 4)
(princ (format "Iteration %d." num))
(setq num (1+ num)))
- Iteration O.
- Iteration 1.
- Iteration 2.
- Iteration 3.
= nil
To write a “repeat...until” loop, which will execute something on each iteration and
then do the end-test, put the body followed by the end-test in a progn as the first
argument of while, as shown here:
(while (progn
(forward-line 1)
(not (looking-at "~$"))))
This moves forward one line and continues moving by lines until it reaches an empty
line. It is peculiar in that the while has no body, just the end test (which also does
the real work of moving point).

The dolist and dotimes macros provide convenient ways to write two common kinds
of loops.

dolist (var Iist [result]) body. .. Macro
This construct executes body once for each element of list, using the variable var
to hold the current element. Then it returns the value of evaluating result, or nil
if result is omitted. For example, here is how you could use dolist to define the
reverse function:

(defun reverse (list)
(let (value)
(dolist (elt list value)
(setq value (cons elt value)))))

dotimes (var count [result]) body. .. Macro
This construct executes body once for each integer from 0 (inclusive) to count (ex-
clusive), using the variable var to hold the integer for the current iteration. Then it
returns the value of evaluating result, or nil if result is omitted. Here is an example
of using dotimes do something 100 times:

Chapter 10: Control Structures 123

(dotimes (i 100)
(insert "I will not obey absurd orders\n"))

10.5 Nonlocal Exits

A nonlocal exit is a transfer of control from one point in a program to another remote
point. Nonlocal exits can occur in Emacs Lisp as a result of errors; you can also use them
under explicit control. Nonlocal exits unbind all variable bindings made by the constructs
being exited.

10.5.1 Explicit Nonlocal Exits: catch and throw

Most control constructs affect only the flow of control within the construct itself. The
function throw is the exception to this rule of normal program execution: it performs a
nonlocal exit on request. (There are other exceptions, but they are for error handling only.)
throw is used inside a catch, and jumps back to that catch. For example:

(defun foo-outer ()
(catch ’foo
(foo-inner)))

(defun foo-inner ()
(if x
(throw ’foo t))
D

The throw form, if executed, transfers control straight back to the corresponding catch,
which returns immediately. The code following the throw is not executed. The second
argument of throw is used as the return value of the catch.

The function throw finds the matching catch based on the first argument: it searches for
a catch whose first argument is eq to the one specified in the throw. If there is more than
one applicable catch, the innermost one takes precedence. Thus, in the above example, the
throw specifies foo, and the catch in foo-outer specifies the same symbol, so that catch
is the applicable one (assuming there is no other matching catch in between).

Executing throw exits all Lisp constructs up to the matching catch, including function
calls. When binding constructs such as let or function calls are exited in this way, the
bindings are unbound, just as they are when these constructs exit normally (see Section 11.3
[Local Variables], page 134). Likewise, throw restores the buffer and position saved by
save-excursion (see Section 30.3 [Excursions|, page 518), and the narrowing status saved
by save-restriction and the window selection saved by save-window-excursion (see
Section 28.17 [Window Configurations|, page 479). It also runs any cleanups established
with the unwind-protect special form when it exits that form (see Section 10.5.4 [Cleanups],
page 131).

The throw need not appear lexically within the catch that it jumps to. It can equally
well be called from another function called within the catch. As long as the throw takes
place chronologically after entry to the catch, and chronologically before exit from it, it

124 GNU Emacs Lisp Reference Manual

has access to that catch. This is why throw can be used in commands such as exit-
recursive-edit that throw back to the editor command loop (see Section 21.12 [Recursive
Editing], page 319).

Common Lisp note: Most other versions of Lisp, including Common Lisp, have

several ways of transferring control nonsequentially: return, return-from, and

go, for example. Emacs Lisp has only throw.

catch tag body. .. Special Form

catch establishes a return point for the throw function. The return point is distin-
guished from other such return points by tag, which may be any Lisp object except
nil. The argument tag is evaluated normally before the return point is established.
With the return point in effect, catch evaluates the forms of the body in textual
order. If the forms execute normally (without error or nonlocal exit) the value of the
last body form is returned from the catch.

If a throw is executed during the execution of body, specifying the same value tag,
the catch form exits immediately; the value it returns is whatever was specified as
the second argument of throw.

throw tag value Function
The purpose of throw is to return from a return point previously established with
catch. The argument tag is used to choose among the various existing return points;
it must be eq to the value specified in the catch. If multiple return points match tag,
the innermost one is used.

The argument value is used as the value to return from that catch.

If no return point is in effect with tag tag, then a no-catch error is signaled with
data (tag value).

10.5.2 Examples of catch and throw

One way to use catch and throw is to exit from a doubly nested loop. (In most languages,
this would be done with a “go to”.) Here we compute (foo i j) for i and j varying from 0
to 9:

(defun search-foo ()
(catch ’loop
(let ((i 0))
(while (< i 10)
(let ((j 0))
(while (< j 10)
(if (foo i j)
(throw ’loop (1list i j)))
(setq j (1+ j))))
(setq i (1+ 1))
If foo ever returns non-nil, we stop immediately and return a list of i and j. If foo always
returns nil, the catch returns normally, and the value is nil, since that is the result of the
while.

Here are two tricky examples, slightly different, showing two return points at once. First,

two return points with the same tag, hack:

Chapter 10: Control Structures 125

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))
= catch2

(catch ’hack
(print (catch2 ’hack))
’no)
- yes
= no
Since both return points have tags that match the throw, it goes to the inner one, the one
established in catch2. Therefore, catch2 returns normally with value yes, and this value
is printed. Finally the second body form in the outer catch, which is ’no, is evaluated and
returned from the outer catch.

Now let’s change the argument given to catch2:

(catch ’hack
(print (catch2 ’quux))
’no)
= yes
We still have two return points, but this time only the outer one has the tag hack; the inner
one has the tag quux instead. Therefore, throw makes the outer catch return the value
yes. The function print is never called, and the body-form ’no is never evaluated.

10.5.3 Errors

When Emacs Lisp attempts to evaluate a form that, for some reason, cannot be evalu-
ated, it signals an error.

When an error is signaled, Emacs’s default reaction is to print an error message and
terminate execution of the current command. This is the right thing to do in most cases,
such as if you type C-f at the end of the buffer.

In complicated programs, simple termination may not be what you want. For example,
the program may have made temporary changes in data structures, or created temporary
buffers that should be deleted before the program is finished. In such cases, you would
use unwind-protect to establish cleanup expressions to be evaluated in case of error. (See
Section 10.5.4 [Cleanups], page 131.) Occasionally, you may wish the program to continue
execution despite an error in a subroutine. In these cases, you would use condition-case
to establish error handlers to recover control in case of error.

Resist the temptation to use error handling to transfer control from one part of the
program to another; use catch and throw instead. See Section 10.5.1 [Catch and Throw],
page 123.

10.5.3.1 How to Signal an Error

Most errors are signaled “automatically” within Lisp primitives which you call for other
purposes, such as if you try to take the CAR of an integer or move forward a character at
the end of the buffer. You can also signal errors explicitly with the functions error and
signal.

126 GNU Emacs Lisp Reference Manual

Quitting, which happens when the user types C-g, is not considered an error, but it is
handled almost like an error. See Section 21.10 [Quitting], page 316.

The error message should state what is wrong (“File does not exist”), not how things
ought to be (“File must exist”). The convention in Emacs Lisp is that error messages should
start with a capital letter, but should not end with any sort of punctuation.

error format-string &rest args Function
This function signals an error with an error message constructed by applying format
(see Section 4.6 [String Conversion|, page 55) to format-string and args.

These examples show typical uses of error:

(error "That is an error -- try something else")
y g
That is an error -- try something else

(error "You have committed %d errors" 10)
You have committed 10 errors
error works by calling signal with two arguments: the error symbol error, and a
list containing the string returned by format.

Warning: If you want to use your own string as an error message verbatim, don’t
just write (error string). If string contains ‘%’, it will be interpreted as a format
specifier, with undesirable results. Instead, use (error "¥%s" string).

signal error-symbol data Function
This function signals an error named by error-symbol. The argument data is a list of
additional Lisp objects relevant to the circumstances of the error.

The argument error-symbol must be an error symbol—a symbol bearing a property
error-conditions whose value is a list of condition names. This is how Emacs Lisp
classifies different sorts of errors.

The number and significance of the objects in data depends on error-symbol. For
example, with a wrong-type-arg error, there should be two objects in the list: a
predicate that describes the type that was expected, and the object that failed to fit
that type. See Section 10.5.3.4 [Error Symbols], page 130, for a description of error
symbols.

Both error-symbol and data are available to any error handlers that handle the error:
condition-case binds a local variable to a list of the form (error-symbol . data)
(see Section 10.5.3.3 [Handling Errors|, page 127). If the error is not handled, these
two values are used in printing the error message.

The function signal never returns (though in older Emacs versions it could sometimes
return).
(signal ’wrong-number-of-arguments ’(x y))

error| Wrong number of arguments: x, y

(signal ’no-such-error °’("My unknown error condition"))
error| peculiar error: "My unknown error condition"

Common Lisp note: Emacs Lisp has nothing like the Common Lisp concept of
continuable errors.

Chapter 10: Control Structures 127

10.5.3.2 How Emacs Processes Errors

When an error is signaled, signal searches for an active handler for the error. A handler
is a sequence of Lisp expressions designated to be executed if an error happens in part of
the Lisp program. If the error has an applicable handler, the handler is executed, and
control resumes following the handler. The handler executes in the environment of the
condition-case that established it; all functions called within that condition-case have
already been exited, and the handler cannot return to them.

If there is no applicable handler for the error, the current command is terminated and
control returns to the editor command loop, because the command loop has an implicit
handler for all kinds of errors. The command loop’s handler uses the error symbol and
associated data to print an error message.

An error that has no explicit handler may call the Lisp debugger. The debugger is
enabled if the variable debug-on-error (see Section 18.1.1 [Error Debugging], page 225) is
non-nil. Unlike error handlers, the debugger runs in the environment of the error, so that
you can examine values of variables precisely as they were at the time of the error.

10.5.3.3 Writing Code to Handle Errors

The usual effect of signaling an error is to terminate the command that is running and
return immediately to the Emacs editor command loop. You can arrange to trap errors
occurring in a part of your program by establishing an error handler, with the special form
condition-case. A simple example looks like this:

(condition-case nil
(delete-file filename)
(error nil))
This deletes the file named filename, catching any error and returning nil if an error occurs.

The second argument of condition-case is called the protected form. (In the example
above, the protected form is a call to delete-file.) The error handlers go into effect when
this form begins execution and are deactivated when this form returns. They remain in
effect for all the intervening time. In particular, they are in effect during the execution
of functions called by this form, in their subroutines, and so on. This is a good thing,
since, strictly speaking, errors can be signaled only by Lisp primitives (including signal
and error) called by the protected form, not by the protected form itself.

The arguments after the protected form are handlers. Each handler lists one or more
condition names (which are symbols) to specify which errors it will handle. The error
symbol specified when an error is signaled also defines a list of condition names. A handler
applies to an error if they have any condition names in common. In the example above,
there is one handler, and it specifies one condition name, error, which covers all errors.

The search for an applicable handler checks all the established handlers starting with the
most recently established one. Thus, if two nested condition-case forms offer to handle
the same error, the inner of the two gets to handle it.

If an error is handled by some condition-case form, this ordinarily prevents the de-
bugger from being run, even if debug-on-error says this error should invoke the debugger.
See Section 18.1.1 [Error Debugging], page 225. If you want to be able to debug errors that
are caught by a condition-case, set the variable debug-on-signal to a non-nil value.

128 GNU Emacs Lisp Reference Manual

When an error is handled, control returns to the handler. Before this happens, Emacs
unbinds all variable bindings made by binding constructs that are being exited and executes
the cleanups of all unwind-protect forms that are exited. Once control arrives at the
handler, the body of the handler is executed.

After execution of the handler body, execution returns from the condition-case form.
Because the protected form is exited completely before execution of the handler, the handler
cannot resume execution at the point of the error, nor can it examine variable bindings that
were made within the protected form. All it can do is clean up and proceed.

The condition-case construct is often used to trap errors that are predictable, such as
failure to open a file in a call to insert-file-contents. It is also used to trap errors that
are totally unpredictable, such as when the program evaluates an expression read from the
user.

Error signaling and handling have some resemblance to throw and catch (see Sec-
tion 10.5.1 [Catch and Throw|, page 123), but they are entirely separate facilities. An
error cannot be caught by a catch, and a throw cannot be handled by an error handler
(though using throw when there is no suitable catch signals an error that can be handled).

condition-case var protected-form handlers. . . Special Form
This special form establishes the error handlers handlers around the execution of
protected-form. If protected-form executes without error, the value it returns becomes
the value of the condition-case form; in this case, the condition-case has no effect.
The condition-case form makes a difference when an error occurs during protected-
form.

Each of the handlers is a list of the form (conditions body...). Here conditions is
an error condition name to be handled, or a list of condition names; body is one or
more Lisp expressions to be executed when this handler handles an error. Here are
examples of handlers:

(error nil)
(arith-error (message "Division by zero"))

((arith-error file-error)
(message
"Either division by zero or failure to open a file"))
Each error that occurs has an error symbol that describes what kind of error it
is. The error-conditions property of this symbol is a list of condition names (see
Section 10.5.3.4 [Error Symbols], page 130). Emacs searches all the active condition-
case forms for a handler that specifies one or more of these condition names; the
innermost matching condition-case handles the error. Within this condition-
case, the first applicable handler handles the error.

After executing the body of the handler, the condition-case returns normally, using
the value of the last form in the handler body as the overall value.

The argument var is a variable. condition-case does not bind this variable when
executing the protected-form, only when it handles an error. At that time, it binds
var locally to an error description, which is a list giving the particulars of the error.

Chapter 10: Control Structures 129

The error description has the form (error-symbol . data). The handler can refer to
this list to decide what to do. For example, if the error is for failure opening a file, the
file name is the second element of data—the third element of the error description.

If var is nil, that means no variable is bound. Then the error symbol and associated
data are not available to the handler.

error-message-string error-description Function
This function returns the error message string for a given error descriptor. It is useful
if you want to handle an error by printing the usual error message for that error.

Here is an example of using condition-case to handle the error that results from
dividing by zero. The handler displays the error message (but without a beep), then returns
a very large number.

(defun safe-divide (dividend divisor)
(condition-case err
;3 Protected form.
(/ dividend divisor)
;3 The handler.
(arith-error ; Condition.
;3 Display the usual message for this error.
(message "%s" (error-message-string err))
1000000)))
= safe-divide

(safe-divide 5 0)
- Arithmetic error: (arith-error)
= 1000000

The handler specifies condition name arith-error so that it will handle only division-by-
zero errors. Other kinds of errors will not be handled, at least not by this condition-case.
Thus,

(safe-divide nil 3)
Wrong type argument: number-or-marker-p, nil

Here is a condition-case that catches all kinds of errors, including those signaled with
error:

(setq baz 34)
= 34

(condition-case err
(if (eq baz 35)
t
;3 This is a call to the function error.
(error "Rats! The variable %s was %s, not 35" ’baz baz))
;3 This is the handler; it is not a form.
(error (princ (format "The error was: %s" err))
2))
- The error was: (error "Rats! The variable baz was 34, not 35")
= 2

130 GNU Emacs Lisp Reference Manual

10.5.3.4 Error Symbols and Condition Names

When you signal an error, you specify an error symbol to specify the kind of error you
have in mind. Each error has one and only one error symbol to categorize it. This is the
finest classification of errors defined by the Emacs Lisp language.

These narrow classifications are grouped into a hierarchy of wider classes called error
conditions, identified by condition names. The narrowest such classes belong to the error
symbols themselves: each error symbol is also a condition name. There are also condition
names for more extensive classes, up to the condition name error which takes in all kinds
of errors. Thus, each error has one or more condition names: error, the error symbol if
that is distinct from error, and perhaps some intermediate classifications.

In order for a symbol to be an error symbol, it must have an error-conditions property
which gives a list of condition names. This list defines the conditions that this kind of error
belongs to. (The error symbol itself, and the symbol error, should always be members
of this list.) Thus, the hierarchy of condition names is defined by the error-conditions
properties of the error symbols.

In addition to the error-conditions list, the error symbol should have an error-
message property whose value is a string to be printed when that error is signaled but
not handled. If the error-message property exists, but is not a string, the error message
‘peculiar error’ is used.

Here is how we define a new error symbol, new-error:

(put ’new-error
’error-conditions
’ (error my-own-errors New-error))
= (error my-own-errors new-error)
(put ’new-error ’error-message "A new error")
= "A new error"

This error has three condition names: new-error, the narrowest classification; my-own-
errors, which we imagine is a wider classification; and error, which is the widest of all.

The error string should start with a capital letter but it should not end with a period.
This is for consistency with the rest of Emacs.

Naturally, Emacs will never signal new-error on its own; only an explicit call to signal
(see Section 10.5.3.1 [Signaling Errors]|, page 125) in your code can do this:

(signal ’new-error ’(x y))
A new error: x, y
This error can be handled through any of the three condition names. This example
handles new-error and any other errors in the class my-own-errors:

(condition-case foo
(bar nil t)
(my-own-errors nil))

The significant way that errors are classified is by their condition names—the names
used to match errors with handlers. An error symbol serves only as a convenient way to
specify the intended error message and list of condition names. It would be cumbersome to
give signal a list of condition names rather than one error symbol.

Chapter 10: Control Structures 131

By contrast, using only error symbols without condition names would seriously decrease
the power of condition-case. Condition names make it possible to categorize errors at
various levels of generality when you write an error handler. Using error symbols alone
would eliminate all but the narrowest level of classification.

See Appendix F [Standard Errors], page 797, for a list of all the standard error symbols
and their conditions.

10.5.4 Cleaning Up from Nonlocal Exits

The unwind-protect construct is essential whenever you temporarily put a data struc-
ture in an inconsistent state; it permits you to make the data consistent again in the event
of an error or throw.

unwind-protect body cleanup-forms. . . Special Form
unwind-protect executes the body with a guarantee that the cleanup-forms will
be evaluated if control leaves body, no matter how that happens. The body may
complete normally, or execute a throw out of the unwind-protect, or cause an error;
in all cases, the cleanup-forms will be evaluated.

If the body forms finish normally, unwind-protect returns the value of the last body
form, after it evaluates the cleanup-forms. If the body forms do not finish, unwind-
protect does not return any value in the normal sense.

Only the body is protected by the unwind-protect. If any of the cleanup-forms
themselves exits nonlocally (via a throw or an error), unwind-protect is not guar-
anteed to evaluate the rest of them. If the failure of one of the cleanup-forms has the
potential to cause trouble, then protect it with another unwind-protect around that
form.

The number of currently active unwind-protect forms counts, together with the num-
ber of local variable bindings, against the limit max-specpdl-size (see Section 11.3
[Local Variables], page 134).

For example, here we make an invisible buffer for temporary use, and make sure to kill
it before finishing:

(save-excursion
(let ((buffer (get-buffer-create " *tempx")))
(set-buffer buffer)
(unwind-protect
body
(kill-buffer buffer))))

You might think that we could just as well write (kill-buffer (current-buffer)) and
dispense with the variable buffer. However, the way shown above is safer, if body happens
to get an error after switching to a different buffer! (Alternatively, you could write another
save-excursion around the body, to ensure that the temporary buffer becomes current
again in time to kill it.)

Emacs includes a standard macro called with-temp-buffer which expands into more
or less the code shown above (see Section 27.2 [Current Buffer], page 439). Several of the
macros defined in this manual use unwind-protect in this way.

132 GNU Emacs Lisp Reference Manual

Here is an actual example derived from an FTP package. It creates a process (see
Chapter 37 [Processes], page 641) to try to establish a connection to a remote machine.
As the function ftp-login is highly susceptible to numerous problems that the writer of
the function cannot anticipate, it is protected with a form that guarantees deletion of the
process in the event of failure. Otherwise, Emacs might fill up with useless subprocesses.

(let ((win nil))
(unwind-protect
(progn
(setq process (ftp-setup-buffer host file))
(if (setq win (ftp-login process host user password))
(message "Logged in")
(error "Ftp login failed")))
(or win (and process (delete-process process)))))

This example has a small bug: if the user types C-g to quit, and the quit happens
immediately after the function ftp-setup-buffer returns but before the variable process
is set, the process will not be killed. There is no easy way to fix this bug, but at least it is
very unlikely.

Chapter 11: Variables 133

11 Variables

A variable is a name used in a program to stand for a value. Nearly all programming
languages have variables of some sort. In the text of a Lisp program, variables are written
using the syntax for symbols.

In Lisp, unlike most programming languages, programs are represented primarily as Lisp
objects and only secondarily as text. The Lisp objects used for variables are symbols: the
symbol name is the variable name, and the variable’s value is stored in the value cell of the
symbol. The use of a symbol as a variable is independent of its use as a function name. See
Section 8.1 [Symbol Components|, page 99.

The Lisp objects that constitute a Lisp program determine the textual form of the
program—it is simply the read syntax for those Lisp objects. This is why, for example,
a variable in a textual Lisp program is written using the read syntax for the symbol that
represents the variable.

11.1 Global Variables

The simplest way to use a variable is globally. This means that the variable has just
one value at a time, and this value is in effect (at least for the moment) throughout the
Lisp system. The value remains in effect until you specify a new one. When a new value
replaces the old one, no trace of the old value remains in the variable.

You specify a value for a symbol with setq. For example,
(setq x ’(a b))

gives the variable x the value (a b). Note that setq does not evaluate its first argument,
the name of the variable, but it does evaluate the second argument, the new value.

Once the variable has a value, you can refer to it by using the symbol by itself as an
expression. Thus,

x = (a b)
assuming the setq form shown above has already been executed.

If you do set the same variable again, the new value replaces the old one:

X
= (a b)
(setq x 4)
= 4
X
= 4

11.2 Variables that Never Change

In Emacs Lisp, certain symbols normally evaluate to themselves. These include nil and
t, as well as any symbol whose name starts with ‘:’ (these are called keywords). These
symbols cannot be rebound, nor can their values be changed. Any attempt to set or bind
nil or t signals a setting-constant error. The same is true for a keyword (a symbol
whose name starts with ‘:’), if it is interned in the standard obarray, except that setting
such a symbol to itself is not an error.

134 GNU Emacs Lisp Reference Manual

nil = ’nil
= nil
(setq nil 500)
Attempt to set constant symbol: nil

keywordp object Function
function returns t if object is a symbol whose name starts with ‘:’, interned in the
standard obarray, and returns nil otherwise.

11.3 Local Variables

Global variables have values that last until explicitly superseded with new values. Some-
times it is useful to create variable values that exist temporarily—only until a certain part
of the program finishes. These values are called local, and the variables so used are called
local variables.

For example, when a function is called, its argument variables receive new local values
that last until the function exits. The let special form explicitly establishes new local
values for specified variables; these last until exit from the let form.

Establishing a local value saves away the previous value (or lack of one) of the variable.
When the life span of the local value is over, the previous value is restored. In the mean
time, we say that the previous value is shadowed and not visible. Both global and local
values may be shadowed (see Section 11.9.1 [Scope], page 144).

If you set a variable (such as with setq) while it is local, this replaces the local value; it
does not alter the global value, or previous local values, that are shadowed. To model this
behavior, we speak of a local binding of the variable as well as a local value.

The local binding is a conceptual place that holds a local value. Entry to a function, or
a special form such as let, creates the local binding; exit from the function or from the let
removes the local binding. As long as the local binding lasts, the variable’s value is stored
within it. Use of setq or set while there is a local binding stores a different value into the
local binding; it does not create a new binding.

We also speak of the global binding, which is where (conceptually) the global value is
kept.

A variable can have more than one local binding at a time (for example, if there are
nested let forms that bind it). In such a case, the most recently created local binding that
still exists is the current binding of the variable. (This rule is called dynamic scoping; see
Section 11.9 [Variable Scoping], page 143.) If there are no local bindings, the variable’s
global binding is its current binding. We sometimes call the current binding the most-local
existing binding, for emphasis. Ordinary evaluation of a symbol always returns the value
of its current binding.

The special forms let and let* exist to create local bindings.

let (bindings...) forms. .. Special Form
This special form binds variables according to bindings and then evaluates all of the
forms in textual order. The let-form returns the value of the last form in forms.

Chapter 11: Variables 135

Each of the bindings is either (i) a symbol, in which case that symbol is bound to
nil; or (ii) a list of the form (symbol value-form), in which case symbol is bound to
the result of evaluating value-form. If value-form is omitted, nil is used.

All of the value-forms in bindings are evaluated in the order they appear and before
binding any of the symbols to them. Here is an example of this: Z is bound to the
old value of Y, which is 2, not the new value of Y, which is 1.
(setq Y 2)
= 2
(let ((Y 1)
(z)
(list Y 2))
= (1 2)

let* (bindings. . .) forms. .. Special Form
This special form is like 1et, but it binds each variable right after computing its local
value, before computing the local value for the next variable. Therefore, an expression
in bindings can reasonably refer to the preceding symbols bound in this let* form.
Compare the following example with the example above for let.
(setq Y 2)
= 2
(let* ((Y 1)
(Zz Y)) ; Use the just-established value of Y.
(list Y 2))
= (11D

Here is a complete list of the other facilities that create local bindings:
e Function calls (see Chapter 12 [Functions], page 155).
e Macro calls (see Chapter 13 [Macros|, page 171).

e condition-case (see Section 10.5.3 [Errors|, page 125).

Variables can also have buffer-local bindings (see Section 11.10 [Buffer-Local Variables],
page 146) and frame-local bindings (see Section 11.11 [Frame-Local Variables|, page 152); a
few variables have terminal-local bindings (see Section 29.2 [Multiple Displays], page 484).
These kinds of bindings work somewhat like ordinary local bindings, but they are localized
depending on “where” you are in Emacs, rather than localized in time.

max-specpdl-size Variable

This variable defines the limit on the total number of local variable bindings and
unwind-protect cleanups (see Section 10.5 [Nonlocal Exits], page 123) that are al-
lowed before signaling an error (with data "Variable binding depth exceeds max-
specpdl-size").

This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function. max-1isp-eval-depth provides another
limit on depth of nesting. See Section 9.3 [Eval], page 113.

The default value is 600. Entry to the Lisp debugger increases the value, if there is
little room left, to make sure the debugger itself has room to execute.

136 GNU Emacs Lisp Reference Manual

11.4 When a Variable is “Void”

If you have never given a symbol any value as a global variable, we say that that symbol’s
global value is void. In other words, the symbol’s value cell does not have any Lisp object
in it. If you try to evaluate the symbol, you get a void-variable error rather than a value.

Note that a value of nil is not the same as void. The symbol nil is a Lisp object and
can be the value of a variable just as any other object can be; but it is a value. A void
variable does not have any value.

After you have given a variable a value, you can make it void once more using
makunbound.

makunbound symbol Function
This function makes the current variable binding of symbol void. Subsequent attempts
to use this symbol’s value as a variable will signal the error void-variable, unless
and until you set it again.

makunbound returns symbol.

(makunbound ’x) ; Make the global value of x void.
= X

X
Symbol’s value as variable is void: x

If symbol is locally bound, makunbound affects the most local existing binding. This
is the only way a symbol can have a void local binding, since all the constructs that
create local bindings create them with values. In this case, the voidness lasts at
most as long as the binding does; when the binding is removed due to exit from the
construct that made it, the previous local or global binding is reexposed as usual, and
the variable is no longer void unless the newly reexposed binding was void all along.

(setq x 1) ; Put a value in the global binding.
=1
(let ((x 2)) ; Locally bind it.
(makunbound ’x) ; Void the local binding.
x)
Symbol’s value as variable is void: x
X ; The global binding is unchanged.
=1
(et ((x 2)) ; Locally bind it.
(let ((x 3)) ; And again.
(makunbound ’x) ; Void the innermost-local binding.
x)) ; And refer: it’s void.

error] Symbol’s value as variable is void: x

(let ((x 2))
(let ((x 3))
(makunbound ’x)) ; Void inner binding, then remove it.
x) ; Now outer let binding is visible.
= 2

Chapter 11: Variables 137

A variable that has been made void with makunbound is indistinguishable from one that
has never received a value and has always been void.

You can use the function boundp to test whether a variable is currently void.

boundp variable Function

boundp returns t if variable (a symbol) is not void; more precisely, if its current
binding is not void. It returns nil otherwise.

(boundp ’abracadabra) ; Starts out void.
= nil

(let ((abracadabra 5)) ; Locally bind it.

(boundp ’abracadabra))

=t

(boundp ’abracadabra) ; Still globally void.
= nil

(setq abracadabra 5) ; Make it globally nonvoid.
= b

(boundp ’abracadabra)
=t

11.5 Defining Global Variables

You may announce your intention to use a symbol as a global variable with a variable
definition: a special form, either defconst or defvar.

In Emacs Lisp, definitions serve three purposes. First, they inform people who read the
code that certain symbols are intended to be used a certain way (as variables). Second,
they inform the Lisp system of these things, supplying a value and documentation. Third,
they provide information to utilities such as etags and make-docfile, which create data
bases of the functions and variables in a program.

The difference between defconst and defvar is primarily a matter of intent, serving
to inform human readers of whether the value should ever change. Emacs Lisp does not
restrict the ways in which a variable can be used based on defconst or defvar declarations.
However, it does make a difference for initialization: defconst unconditionally initializes
the variable, while defvar initializes it only if it is void.

defvar symbol [value [doc-string]] Special Form

This special form defines symbol as a variable and can also initialize and document it.
The definition informs a person reading your code that symbol is used as a variable
that might be set or changed. Note that symbol is not evaluated; the symbol to be
defined must appear explicitly in the defvar.

If symbol is void and value is specified, defvar evaluates it and sets symbol to the
result. But if symbol already has a value (i.e., it is not void), value is not even
evaluated, and symbol’s value remains unchanged. If value is omitted, the value of
symbol is not changed in any case.

If symbol has a buffer-local binding in the current buffer, defvar operates on the
default value, which is buffer-independent, not the current (buffer-local) binding. It

138 GNU Emacs Lisp Reference Manual

sets the default value if the default value is void. See Section 11.10 [Buffer-Local
Variables], page 146.

When you evaluate a top-level defvar form with C-M-x in Emacs Lisp mode (eval-
defun), a special feature of eval-defun arranges to set the variable unconditionally,
without testing whether its value is void.

If the doc-string argument appears, it specifies the documentation for the variable.
(This opportunity to specify documentation is one of the main benefits of defining
the variable.) The documentation is stored in the symbol’s variable-documentation
property. The Emacs help functions (see Chapter 24 [Documentation], page 387) look
for this property.

If the variable is a user option that users would want to set interactively, you should
use ‘*’ as the first character of doc-string. This lets users set the variable conve-
niently using the set-variable command. Note that you should nearly always use
defcustom instead of defvar to define these variables, so that users can use M-x
customize and related commands to set them. See Chapter 14 [Customization],
page 179.

Here are some examples. This form defines foo but does not initialize it:

(defvar foo)
= foo

This example initializes the value of bar to 23, and gives it a documentation string:
(defvar bar 23
"The normal weight of a bar.")
= bar
The following form changes the documentation string for bar, making it a user option,
but does not change the value, since bar already has a value. (The addition (1+ nil)
would get an error if it were evaluated, but since it is not evaluated, there is no error.)
(defvar bar (1+ nil)
"*The normal weight of a bar.")
= bar
bar
= 23
Here is an equivalent expression for the defvar special form:
(defvar symbol value doc-string)

(progn
(if (not (boundp ’symbol))
(setq symbol value))
(if ’doc-string
(put ’symbol ’variable-documentation ’doc-string))

> symbol)
The defvar form returns symbol, but it is normally used at top level in a file where
its value does not matter.

defconst symbol [value [doc-string]] Special Form
This special form defines symbol as a value and initializes it. It informs a person
reading your code that symbol has a standard global value, established here, that

Chapter 11: Variables 139

should not be changed by the user or by other programs. Note that symbol is not
evaluated; the symbol to be defined must appear explicitly in the defconst.

defconst always evaluates value, and sets the value of symbol to the result if value
is given. If symbol does have a buffer-local binding in the current buffer, defconst
sets the default value, not the buffer-local value. (But you should not be making
buffer-local bindings for a symbol that is defined with defconst.)

Here, pi is a constant that presumably ought not to be changed by anyone (attempts
by the Indiana State Legislature notwithstanding). As the second form illustrates,
however, this is only advisory.
(defconst pi 3.1415 "Pi to five places.")
= pi
(setq pi 3)
= pi
pi
= 3

user-variable-p variable Function
This function returns t if variable is a user option—a variable intended to be set by
the user for customization—and nil otherwise. (Variables other than user options
exist for the internal purposes of Lisp programs, and users need not know about
them.)

User option variables are distinguished from other variables either though being de-
clared using defcustom® or by the first character of their variable-documentation
property. If the property exists and is a string, and its first character is ‘*’, then the
variable is a user option.

If a user option variable has a variable-interactive property, the set-variable
command uses that value to control reading the new value for the variable. The property’s
value is used as if it were specified in interactive (see Section 21.2.1 [Using Interactive],
page 288). However, this feature is largely obsoleted by defcustom (see Chapter 14 [Cus-
tomization|, page 179).

Warning: If the defconst and defvar special forms are used while the variable has a
local binding, they set the local binding’s value; the global binding is not changed. This
is not what you usually want. To prevent it, use these special forms at top level in a file,
where normally no local binding is in effect, and make sure to load the file before making a
local binding for the variable.

11.6 Tips for Defining Variables Robustly

When you define a variable whose value is a function, or a list of functions, use a name
that ends in ‘-function’ or ‘~functions’, respectively.

There are several other variable name conventions; here is a complete list:

‘...~hook’
The variable is a normal hook (see Section 23.6 [Hooks|, page 383).

1 They may also be declared equivalently in ‘cus-start.el’.

140 GNU Emacs Lisp Reference Manual

..—function’
The value is a function.

..—functions’
The value is a list of functions.

..—form’
The value is a form (an expression).

..~forms’
The value is a list of forms (expressions).

..—predicate’
The value is a predicate—a function of one argument that returns non-nil for
“good” arguments and nil for “bad” arguments.

..~flag’
The value is significant only as to whether it is nil or not.

. .—program’
The value is a program name.

‘...—-command’

The value is a whole shell command.

‘¢)—syitches’

The value specifies options for a command.

When you define a variable, always consider whether you should mark it as “risky”; see
Section 11.13 [File Local Variables], page 153.

When defining and initializing a variable that holds a complicated value (such as a
keymap with bindings in it), it’s best to put the entire computation of the value into the
defvar, like this:

(defvar my-mode-map
(let ((map (make-sparse-keymap)))
(define-key map "\C-c\C-a" ’my-command)
map)
docstring)
This method has several benefits. First, if the user quits while loading the file, the variable
is either still uninitialized or initialized properly, never in-between. If it is still uninitialized,
reloading the file will initialize it properly. Second, reloading the file once the variable is
initialized will not alter it; that is important if the user has run hooks to alter part of
the contents (such as, to rebind keys). Third, evaluating the defvar form with C-M-x will
reinitialize the map completely.

Putting so much code in the defvar form has one disadvantage: it puts the documen-
tation string far away from the line which names the variable. Here’s a safe way to avoid
that:

(defvar my-mode-map nil

docstring)
(unless my-mode-map

Chapter 11: Variables 141

(let ((map (make-sparse-keymap)))
(define-key map "\C-c\C-a" ’my-command)

(setq my-mode-map map)))
This has all the same advantages as putting the initialization inside the defvar, except that
you must type C-M-x twice, once on each form, if you do want to reinitialize the variable.
But be careful not to write the code like this:
(defvar my-mode-map nil
docstring)
(unless my-mode-map
(setq my-mode-map (make-sparse-keymap))
(define-key my-mode-map "\C-c\C-a" ’my-command)
)
This code sets the variable, then alters it, but it does so in more than one step. If the user
quits just after the setq, that leaves the variable neither correctly initialized nor void nor
nil. Once that happens, reloading the file will not initialize the variable; it will remain
incomplete.

11.7 Accessing Variable Values

The usual way to reference a variable is to write the symbol which names it (see Sec-
tion 9.1.2 [Symbol Forms]|, page 108). This requires you to specify the variable name when
you write the program. Usually that is exactly what you want to do. Occasionally you need
to choose at run time which variable to reference; then you can use symbol-value.

symbol-value symbol Function
This function returns the value of symbol. This is the value in the innermost local
binding of the symbol, or its global value if it has no local bindings.

(setq abracadabra 5)
= b

(setq foo 9)
= 9

;5 Here the symbol abracadabra
HH is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value ’abracadabra))
= foo

;; Here the value of abracadabra,
HH which is foo,
K is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value abracadabra))
= 9

(symbol-value ’abracadabra)
= 5

A void-variable error is signaled if the current binding of symbol is void.

142 GNU Emacs Lisp Reference Manual

11.8 How to Alter a Variable Value

The usual way to change the value of a variable is with the special form setq. When
you need to compute the choice of variable at run time, use the function set.

setq [symbol form)]. . . Special Form
This special form is the most common method of changing a variable’s value. Each
symbol is given a new value, which is the result of evaluating the corresponding form.
The most-local existing binding of the symbol is changed.
setq does not evaluate symbol; it sets the symbol that you write. We say that this
argument is automatically quoted. The ‘q’ in setq stands for “quoted.”
The value of the setq form is the value of the last form.

(setq x (1+ 2))

= 3
X ; X now has a global value.
= 3
(let ((x 5))
(setq x 6) ; The local binding of x is set.
x)
= 6
X ; The global value is unchanged.
= 3

Note that the first form is evaluated, then the first symbol is set, then the second
form is evaluated, then the second symbol is set, and so on:

(setq x 10 ; Notice that x is set before
y (1+ x)) ; the value of y is computed.
= 11
set symbol value Function

This function sets symbol’s value to value, then returns value. Since set is a function,
the expression written for symbol is evaluated to obtain the symbol to set.

The most-local existing binding of the variable is the binding that is set; shadowed
bindings are not affected.

(set one 1)
Symbol’s value as variable is void: one
(set ’one 1)

=1
(set ’two ’one)
= one
(set two 2) ; two evaluates to symbol one.
= 2
one ; So it is one that was set.
= 2
(let ((one 1)) ; This binding of one is set,
(set ’one 3) ; not the global value.
one)

= 3

Chapter 11: Variables 143

one
= 2

If symbol is not actually a symbol, a wrong-type-argument error is signaled.

(set > (x y) ’z)

Wrong type argument: symbolp, (x y)
Logically speaking, set is a more fundamental primitive than setq. Any use of setq
can be trivially rewritten to use set; setq could even be defined as a macro, given
the availability of set. However, set itself is rarely used; beginners hardly need to
know about it. It is useful only for choosing at run time which variable to set. For
example, the command set-variable, which reads a variable name from the user
and then sets the variable, needs to use set.

Common Lisp note: In Common Lisp, set always changes the symbol’s

“special” or dynamic value, ignoring any lexical bindings. In Emacs Lisp,

all variables and all bindings are dynamic, so set always affects the most

local existing binding.

One other function for setting a variable is designed to add an element to a list if it is
not already present in the list.

add-to-list symbol element Function
This function sets the variable symbol by consing element onto the old value, if
element is not already a member of that value. It returns the resulting list, whether
updated or not. The value of symbol had better be a list already before the call.
The argument symbol is not implicitly quoted; add-to-1list is an ordinary function,
like set and unlike setq. Quote the argument yourself if that is what you want.

Here’s a scenario showing how to use add-to-1list:
(setq foo ’(a b))

= (a b)
(add-to-1list ’foo ’c) ;3 Add c.
= (c a b)
(add-to-1list ’foo ’b) ;3 No effect.
= (c a b)
foo ;5 foo was changed.
= (c a b)

An equivalent expression for (add-to-list ’var value) is this:

(or (member value var)
(setq var (cons value var)))

11.9 Scoping Rules for Variable Bindings

A given symbol foo can have several local variable bindings, established at different
places in the Lisp program, as well as a global binding. The most recently established
binding takes precedence over the others.

144 GNU Emacs Lisp Reference Manual

Local bindings in Emacs Lisp have indefinite scope and dynamic extent. Scope refers to
where textually in the source code the binding can be accessed. “Indefinite scope” means
that any part of the program can potentially access the variable binding. Extent refers to
when, as the program is executing, the binding exists. “Dynamic extent” means that the
binding lasts as long as the activation of the construct that established it.

The combination of dynamic extent and indefinite scope is called dynamic scoping. By
contrast, most programming languages use lexical scoping, in which references to a local
variable must be located textually within the function or block that binds the variable.

Common Lisp note: Variables declared “special” in Common Lisp are dynam-
ically scoped, like all variables in Emacs Lisp.

11.9.1 Scope

Emacs Lisp uses indefinite scope for local variable bindings. This means that any func-
tion anywhere in the program text might access a given binding of a variable. Consider the
following function definitions:

(defun binder (x) ; x 1s bound in binder.
(foo 5)) ; foo is some other function.
(defun user () ; x is used “free” in user.
(list x))

In a lexically scoped language, the binding of x in binder would never be accessible in
user, because user is not textually contained within the function binder. However, in
dynamically-scoped Emacs Lisp, user may or may not refer to the binding of x established
in binder, depending on the circumstances:

e If we call user directly without calling binder at all, then whatever binding of x is
found, it cannot come from binder.

e If we define foo as follows and then call binder, then the binding made in binder will
be seen in user:

(defun foo (lose)
(user))

e However, if we define foo as follows and then call binder, then the binding made in
binder will not be seen in user:

(defun foo (x)
(user))

Here, when foo is called by binder, it binds x. (The binding in foo is said to shadow
the one made in binder.) Therefore, user will access the x bound by foo instead of
the one bound by binder.

Emacs Lisp uses dynamic scoping because simple implementations of lexical scoping are
slow. In addition, every Lisp system needs to offer dynamic scoping at least as an option;
if lexical scoping is the norm, there must be a way to specify dynamic scoping instead for a
particular variable. It might not be a bad thing for Emacs to offer both, but implementing
it with dynamic scoping only was much easier.

Chapter 11: Variables 145

11.9.2 Extent

Extent refers to the time during program execution that a variable name is valid. In
Emacs Lisp, a variable is valid only while the form that bound it is executing. This is
called dynamic extent. “Local” or “automatic” variables in most languages, including C
and Pascal, have dynamic extent.

One alternative to dynamic extent is indefinite extent. This means that a variable
binding can live on past the exit from the form that made the binding. Common Lisp and
Scheme, for example, support this, but Emacs Lisp does not.

To illustrate this, the function below, make-add, returns a function that purports to add
n to its own argument m. This would work in Common Lisp, but it does not do the job in
FEmacs Lisp, because after the call to make-add exits, the variable n is no longer bound to
the actual argument 2.

(defun make-add (n)
(function (lambda (m) (+ n m)))) ; Return a function.
= make-add
(fset ’add2 (make-add 2)) ; Define function add?2
; with (make-add 2).
= (lambda (m) (+ n m))
(add2 4) ; Try to add 2 to 4.
Symbol’s value as variable is void: n

Some Lisp dialects have “closures”, objects that are like functions but record additional
variable bindings. Emacs Lisp does not have closures.

11.9.3 Implementation of Dynamic Scoping

A simple sample implementation (which is not how Emacs Lisp actually works) may
help you understand dynamic binding. This technique is called deep binding and was used
in early Lisp systems.

Suppose there is a stack of bindings, which are variable-value pairs. At entry to a
function or to a let form, we can push bindings onto the stack for the arguments or local
variables created there. We can pop those bindings from the stack at exit from the binding
construct.

We can find the value of a variable by searching the stack from top to bottom for a
binding for that variable; the value from that binding is the value of the variable. To set
the variable, we search for the current binding, then store the new value into that binding.

As you can see, a function’s bindings remain in effect as long as it continues execution,
even during its calls to other functions. That is why we say the extent of the binding is
dynamic. And any other function can refer to the bindings, if it uses the same variables
while the bindings are in effect. That is why we say the scope is indefinite.

The actual implementation of variable scoping in GNU Emacs Lisp uses a technique
called shallow binding. Each variable has a standard place in which its current value is
always found—the value cell of the symbol.

In shallow binding, setting the variable works by storing a value in the value cell. Cre-
ating a new binding works by pushing the old value (belonging to a previous binding) onto

146 GNU Emacs Lisp Reference Manual

a stack, and storing the new local value in the value cell. Eliminating a binding works by
popping the old value off the stack, into the value cell.

We use shallow binding because it has the same results as deep binding, but runs faster,
since there is never a need to search for a binding.

11.9.4 Proper Use of Dynamic Scoping

Binding a variable in one function and using it in another is a powerful technique, but
if used without restraint, it can make programs hard to understand. There are two clean
ways to use this technique:

e Use or bind the variable only in a few related functions, written close together in one
file. Such a variable is used for communication within one program.

You should write comments to inform other programmers that they can see all uses of
the variable before them, and to advise them not to add uses elsewhere.

e Give the variable a well-defined, documented meaning, and make all appropriate func-
tions refer to it (but not bind it or set it) wherever that meaning is relevant. For
example, the variable case-fold-search is defined as “non-nil means ignore case
when searching”; various search and replace functions refer to it directly or through
their subroutines, but do not bind or set it.

Then you can bind the variable in other programs, knowing reliably what the effect
will be.

In either case, you should define the variable with defvar. This helps other people
understand your program by telling them to look for inter-function usage. It also avoids a
warning from the byte compiler. Choose the variable’s name to avoid name conflicts—don’t
use short names like x.

11.10 Buffer-Local Variables

Global and local variable bindings are found in most programming languages in one form
or another. Emacs, however, also supports additional, unusual kinds of variable binding;:
buffer-local bindings, which apply only in one buffer, and frame-local bindings, which apply
only in one frame. Having different values for a variable in different buffers and/or frames
is an important customization method.

This section describes buffer-local bindings; for frame-local bindings, see the following
section, Section 11.11 [Frame-Local Variables|, page 152. (A few variables have bindings
that are local to each terminal; see Section 29.2 [Multiple Displays|, page 484.)

11.10.1 Introduction to Buffer-Local Variables

A buffer-local variable has a buffer-local binding associated with a particular buffer. The
binding is in effect when that buffer is current; otherwise, it is not in effect. If you set the
variable while a buffer-local binding is in effect, the new value goes in that binding, so its
other bindings are unchanged. This means that the change is visible only in the buffer
where you made it.

The variable’s ordinary binding, which is not associated with any specific buffer, is called
the default binding. In most cases, this is the global binding.

Chapter 11: Variables 147

A variable can have buffer-local bindings in some buffers but not in other buffers. The
default binding is shared by all the buffers that don’t have their own bindings for the
variable. (This includes all newly-created buffers.) If you set the variable in a buffer that
does not have a buffer-local binding for it, this sets the default binding (assuming there
are no frame-local bindings to complicate the matter), so the new value is visible in all the
buffers that see the default binding.

The most common use of buffer-local bindings is for major modes to change variables
that control the behavior of commands. For example, C mode and Lisp mode both set the
variable paragraph-start to specify that only blank lines separate paragraphs. They do
this by making the variable buffer-local in the buffer that is being put into C mode or Lisp
mode, and then setting it to the new value for that mode. See Section 23.1 [Major Modes],
page 355.

The usual way to make a buffer-local binding is with make-local-variable, which is
what major mode commands typically use. This affects just the current buffer; all other
buffers (including those yet to be created) will continue to share the default value unless
they are explicitly given their own buffer-local bindings.

A more powerful operation is to mark the variable as automatically buffer-local by
calling make-variable-buffer-local. You can think of this as making the variable local
in all buffers, even those yet to be created. More precisely, the effect is that setting the
variable automatically makes the variable local to the current buffer if it is not already
so. All buffers start out by sharing the default value of the variable as usual, but setting
the variable creates a buffer-local binding for the current buffer. The new value is stored
in the buffer-local binding, leaving the default binding untouched. This means that the
default value cannot be changed with setq in any buffer; the only way to change it is with
setq-default.

Warning: When a variable has buffer-local values in one or more buffers, you can get
Emacs very confused by binding the variable with let, changing to a different current buffer
in which a different binding is in effect, and then exiting the let. This can scramble the
values of the buffer-local and default bindings.

To preserve your sanity, avoid using a variable in that way. If you use save-excursion
around each piece of code that changes to a different current buffer, you will not have this
problem (see Section 30.3 [Excursions], page 518). Here is an example of what to avoid:

(setq foo ’b)
(set-buffer "a")
(make-local-variable ’foo)
(setq foo ’a)
(let ((foo ’temp))
(set-buffer "b")
body . ..)
foo = ’a ; The old buffer-local value from buffer ‘a’
; is now the default value.
(set-buffer "a")
foo = ’temp ; The local 1let value that should be gone
; is now the buffer-local value in buffer ‘a’.

But save-excursion as shown here avoids the problem:

148 GNU Emacs Lisp Reference Manual

(let ((foo ’temp))
(save-excursion
(set-buffer "b")
body...))

Note that references to foo in body access the buffer-local binding of buffer ‘b’.

When a file specifies local variable values, these become buffer-local values when you
visit the file. See section “File Variables” in The GNU Emacs Manual.

11.10.2 Creating and Deleting Buffer-Local Bindings

make-local-variable variable Command
This function creates a buffer-local binding in the current buffer for variable (a sym-
bol). Other buffers are not affected. The value returned is variable.
The buffer-local value of variable starts out as the same value variable previously
had. If variable was void, it remains void.

;3 In buffer ‘b1’:

(setq foo 5) ; Affects all buffers.
= b

(make-local-variable ’foo) ; Now it is local in ‘b1’.
= foo

foo ; That did not change
= 5 ; the value.

(setq foo 6) ; Change the value
= 6 ; in ‘b1’

foo
= 6

;3 In buffer ‘b2’, the value hasn’t changed.
(save-excursion
(set-buffer "b2")
foo)
= 5
Making a variable buffer-local within a let-binding for that variable does not work
reliably, unless the buffer in which you do this is not current either on entry to or
exit from the let. This is because let does not distinguish between different kinds
of bindings; it knows only which variable the binding was made for.
If the variable is terminal-local, this function signals an error. Such variables cannot
have buffer-local bindings as well. See Section 29.2 [Multiple Displays], page 484.
Note: Do not use make-local-variable for a hook variable. Instead, use make-
local-hook. See Section 23.6 [Hooks], page 383.

make-variable-buffer-local variable Command
This function marks variable (a symbol) automatically buffer-local, so that any sub-
sequent attempt to set it will make it local to the current buffer at the time.
A peculiar wrinkle of this feature is that binding the variable (with let or other
binding constructs) does not create a buffer-local binding for it. Only setting the
variable (with set or setq) does so.

Chapter 11: Variables 149

The value returned is variable.

Warning: Don’t assume that you should use make-variable-buffer-local for user-
option variables, simply because users might want to customize them differently in
different buffers. Users can make any variable local, when they wish to. It is better
to leave the choice to them.

The time to use make-variable-buffer-local is when it is crucial that no two
buffers ever share the same binding. For example, when a variable is used for internal
purposes in a Lisp program which depends on having separate values in separate
buffers, then using make-variable-buffer-local can be the best solution.

local-variable-p variable &optional buffer Function
This returns t if variable is buffer-local in buffer buffer (which defaults to the current
buffer); otherwise, nil.

buffer-local-variables &optional buffer Function
This function returns a list describing the buffer-local variables in buffer buffer. (If
buffer is omitted, the current buffer is used.) It returns an association list (see
Section 5.8 [Association Lists], page 79) in which each element contains one buffer-
local variable and its value. However, when a variable’s buffer-local binding in buffer
is void, then the variable appears directly in the resulting list.

(make-local-variable ’foobar)
(makunbound ’foobar)
(make-local-variable ’bind-me)
(setq bind-me 69)
(setq lcl (buffer-local-variables))
;3 First, built-in variables local in all buffers:
= ((mark-active . nil)
(buffer-undo-list . nil)
(mode-name . "Fundamental")

; ;5 Next, non-built-in buffer-local variables.

;3 This one is buffer-local and void:

foobar

;3 This one is buffer-local and nonvoid:

(bind-me . 69))
Note that storing new values into the CDRs of cons cells in this list does not change
the buffer-local values of the variables.

kill-local-variable variable Command
This function deletes the buffer-local binding (if any) for variable (a symbol) in the
current buffer. As a result, the default binding of variable becomes visible in this
buffer. This typically results in a change in the value of variable, since the default
value is usually different from the buffer-local value just eliminated.
If you kill the buffer-local binding of a variable that automatically becomes buffer-

local when set, this makes the default value visible in the current buffer. However, if
you set the variable again, that will once again create a buffer-local binding for it.

150 GNU Emacs Lisp Reference Manual

kill-local-variable returns variable.

This function is a command because it is sometimes useful to kill one buffer-local
variable interactively, just as it is useful to create buffer-local variables interactively.

kill-all-local-variables Function
This function eliminates all the buffer-local variable bindings of the current buffer
except for variables marked as “permanent”. As a result, the buffer will see the

default values of most variables.

This function also resets certain other information pertaining to the buffer: it sets
the local keymap to nil, the syntax table to the value of (standard-syntax-table),
the case table to (standard-case-table), and the abbrev table to the value of
fundamental-mode-abbrev-table.

The very first thing this function does is run the normal hook change-major-mode-
hook (see below).

Every major mode command begins by calling this function, which has the effect of
switching to Fundamental mode and erasing most of the effects of the previous major
mode. To ensure that this does its job, the variables that major modes set should
not be marked permanent.

kill-all-local-variables returns nil.

change-major-mode-hook Variable
The function kill-all-local-variables runs this normal hook before it does any-
thing else. This gives major modes a way to arrange for something special to be done
if the user switches to a different major mode. For best results, make this variable
buffer-local, so that it will disappear after doing its job and will not interfere with
the subsequent major mode. See Section 23.6 [Hooks|, page 383.

A buffer-local variable is permanent if the variable name (a symbol) has a permanent-
local property that is non-nil. Permanent locals are appropriate for data pertaining to
where the file came from or how to save it, rather than with how to edit the contents.

11.10.3 The Default Value of a Buffer-Local Variable

The global value of a variable with buffer-local bindings is also called the default value,
because it is the value that is in effect whenever neither the current buffer nor the selected
frame has its own binding for the variable.

The functions default-value and setq-default access and change a variable’s default
value regardless of whether the current buffer has a buffer-local binding. For example, you
could use setq-default to change the default setting of paragraph-start for most buffers;
and this would work even when you are in a C or Lisp mode buffer that has a buffer-local
value for this variable.

The special forms defvar and defconst also set the default value (if they set the variable
at all), rather than any buffer-local or frame-local value.

Chapter 11: Variables 151

default-value symbol Function
This function returns symbol’s default value. This is the value that is seen in buffers
and frames that do not have their own values for this variable. If symbol is not
buffer-local, this is equivalent to symbol-value (see Section 11.7 [Accessing Vari-
ables], page 141).

default-boundp symbol Function
The function default-boundp tells you whether symbol’s default value is nonvoid.
If (default-boundp ’foo) returns nil, then (default-value ’foo) would get an
error.

default-boundp is to default-value as boundp is to symbol-value.

setq-default [symbol form]. . . Special Form
This special form gives each symbol a new default value, which is the result of eval-
uating the corresponding form. It does not evaluate symbol, but does evaluate form.
The value of the setq-default form is the value of the last form.

If a symbol is not buffer-local for the current buffer, and is not marked automatically
buffer-local, setq-default has the same effect as setq. If symbol is buffer-local for
the current buffer, then this changes the value that other buffers will see (as long as
they don’t have a buffer-local value), but not the value that the current buffer sees.
;3 In buffer ‘foo’:
(make-local-variable ’buffer-local)
= buffer-local
(setq buffer-local ’value-in-foo)
= value-in-foo
(setq-default buffer-local ’new-default)
= new-default
buffer-local
= value-in-foo
(default-value ’buffer-local)
= new-default

;3 In (the new) buffer ‘bar’
buffer-local
= new-default
(default-value ’buffer-local)
= new-default
(setq buffer-local ’another-default)
= another-default
(default-value ’buffer-local)
= another-default

;3 Back in buffer ‘foo’:
buffer-local
= value-in-foo
(default-value ’buffer-local)
= another-default

152 GNU Emacs Lisp Reference Manual

set-default symbol value Function
This function is like setgq-default, except that symbol is an ordinary evaluated
argument.
(set-default (car ’(a b c)) 23)
= 23
(default-value ’a)
= 23

11.11 Frame-Local Variables

Just as variables can have buffer-local bindings, they can also have frame-local bind-
ings. These bindings belong to one frame, and are in effect when that frame is selected.
Frame-local bindings are actually frame parameters: you create a frame-local binding in a
specific frame by calling modify-frame-parameters and specifying the variable name as
the parameter name.

To enable frame-local bindings for a certain variable, call the function make-variable-
frame-local.

make-variable-frame-local variable Command

Enable the use of frame-local bindings for variable. This does not in itself create
any frame-local bindings for the variable; however, if some frame already has a value
for variable as a frame parameter, that value automatically becomes a frame-local
binding.

If the variable is terminal-local, this function signals an error, because such vari-
ables cannot have frame-local bindings as well. See Section 29.2 [Multiple Displays],
page 484. A few variables that are implemented specially in Emacs can be (and
usually are) buffer-local, but can never be frame-local.

Buffer-local bindings take precedence over frame-local bindings. Thus, consider a vari-
able foo: if the current buffer has a buffer-local binding for foo, that binding is active;
otherwise, if the selected frame has a frame-local binding for foo, that binding is active;
otherwise, the default binding of foo is active.

Here is an example. First we prepare a few bindings for foo:

(setq f1 (selected-frame))
(make-variable-frame-local ’foo)

;3 Make a buffer-local binding for foo in ‘b1’.
(set-buffer (get-buffer-create "bl"))
(make-local-variable ’foo0)

(setq foo ’(b 1))

;5 Make a frame-local binding for foo in a new frame.
;3 Store that frame in £2.

(setq f2 (make-frame))
(modify-frame-parameters f2 ’((foo . (f 2))))

Now we examine foo in various contexts. Whenever the buffer ‘b1’ is current, its buffer-
local binding is in effect, regardless of the selected frame:

Chapter 11: Variables 153

(select-frame f1)
(set-buffer (get-buffer-create "bl"))
foo

= (b 1)

(select-frame £2)
(set-buffer (get-buffer-create "bi"))
foo
= (b 1)
Otherwise, the frame gets a chance to provide the binding; when frame £2 is selected, its
frame-local binding is in effect:
(select-frame f2)
(set-buffer (get-buffer "*scratchx"))
foo
= (f 2)
When neither the current buffer nor the selected frame provides a binding, the default
binding is used:
(select-frame f1)
(set-buffer (get-buffer "xscratchx"))
foo
= nil
When the active binding of a variable is a frame-local binding, setting the variable changes
that binding. You can observe the result with frame-parameters
(select-frame £f2)
(set-buffer (get-buffer "xscratchx"))
(setq foo ’nobody)
(assq ’foo (frame-parameters £2))
= (foo . nobody)

11.12 Possible Future Local Variables

We have considered the idea of bindings that are local to a category of frames—for
example, all color frames, or all frames with dark backgrounds. We have not implemented
them because it is not clear that this feature is really useful. You can get more or less
the same results by adding a function to after-make-frame-functions, set up to define a
particular frame parameter according to the appropriate conditions for each frame.

It would also be possible to implement window-local bindings. We don’t know of many
situations where they would be useful, and it seems that indirect buffers (see Section 27.11
[Indirect Buffers|, page 451) with buffer-local bindings offer a way to handle these situations
more robustly.

If sufficient application is found for either of these two kinds of local bindings, we will
provide it in a subsequent Emacs version.

11.13 File Local Variables

This section describes the functions and variables that affect processing of local variables
lists in files.

154 GNU Emacs Lisp Reference Manual

enable-local-variables User Option
This variable controls whether to process file local variables lists. A value of t means
process the local variables lists unconditionally; nil means ignore them; anything else
means ask the user what to do for each file. The default value is t.

hack-local-variables &optional force Function
This function parses, and binds or evaluates as appropriate, any local variables spec-
ified by the contents of the current buffer. The variable enable-local-variables
has its effect here.

The argument force usually comes from the argument find-file given to normal-mode.

If a file local variable list could specify the a function that will be called later, or an
expression that will be executed later, simply visiting a file could take over your Emacs. To
prevent this, Emacs takes care not to allow local variable lists to set such variables.

For one thing, any variable whose name ends in ‘~function’, ‘~functions’, ‘~hook’,
‘~hooks’, ‘-form’, ‘-forms’, ‘-program’, ‘-command’ or ‘-predicate’ cannot be set in a
local variable list. In general, you should use such a name whenever it is appropriate for
the variable’s meaning.

In addition, any variable whose name has a non-nil risky-local-variable property
is also ignored. So are all variables listed in ignored-local-variables:

ignored-local-variables Variable
This variable holds a list of variables that should not be set by a file’s local variables
list. Any value specified for one of these variables is ignored.

The ‘Eval:’ “variable” is also a potential loophole, so Emacs normally asks for confir-
mation before handling it.

enable-local-eval User Option
This variable controls processing of ‘Eval:’ in local variables lists in files being visited.
A value of t means process them unconditionally; nil means ignore them; anything
else means ask the user what to do for each file. The default value is maybe.

Chapter 12: Functions 155

12 Functions

A Lisp program is composed mainly of Lisp functions. This chapter explains what
functions are, how they accept arguments, and how to define them.

12.1 What Is a Function?

In a general sense, a function is a rule for carrying on a computation given several values
called arguments. The result of the computation is called the value of the function. The
computation can also have side effects: lasting changes in the values of variables or the
contents of data structures.

Here are important terms for functions in Emacs Lisp and for other function-like objects.

function In Emacs Lisp, a function is anything that can be applied to arguments in a
Lisp program. In some cases, we use it more specifically to mean a function
written in Lisp. Special forms and macros are not functions.

primitive A primitive is a function callable from Lisp that is written in C, such as car
or append. These functions are also called built-in functions or subrs. (Special
forms are also considered primitives.)

Usually the reason we implement a function as a primitive is either because it
is fundamental, because it provides a low-level interface to operating system
services, or because it needs to run fast. Primitives can be modified or added
only by changing the C sources and recompiling the editor. See Section E.5
[Writing Emacs Primitives], page 782.

lambda expression
A Jambda expression is a function written in Lisp. These are described in the
following section.

special form
A special form is a primitive that is like a function but does not evaluate all of
its arguments in the usual way. It may evaluate only some of the arguments, or
may evaluate them in an unusual order, or several times. Many special forms
are described in Chapter 10 [Control Structures|, page 117.

macro A macro is a construct defined in Lisp by the programmer. It differs from a
function in that it translates a Lisp expression that you write into an equivalent
expression to be evaluated instead of the original expression. Macros enable Lisp
programmers to do the sorts of things that special forms can do. See Chapter 13
[Macros|, page 171, for how to define and use macros.

command A command is an object that command-execute can invoke; it is a possible
definition for a key sequence. Some functions are commands; a function written
in Lisp is a command if it contains an interactive declaration (see Section 21.2
[Defining Commands], page 288). Such a function can be called from Lisp
expressions like other functions; in this case, the fact that the function is a
command makes no difference.

156 GNU Emacs Lisp Reference Manual

Keyboard macros (strings and vectors) are commands also, even though they
are not functions. A symbol is a command if its function definition is a com-
mand; such symbols can be invoked with M-x. The symbol is a function as well
if the definition is a function. See Section 21.1 [Command Overview], page 287.

keystroke command
A keystroke command is a command that is bound to a key sequence (typically
one to three keystrokes). The distinction is made here merely to avoid confusion
with the meaning of “command” in non-Emacs editors; for Lisp programs, the
distinction is normally unimportant.

byte-code function
A byte-code function is a function that has been compiled by the byte compiler.
See Section 2.3.16 [Byte-Code Type|, page 22.

functionp object Function
This function returns t if object is any kind of function, or a special form or macro.

subrp object Function
This function returns t if object is a built-in function (i.e., a Lisp primitive).
(subrp ’message) ; message is a symbol,
= nil ; not a subr object.
(subrp (symbol-function ’message))
=t
byte-code-function-p object Function

This function returns t if object is a byte-code function. For example:

(byte-code-function-p (symbol-function ’next-line))
=t

subr-arity subr Function
This function provides information about the argument list of a primitive, subr. The
returned value is a pair (min . max). min is the minimum number of args. max is
the maximum number or the symbol many, for a function with &rest arguments, or
the symbol unevalled if subr is a special form.

12.2 Lambda Expressions

A function written in Lisp is a list that looks like this:
(lambda (arg-variables. . .)
[documentation-string]
[interactive-declaration]
body-forms. . .)

Such a list is called a lambda expression. In Emacs Lisp, it actually is valid as an
expression—it evaluates to itself. In some other Lisp dialects, a lambda expression is not a
valid expression at all. In either case, its main use is not to be evaluated as an expression,
but to be called as a function.

Chapter 12: Functions 157

12.2.1 Components of a Lambda Expression

The first element of a lambda expression is always the symbol lambda. This indicates
that the list represents a function. The reason functions are defined to start with lambda
is so that other lists, intended for other uses, will not accidentally be valid as functions.

The second element is a list of symbols—the argument variable names. This is called the
lambda list. When a Lisp function is called, the argument values are matched up against
the variables in the lambda list, which are given local bindings with the values provided.
See Section 11.3 [Local Variables], page 134.

The documentation string is a Lisp string object placed within the function definition
to describe the function for the Emacs help facilities. See Section 12.2.4 [Function Docu-
mentation], page 159.

The interactive declaration is a list of the form (interactive code-string). This de-
clares how to provide arguments if the function is used interactively. Functions with this
declaration are called commands; they can be called using M-x or bound to a key. Func-
tions not intended to be called in this way should not have interactive declarations. See
Section 21.2 [Defining Commands], page 288, for how to write an interactive declaration.

The rest of the elements are the body of the function: the Lisp code to do the work of
the function (or, as a Lisp programmer would say, “a list of Lisp forms to evaluate”). The
value returned by the function is the value returned by the last element of the body.

12.2.2 A Simple Lambda-Expression Example

Consider for example the following function:
(lambda (a b ¢c) (+ a b ¢))
We can call this function by writing it as the CAR of an expression, like this:

((lambda (a b c) (+ a b ¢))
12 3)
This call evaluates the body of the lambda expression with the variable a bound to 1, b
bound to 2, and ¢ bound to 3. Evaluation of the body adds these three numbers, producing
the result 6; therefore, this call to the function returns the value 6.

Note that the arguments can be the results of other function calls, as in this example:
((lambda (a b c) (+ a b c))
1 (x23) (-5 4))
This evaluates the arguments 1, (* 2 3), and (- 5 4) from left to right. Then it applies
the lambda expression to the argument values 1, 6 and 1 to produce the value 8.

It is not often useful to write a lambda expression as the CAR of a form in this way. You
can get the same result, of making local variables and giving them values, using the special
form let (see Section 11.3 [Local Variables|, page 134). And let is clearer and easier to
use. In practice, lambda expressions are either stored as the function definitions of symbols,
to produce named functions, or passed as arguments to other functions (see Section 12.7
[Anonymous Functions], page 164).

However, calls to explicit lambda expressions were very useful in the old days of Lisp,
before the special form let was invented. At that time, they were the only way to bind
and initialize local variables.

158 GNU Emacs Lisp Reference Manual

12.2.3 Other Features of Argument Lists

Our simple sample function, (lambda (a b c) (+ a b c)), specifies three argument vari-
ables, so it must be called with three arguments: if you try to call it with only two arguments
or four arguments, you get a wrong-number-of-arguments error.

It is often convenient to write a function that allows certain arguments to be omitted.
For example, the function substring accepts three arguments—a string, the start index
and the end index—but the third argument defaults to the length of the string if you omit
it. It is also convenient for certain functions to accept an indefinite number of arguments,
as the functions list and + do.

To specify optional arguments that may be omitted when a function is called, simply
include the keyword &optional before the optional arguments. To specify a list of zero or
more extra arguments, include the keyword &rest before one final argument.

Thus, the complete syntax for an argument list is as follows:

(required-vars. . .
[&optional optional-vars. . .]
[&rest rest-var])
The square brackets indicate that the &optional and &rest clauses, and the variables that
follow them, are optional.

A call to the function requires one actual argument for each of the required-vars. There
may be actual arguments for zero or more of the optional-vars, and there cannot be any
actual arguments beyond that unless the lambda list uses &rest. In that case, there may
be any number of extra actual arguments.

If actual arguments for the optional and rest variables are omitted, then they always
default to nil. There is no way for the function to distinguish between an explicit argument
of nil and an omitted argument. However, the body of the function is free to consider nil
an abbreviation for some other meaningful value. This is what substring does; nil as the
third argument to substring means to use the length of the string supplied.

Common Lisp note: Common Lisp allows the function to specify what default
value to use when an optional argument is omitted; Emacs Lisp always uses
nil. Emacs Lisp does not support “supplied-p” variables that tell you whether
an argument was explicitly passed.

For example, an argument list that looks like this:
(a b &optional c d &rest e)

binds a and b to the first two actual arguments, which are required. If one or two more
arguments are provided, ¢ and d are bound to them respectively; any arguments after the
first four are collected into a list and e is bound to that list. If there are only two arguments,
c is nil; if two or three arguments, d is nil; if four arguments or fewer, e is nil.

There is no way to have required arguments following optional ones—it would not make
sense. To see why this must be so, suppose that ¢ in the example were optional and d
were required. Suppose three actual arguments are given; which variable would the third
argument be for? Would it be used for the ¢, or for d? One can argue for both possibilities.
Similarly, it makes no sense to have any more arguments (either required or optional) after
a &rest argument.

Here are some examples of argument lists and proper calls:

Chapter 12: Functions 159

((lambda (n) (1+ n)) ; One required:
1) ; requires exactly one argument.
= 2
((lambda (n &optional nl) ; One required and one optional:
(if n1 (+ n n1) (1+ n))) ; 1 or 2 arguments.
12
= 3
((lambda (n &rest ns) ; One required and one rest:
(+ n (apply ’+ ns))) ; 1 or more arguments.
12345)
= 15

12.2.4 Documentation Strings of Functions

A lambda expression may optionally have a documentation string just after the lambda
list. This string does not affect execution of the function; it is a kind of comment, but
a systematized comment which actually appears inside the Lisp world and can be used
by the Emacs help facilities. See Chapter 24 [Documentation], page 387, for how the
documentation-string is accessed.

It is a good idea to provide documentation strings for all the functions in your program,
even those that are called only from within your program. Documentation strings are like
comments, except that they are easier to access.

The first line of the documentation string should stand on its own, because apropos
displays just this first line. It should consist of one or two complete sentences that summarize
the function’s purpose.

The start of the documentation string is usually indented in the source file, but since
these spaces come before the starting double-quote, they are not part of the string. Some
people make a practice of indenting any additional lines of the string so that the text lines
up in the program source. This is a mistake. The indentation of the following lines is inside
the string; what looks nice in the source code will look ugly when displayed by the help
commands.

You may wonder how the documentation string could be optional, since there are re-
quired components of the function that follow it (the body). Since evaluation of a string
returns that string, without any side effects, it has no effect if it is not the last form in the
body. Thus, in practice, there is no confusion between the first form of the body and the
documentation string; if the only body form is a string then it serves both as the return
value and as the documentation.

12.3 Naming a Function

In most computer languages, every function has a name; the idea of a function without
a name is nonsensical. In Lisp, a function in the strictest sense has no name. It is simply a
list whose first element is lambda, a byte-code function object, or a primitive subr-object.

However, a symbol can serve as the name of a function. This happens when you put
the function in the symbol’s function cell (see Section 8.1 [Symbol Components], page 99).
Then the symbol itself becomes a valid, callable function, equivalent to the list or subr-
object that its function cell refers to. The contents of the function cell are also called the

160 GNU Emacs Lisp Reference Manual

symbol’s function definition. The procedure of using a symbol’s function definition in place
of the symbol is called symbol function indirection; see Section 9.1.4 [Function Indirection],
page 109.

In practice, nearly all functions are given names in this way and referred to through their
names. For example, the symbol car works as a function and does what it does because
the primitive subr-object #<subr car> is stored in its function cell.

We give functions names because it is convenient to refer to them by their names in Lisp
expressions. For primitive subr-objects such as #<subr car>, names are the only way you
can refer to them: there is no read syntax for such objects. For functions written in Lisp,
the name is more convenient to use in a call than an explicit lambda expression. Also, a
function with a name can refer to itself—it can be recursive. Writing the function’s name
in its own definition is much more convenient than making the function definition point to
itself (something that is not impossible but that has various disadvantages in practice).

We often identify functions with the symbols used to name them. For example, we often
speak of “the function car”, not distinguishing between the symbol car and the primitive
subr-object that is its function definition. For most purposes, there is no need to distinguish.

Even so, keep in mind that a function need not have a unique name. While a given
function object usually appears in the function cell of only one symbol, this is just a matter
of convenience. It is easy to store it in several symbols using fset; then each of the symbols
is equally well a name for the same function.

A symbol used as a function name may also be used as a variable; these two uses of
a symbol are independent and do not conflict. (Some Lisp dialects, such as Scheme, do
not distinguish between a symbol’s value and its function definition; a symbol’s value as a
variable is also its function definition.) If you have not given a symbol a function definition,
you cannot use it as a function; whether the symbol has a value as a variable makes no
difference to this.

12.4 Defining Functions

We usually give a name to a function when it is first created. This is called defining a
function, and it is done with the defun special form.

defun name argument-list body-forms Special Form
defun is the usual way to define new Lisp functions. It defines the symbol name as
a function that looks like this:

(lambda argument-list . body-forms)

defun stores this lambda expression in the function cell of name. It returns the value
name, but usually we ignore this value.

As described previously (see Section 12.2 [Lambda Expressions|, page 156), argument-
list is a list of argument names and may include the keywords &optional and &rest.
Also, the first two of the body-forms may be a documentation string and an interactive
declaration.

There is no conflict if the same symbol name is also used as a variable, since the
symbol’s value cell is independent of the function cell. See Section 8.1 [Symbol Com-
ponents|, page 99.

Chapter 12: Functions 161

Here are some examples:
(defun foo () 5)
= foo

(foo)
= 5

(defun bar (a &optional b &rest c)
(list a b ¢))
= bar
(bar 1 2 3 4 5)
= (1 2 (345))
(bar 1)
= (1 nil nil)
(bar)
Wrong number of arguments.

(defun capitalize-backwards ()

"Upcase the last letter of a word."

(interactive)

(backward-word 1)

(forward-word 1)

(backward-char 1)

(capitalize-word 1))

= capitalize-backwards

Be careful not to redefine existing functions unintentionally. defun redefines even
primitive functions such as car without any hesitation or notification. Redefining a
function already defined is often done deliberately, and there is no way to distinguish
deliberate redefinition from unintentional redefinition.

defalias name definition Function
This special form defines the symbol name as a function, with definition definition
(which can be any valid Lisp function).

The proper place to use defalias is where a specific function name is being defined—
especially where that name appears explicitly in the source file being loaded. This
is because defalias records which file defined the function, just like defun (see
Section 15.7 [Unloading], page 201).

By contrast, in programs that manipulate function definitions for other purposes, it
is better to use fset, which does not keep such records.

See also defsubst, which defines a function like defun and tells the Lisp compiler to
open-code it. See Section 12.9 [Inline Functions|, page 168.

12.5 Calling Functions

Defining functions is only half the battle. Functions don’t do anything until you call
them, i.e., tell them to run. Calling a function is also known as invocation.

The most common way of invoking a function is by evaluating a list. For example,
evaluating the list (concat "a" "b") calls the function concat with arguments "a" and
"b". See Chapter 9 [Evaluation], page 107, for a description of evaluation.

162 GNU Emacs Lisp Reference Manual

When you write a list as an expression in your program, the function name it calls is
written in your program. This means that you choose which function to call, and how
many arguments to give it, when you write the program. Usually that’s just what you
want. Occasionally you need to compute at run time which function to call. To do that, use
the function funcall. When you also need to determine at run time how many arguments
to pass, use apply.

funcall function &rest arguments Function
funcall calls function with arguments, and returns whatever function returns.

Since funcall is a function, all of its arguments, including function, are evaluated
before funcall is called. This means that you can use any expression to obtain the
function to be called. It also means that funcall does not see the expressions you
write for the arguments, only their values. These values are not evaluated a second
time in the act of calling function; funcall enters the normal procedure for calling a
function at the place where the arguments have already been evaluated.

The argument function must be either a Lisp function or a primitive function. Special
forms and macros are not allowed, because they make sense only when given the
“unevaluated” argument expressions. funcall cannot provide these because, as we
saw above, it never knows them in the first place.

(setq f ’list)

= list
(funcall f ’x ’y ’2z)
= (xy 2)
(funcall f ’x ’y ’(z))
= (xy (=)

(funcall ’and t nil)
Invalid function: #<subr and>

Compare these examples with the examples of apply.

apply function &rest arguments Function
apply calls function with arguments, just like funcall but with one difference: the
last of arguments is a list of objects, which are passed to function as separate ar-
guments, rather than a single list. We say that apply spreads this list so that each
individual element becomes an argument.

apply returns the result of calling function. As with funcall, function must either
be a Lisp function or a primitive function; special forms and macros do not make
sense in apply.
(setq f ’list)
= list
(apply £ ’x ’y ’z)
Wrong type argument: listp, z
(apply ’+ 1 2 ’(3 4))
= 10
(apply ’+ (1 2 3 4))
= 10

Chapter 12: Functions 163

(apply ’append ’((a b ¢) nil (x y z) nil))
= (abcxy z)
For an interesting example of using apply, see the description of mapcar, in Sec-
tion 12.6 [Mapping Functions|, page 163.

It is common for Lisp functions to accept functions as arguments or find them in data
structures (especially in hook variables and property lists) and call them using funcall or
apply. Functions that accept function arguments are often called functionals.

Sometimes, when you call a functional, it is useful to supply a no-op function as the
argument. Here are two different kinds of no-op function:

identity arg Function
This function returns arg and has no side effects.

ignore &rest args Function
This function ignores any arguments and returns nil.

12.6 Mapping Functions

A mapping function applies a given function to each element of a list or other collec-
tion. Emacs Lisp has several such functions; mapcar and mapconcat, which scan a list, are
described here. See Section 8.3 [Creating Symbols], page 101, for the function mapatoms
which maps over the symbols in an obarray. See Section 7.2 [Hash Access|, page 95, for the
function maphash which maps over key/value associations in a hash table.

These mapping functions do not allow char-tables because a char-table is a sparse array
whose nominal range of indices is very large. To map over a char-table in a way that
deals properly with its sparse nature, use the function map-char-table (see Section 6.6
[Char-Tables]|, page 89).

mapcar function sequence Function
mapcar applies function to each element of sequence in turn, and returns a list of the
results.

The argument sequence can be any kind of sequence except a char-table; that is, a
list, a vector, a bool-vector, or a string. The result is always a list. The length of the
result is the same as the length of sequence.

For example:

(mapcar ’car ’((a b) (c d) (e £)))
= (a c e)

(mapcar 1+ [1 2 3])
= (234

(mapcar ’char-to-string "abc")
(llall ||bll "C")

;3 Call each function in my-hooks.
(mapcar ’funcall my-hooks)

164 GNU Emacs Lisp Reference Manual

(defun mapcar* (function &rest args)
"Apply FUNCTION to successive cars of all ARGS.
Return the list of results."
;3 If no list is exhausted,
(if (not (memq ’nil args))
;5 apply function to CARs.
(cons (apply function (mapcar ’car args))
(apply ’mapcar* function
;35 Recurse for rest of elements.
(mapcar ’cdr args)))))

(mapcar* ’cons ’(a b c) (1 2 3 4))
= ((a. 1) (. 2) (c.3)

mapc function sequence Function
mapc is like mapcar except that function is used for side-effects only—the values it
returns are ignored, not collected into a list. mapc always returns sequence.

mapconcat function sequence separator Function
mapconcat applies function to each element of sequence: the results, which must
be strings, are concatenated. Between each pair of result strings, mapconcat inserts
the string separator. Usually separator contains a space or comma or other suitable
punctuation.

The argument function must be a function that can take one argument and return a
string. The argument sequence can be any kind of sequence except a char-table; that
is, a list, a vector, a bool-vector, or a string.
(mapconcat ’symbol-name
’(The cat in the hat)

n ||)
= "The cat in the hat"

(mapconcat (function (lambda (x) (format "%c" (1+ x))))
"HAL-8000"

n II)
= "IBM.9111"

12.7 Anonymous Functions

In Lisp, a function is a list that starts with lambda, a byte-code function compiled from
such a list, or alternatively a primitive subr-object; names are “extra”’. Although usually
functions are defined with defun and given names at the same time, it is occasionally more
concise to use an explicit lambda expression—an anonymous function. Such a list is valid
wherever a function name is.

Any method of creating such a list makes a valid function. Even this:

(setq silly (append ’(lambda (x)) (list (list ’+ (x 3 4) ’x))))
= (lambda (x) (+ 12 x))

This computes a list that looks like (1ambda (x) (+ 12 x)) and makes it the value (not the
function definition!) of silly.

Here is how we might call this function:

Chapter 12: Functions 165

(funcall silly 1)
= 13

(It does not work to write (silly 1), because this function is not the function definition
of silly. We have not given silly any function definition, just a value as a variable.)

Most of the time, anonymous functions are constants that appear in your program. For
example, you might want to pass one as an argument to the function mapcar, which applies
any given function to each element of a list.

Here we define a function change-property which uses a function as its third argument:

(defun change-property (symbol prop function)
(let ((value (get symbol prop)))
(put symbol prop (funcall function value))))

Here we define a function that uses change-property, passing it a function to double a
number:

(defun double-property (symbol prop)
(change-property symbol prop ’(lambda (x) (* 2 x))))

In such cases, we usually use the special form function instead of simple quotation to quote
the anonymous function, like this:

(defun double-property (symbol prop)
(change-property symbol prop
(function (lambda (x) (* 2 x)))))

Using function instead of quote makes a difference if you compile the function double-
property. For example, if you compile the second definition of double-property, the
anonymous function is compiled as well. By contrast, if you compile the first definition
which uses ordinary quote, the argument passed to change-property is the precise list
shown:

(lambda (x) (*x x 2))

The Lisp compiler cannot assume this list is a function, even though it looks like one, since
it does not know what change-property will do with the list. Perhaps it will check whether
the CAR of the third element is the symbol *! Using function tells the compiler it is safe
to go ahead and compile the constant function.

Nowadays it is possible to omit function entirely, like this:

(defun double-property (symbol prop)
(change-property symbol prop (lambda (x) (* 2 x))))

This is because lambda itself implies function.

We sometimes write function instead of quote when quoting the name of a function,
but this usage is just a sort of comment:

(function symbol) = (quote symbol) = ’symbol
The read syntax #° is a short-hand for using function. For example,
#’ (lambda (x) (* x x))
is equivalent to
(function (lambda (x) (* x x)))

166 GNU Emacs Lisp Reference Manual

function function-object Special Form
This special form returns function-object without evaluating it. In this, it is equivalent
to quote. However, it serves as a note to the Emacs Lisp compiler that function-
object is intended to be used only as a function, and therefore can safely be compiled.
Contrast this with quote, in Section 9.2 [Quoting], page 113.

See documentation in Section 24.2 [Accessing Documentation|, page 388, for a realistic
example using function and an anonymous function.

12.8 Accessing Function Cell Contents

The function definition of a symbol is the object stored in the function cell of the symbol.
The functions described here access, test, and set the function cell of symbols.

See also the function indirect-function in Section 9.1.4 [Function Indirection],
page 109.

symbol-function symbol Function
This returns the object in the function cell of symbol. If the symbol’s function cell is
void, a void-function error is signaled.
This function does not check that the returned object is a legitimate function.
(defun bar (n) (+ n 2))
= bar
(symbol-function ’bar)
= (lambda (n) (+ n 2))
(fset ’baz ’bar)
= bar

(symbol-function ’baz)
= bar

If you have never given a symbol any function definition, we say that that symbol’s
function cell is void. In other words, the function cell does not have any Lisp object in it.
If you try to call such a symbol as a function, it signals a void-function error.

Note that void is not the same as nil or the symbol void. The symbols nil and void
are Lisp objects, and can be stored into a function cell just as any other object can be (and
they can be valid functions if you define them in turn with defun). A void function cell
contains no object whatsoever.

You can test the voidness of a symbol’s function definition with fboundp. After you have
given a symbol a function definition, you can make it void once more using fmakunbound.

fboundp symbol Function
This function returns t if the symbol has an object in its function cell, nil otherwise.
It does not check that the object is a legitimate function.

fmakunbound symbol Function
This function makes symbol’s function cell void, so that a subsequent attempt to ac-
cess this cell will cause a void-function error. (See also makunbound, in Section 11.4
[Void Variables|, page 136.)

Chapter 12: Functions 167

(defun foo (x) x)
= foo
(foo 1)
=1
(fmakunbound ’foo)
= foo
(foo 1)
Symbol’s function definition is void: foo

fset symbol definition Function
This function stores definition in the function cell of symbol. The result is definition.
Normally definition should be a function or the name of a function, but this is not
checked. The argument symbol is an ordinary evaluated argument.

There are three normal uses of this function:

e Copying one symbol’s function definition to another—in other words, making
an alternate name for a function. (If you think of this as the definition of the
new name, you should use defalias instead of fset; see Section 12.4 [Defining
Functions], page 160.)

e Giving a symbol a function definition that is not a list and therefore cannot be
made with defun. For example, you can use fset to give a symbol s1 a function
definition which is another symbol s2; then s1 serves as an alias for whatever
definition s2 presently has. (Once again use defalias instead of fset if you
think of this as the definition of s1.)

e In constructs for defining or altering functions. If defun were not a primitive, it
could be written in Lisp (as a macro) using fset.

Here are examples of these uses:

;3 Save foo’s definition in old-foo.
(fset ’0ld-foo (symbol-function ’fo0o0))

;5 Make the symbol car the function definition of xfirst.
;3 (Most likely, defalias would be better than fset here.)
(fset ’xfirst ’car)

= car
(xfirst (1 2 3))

=1
(symbol-function ’xfirst)

= car
(symbol-function (symbol-function ’xfirst))

= #<subr car>

; ;3 Define a named keyboard macro.
(fset ’kill-two-lines "\"u2\"k")
j ll\“u2\"k"
;3 Here is a function that alters other functions.
(defun copy-function-definition (new o0ld)
"Define NEW with the same function definition as OLD."
(fset new (symbol-function 0ld)))

168 GNU Emacs Lisp Reference Manual

When writing a function that extends a previously defined function, the following idiom
is sometimes used:
(fset ’0ld-foo (symbol-function ’foo0))
(defun foo ()
"Just like old-foo, except more so."
(0ld-foo)
(more-s0))
This does not work properly if foo has been defined to autoload. In such a case, when foo
calls old-foo, Lisp attempts to define o1d-foo by loading a file. Since this presumably
defines foo rather than old-foo, it does not produce the proper results. The only way to
avoid this problem is to make sure the file is loaded before moving aside the old definition
of foo.

But it is unmodular and unclean, in any case, for a Lisp file to redefine a function defined
elsewhere. It is cleaner to use the advice facility (see Chapter 17 [Advising Functions],
page 215).

12.9 Inline Functions

You can define an inline function by using defsubst instead of defun. An inline function
works just like an ordinary function except for one thing: when you compile a call to the
function, the function’s definition is open-coded into the caller.

Making a function inline makes explicit calls run faster. But it also has disadvantages.
For one thing, it reduces flexibility; if you change the definition of the function, calls already
inlined still use the old definition until you recompile them. Since the flexibility of redefining
functions is an important feature of Emacs, you should not make a function inline unless
its speed is really crucial.

Another disadvantage is that making a large function inline can increase the size of
compiled code both in files and in memory. Since the speed advantage of inline functions
is greatest for small functions, you generally should not make large functions inline.

It’s possible to define a macro to expand into the same code that an inline function
would execute. (See Chapter 13 [Macros|, page 171.) But the macro would be limited to
direct use in expressions—a macro cannot be called with apply, mapcar and so on. Also,
it takes some work to convert an ordinary function into a macro. To convert it into an
inline function is very easy; simply replace defun with defsubst. Since each argument of
an inline function is evaluated exactly once, you needn’t worry about how many times the
body uses the arguments, as you do for macros. (See Section 13.6.2 [Argument Evaluation],
page 175.)

Inline functions can be used and open-coded later on in the same file, following the
definition, just like macros.

12.10 Other Topics Related to Functions

Here is a table of several functions that do things related to function calling and function
definitions. They are documented elsewhere, but we provide cross references here.

apply See Section 12.5 [Calling Functions], page 161.

Chapter 12: Functions 169

autoload See Section 15.4 [Autoload], page 197.

call-interactively
See Section 21.3 [Interactive Call], page 292.

commandp See Section 21.3 [Interactive Call], page 292.

documentation
See Section 24.2 [Accessing Documentation], page 388.

eval See Section 9.3 [Eval], page 113.

funcall See Section 12.5 [Calling Functions], page 161.
function See Section 12.7 [Anonymous Functions], page 164.
ignore See Section 12.5 [Calling Functions], page 161.

indirect-function
See Section 9.1.4 [Function Indirection], page 109.

interactive
See Section 21.2.1 [Using Interactive], page 288.

interactive-p
See Section 21.3 [Interactive Call], page 292.

mapatoms See Section 8.3 [Creating Symbols], page 101.
mapcar See Section 12.6 [Mapping Functions], page 163.

map-char-table
See Section 6.6 [Char-Tables], page 89.

mapconcat
See Section 12.6 [Mapping Functions], page 163.

undefined
See Section 22.7 [Key Lookup], page 333.

170 GNU Emacs Lisp Reference Manual

Chapter 13: Macros 171

13 Macros

Macros enable you to define new control constructs and other language features. A
macro is defined much like a function, but instead of telling how to compute a value, it tells
how to compute another Lisp expression which will in turn compute the value. We call this
expression the expansion of the macro.

Macros can do this because they operate on the unevaluated expressions for the ar-
guments, not on the argument values as functions do. They can therefore construct an
expansion containing these argument expressions or parts of them.

If you are using a macro to do something an ordinary function could do, just for the
sake of speed, consider using an inline function instead. See Section 12.9 [Inline Functions],
page 168.

13.1 A Simple Example of a Macro

Suppose we would like to define a Lisp construct to increment a variable value, much
like the ++ operator in C. We would like to write (inc x) and have the effect of (setq x
(1+ x)). Here’s a macro definition that does the job:

(defmacro inc (var)
(list ’setq var (list ’1+ var)))

When this is called with (inc x), the argument var is the symbol x—not the value of x,
as it would be in a function. The body of the macro uses this to construct the expansion,
which is (setq x (1+ x)). Once the macro definition returns this expansion, Lisp proceeds
to evaluate it, thus incrementing x.

13.2 Expansion of a Macro Call

A macro call looks just like a function call in that it is a list which starts with the name
of the macro. The rest of the elements of the list are the arguments of the macro.

Evaluation of the macro call begins like evaluation of a function call except for one
crucial difference: the macro arguments are the actual expressions appearing in the macro
call. They are not evaluated before they are given to the macro definition. By contrast, the
arguments of a function are results of evaluating the elements of the function call list.

Having obtained the arguments, Lisp invokes the macro definition just as a function is
invoked. The argument variables of the macro are bound to the argument values from the
macro call, or to a list of them in the case of a &rest argument. And the macro body
executes and returns its value just as a function body does.

The second crucial difference between macros and functions is that the value returned
by the macro body is not the value of the macro call. Instead, it is an alternate expression
for computing that value, also known as the expansion of the macro. The Lisp interpreter
proceeds to evaluate the expansion as soon as it comes back from the macro.

Since the expansion is evaluated in the normal manner, it may contain calls to other
macros. [t may even be a call to the same macro, though this is unusual.

You can see the expansion of a given macro call by calling macroexpand.

172 GNU Emacs Lisp Reference Manual

macroexpand form &optional environment Function
This function expands form, if it is a macro call. If the result is another macro call,
it is expanded in turn, until something which is not a macro call results. That is
the value returned by macroexpand. If form is not a macro call to begin with, it is
returned as given.

Note that macroexpand does not look at the subexpressions of form (although some
macro definitions may do so). Even if they are macro calls themselves, macroexpand
does not expand them.

The function macroexpand does not expand calls to inline functions. Normally there
is no need for that, since a call to an inline function is no harder to understand than
a call to an ordinary function.

If environment is provided, it specifies an alist of macro definitions that shadow the
currently defined macros. Byte compilation uses this feature.

(defmacro inc (var)
(list ’setq var (list ’1+ var)))
= inc

(macroexpand ’(inc r))
= (setq r (1+ 1))

(defmacro inc2 (varl var2)
(1ist ’progn (list ’inc varl) (list ’inc var2)))
= 1inc2

(macroexpand ’(inc2 r s))
= (progn (inc r) (inc s)) ; inc not expanded here.

13.3 Macros and Byte Compilation

You might ask why we take the trouble to compute an expansion for a macro and then
evaluate the expansion. Why not have the macro body produce the desired results directly?
The reason has to do with compilation.

When a macro call appears in a Lisp program being compiled, the Lisp compiler calls
the macro definition just as the interpreter would, and receives an expansion. But instead
of evaluating this expansion, it compiles the expansion as if it had appeared directly in the
program. As a result, the compiled code produces the value and side effects intended for
the macro, but executes at full compiled speed. This would not work if the macro body
computed the value and side effects itself—they would be computed at compile time, which
is not useful.

In order for compilation of macro calls to work, the macros must already be defined in
Lisp when the calls to them are compiled. The compiler has a special feature to help you
do this: if a file being compiled contains a defmacro form, the macro is defined temporarily
for the rest of the compilation of that file. To make this feature work, you must put the
defmacro in the same file where it is used, and before its first use.

Byte-compiling a file executes any require calls at top-level in the file. This is in case the
file needs the required packages for proper compilation. One way to ensure that necessary
macro definitions are available during compilation is to require the files that define them
(see Section 15.6 [Named Features|, page 200). To avoid loading the macro definition files

Chapter 13: Macros 173

when someone runs the compiled program, write eval-when-compile around the require
calls (see Section 16.5 [Eval During Compile], page 209).

13.4 Defining Macros

A Lisp macro is a list whose CAR is macro. Its CDR should be a function; expansion of
the macro works by applying the function (with apply) to the list of unevaluated argument-
expressions from the macro call.

It is possible to use an anonymous Lisp macro just like an anonymous function, but this
is never done, because it does not make sense to pass an anonymous macro to functionals
such as mapcar. In practice, all Lisp macros have names, and they are usually defined with
the special form defmacro.

defmacro name argument-list body-forms. . . Special Form
defmacro defines the symbol name as a macro that looks like this:

(macro lambda argument-list . body-forms)

(Note that the CDR of this list is a function—a lambda expression.) This macro object
is stored in the function cell of name. The value returned by evaluating the defmacro
form is name, but usually we ignore this value.

The shape and meaning of argument-list is the same as in a function, and the keywords
&rest and &optional may be used (see Section 12.2.3 [Argument List], page 158).
Macros may have a documentation string, but any interactive declaration is ignored
since macros cannot be called interactively.

13.5 Backquote

Macros often need to construct large list structures from a mixture of constants and
nonconstant parts. To make this easier, use the ‘¢’ syntax (usually called backquote).

Backquote allows you to quote a list, but selectively evaluate elements of that list. In the
simplest case, it is identical to the special form quote (see Section 9.2 [Quoting], page 113).
For example, these two forms yield identical results:

“(a list of (+ 2 3) elements)
= (a list of (+ 2 3) elements)

’(a list of (+ 2 3) elements)
= (a list of (+ 2 3) elements)

[

The special marker *,’ inside of the argument to backquote indicates a value that isn’t
constant. Backquote evaluates the argument of *,” and puts the value in the list structure:
(list ’a ’1list ’of (+ 2 3) ’elements)
= (a list of 5 elements)
‘(a list of ,(+ 2 3) elements)
= (a list of 5 elements)
Substitution with ¢,’ is allowed at deeper levels of the list structure also. For example:

(defmacro t-becomes-nil (variable)
‘(if (eq ,variable t)
(setq ,variable nil)))

174 GNU Emacs Lisp Reference Manual

(t-becomes-nil foo)
= (if (eq foo t) (setq foo nil))

You can also splice an evaluated value into the resulting list, using the special marker
¢,@. The elements of the spliced list become elements at the same level as the other elements
of the resulting list. The equivalent code without using ‘¢’ is often unreadable. Here are
some examples:

(setq some-list ’(2 3))
= (2 3)

(cons 1 (append some-list ’(4) some-list))
= (12342 3)

‘(1 ,0some-list 4 ,@some-list)
= (12342 3)

(setq list ’(hack foo bar))
= (hack foo bar)

(cons ’use

(cons ’the

(cons ’words (append (cdr list) ’(as elements)))))
= (use the words foo bar as elements)

‘(use the words ,@(cdr list) as elements)
= (use the words foo bar as elements)

In old Emacs versions, before version 19.29, ‘¢’ used a different syntax which required
an extra level of parentheses around the entire backquote construct. Likewise, each ¢,” or
‘,@ substitution required an extra level of parentheses surrounding both the *,’ or ‘,@’ and
the following expression. The old syntax required whitespace between the ‘“’, *,” or *,@’
and the following expression.

This syntax is still accepted, for compatibility with old Emacs versions, but we recom-
mend not using it in new programs.

13.6 Common Problems Using Macros

The basic facts of macro expansion have counterintuitive consequences. This section
describes some important consequences that can lead to trouble, and rules to follow to
avoid trouble.

13.6.1 Wrong Time

The most common problem in writing macros is doing too some of the real work
prematurely—while expanding the macro, rather than in the expansion itself. For instance,
one real package had this nmacro definition:

(defmacro my-set-buffer-multibyte (arg)
(if (fboundp ’set-buffer-multibyte)
(set-buffer-multibyte arg)))

With this erroneous macro definition, the program worked fine when interpreted but
failed when compiled. This macro definition called set-buffer-multibyte during compi-
lation, which was wrong, and then did nothing when the compiled package was run. The
definition that the programmer really wanted was this:

Chapter 13: Macros 175

(defmacro my-set-buffer-multibyte (arg)
(if (fboundp ’set-buffer-multibyte)
¢ (set-buffer-multibyte ,arg)))

This macro expands, if appropriate, into a call to set-buffer-multibyte that will be
executed when the compiled program is actually run.

13.6.2 Evaluating Macro Arguments Repeatedly

When defining a macro you must pay attention to the number of times the arguments
will be evaluated when the expansion is executed. The following macro (used to facilitate
iteration) illustrates the problem. This macro allows us to write a simple “for” loop such
as one might find in Pascal.

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.
For example, (for i from 1 to 10 do (print i))."
(list ’let (list (list var init))
(cons ’while (comns (list ’<= var final)

(append body (list (list ’inc var)))))))
= for

(for i from 1 to 3 do
(setq square (* i i))
(princ (format "\n%d %d" i square)))
—
(et (1 1))
(while (<= i 3)
(setq square (x i i))

(princ (format "%d %d" i square))
(inc 1)))
41 1
-2 4
-3 9
= nil

The arguments from, to, and do in this macro are “syntactic sugar”; they are entirely
ignored. The idea is that you will write noise words (such as from, to, and do) in those
positions in the macro call.

Here’s an equivalent definition simplified through use of backquote:

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.
For example, (for i from 1 to 10 do (print i))."
‘(let ((,var ,init))
(while (<= ,var ,final)
,@body
(inc ,var))))

Both forms of this definition (with backquote and without) suffer from the defect that
final is evaluated on every iteration. If final is a constant, this is not a problem. If it is a

176 GNU Emacs Lisp Reference Manual

more complex form, say (long-complex-calculation x), this can slow down the execution
significantly. If final has side effects, executing it more than once is probably incorrect.

A well-designed macro definition takes steps to avoid this problem by producing an
expansion that evaluates the argument expressions exactly once unless repeated evaluation
is part of the intended purpose of the macro. Here is a correct expansion for the for macro:

(let ((1 1)
(max 3))
(while (<= i max)
(setq square (* i i))
(princ (format "%d %d" i square))
(inc 1)))

Here is a macro definition that creates this expansion:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
‘(let ((,var ,init)
(max ,final))
(while (<= ,var max)
,@body
(inc ,var))))

Unfortunately, this fix introduces another problem, described in the following section.

13.6.3 Local Variables in Macro Expansions

The new definition of for has a new problem: it introduces a local variable named max
which the user does not expect. This causes trouble in examples such as the following:

(let ((max 0))
(for x from 0 to 10 do
(let ((this (frob x)))
(if (< max this)
(setq max this)))))
The references to max inside the body of the for, which are supposed to refer to the user’s
binding of max, really access the binding made by for.

The way to correct this is to use an uninterned symbol instead of max (see Section 8.3
[Creating Symbols], page 101). The uninterned symbol can be bound and referred to just
like any other symbol, but since it is created by for, we know that it cannot already appear
in the user’s program. Since it is not interned, there is no way the user can put it into the
program later. It will never appear anywhere except where put by for. Here is a definition
of for that works this way:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
(let ((tempvar (make-symbol "max")))
‘(let ((,var ,init)
(,tempvar ,final))
(while (<= ,var ,tempvar)
,@body
(inc ,var)))))

Chapter 13: Macros 177

This creates an uninterned symbol named max and puts it in the expansion instead of the
usual interned symbol max that appears in expressions ordinarily.

13.6.4 Evaluating Macro Arguments in Expansion

Another problem can happen if the macro definition itself evaluates any of the macro
argument expressions, such as by calling eval (see Section 9.3 [Eval], page 113). If the
argument is supposed to refer to the user’s variables, you may have trouble if the user
happens to use a variable with the same name as one of the macro arguments. Inside the
macro body, the macro argument binding is the most local binding of this variable, so any
references inside the form being evaluated do refer to it. Here is an example:

(defmacro foo (a)
(list ’setq (eval a) t))
= foo
(setq x ’b)
(foo x) +— (setq b t)
= t ; and b has been set.
;3 but
(setq a ’c¢)
(foo a) — (setq a t)
=t ; but this set a, not c.

It makes a difference whether the user’s variable is named a or x, because a conflicts
with the macro argument variable a.

Another problem with calling eval in a macro definition is that it probably won’t do
what you intend in a compiled program. The byte-compiler runs macro definitions while
compiling the program, when the program’s own computations (which you might have
wished to access with eval) don’t occur and its local variable bindings don’t exist.

To avoid these problems, don’t evaluate an argument expression while computing the
macro expansion. Instead, substitute the expression into the macro expansion, so that its
value will be computed as part of executing the expansion. This is how the other examples
in this chapter work.

13.6.5 How Many Times is the Macro Expanded?

Occasionally problems result from the fact that a macro call is expanded each time it
is evaluated in an interpreted function, but is expanded only once (during compilation)
for a compiled function. If the macro definition has side effects, they will work differently
depending on how many times the macro is expanded.

Therefore, you should avoid side effects in computation of the macro expansion, unless
you really know what you are doing.

One special kind of side effect can’t be avoided: constructing Lisp objects. Almost all
macro expansions include constructed lists; that is the whole point of most macros. This is
usually safe; there is just one case where you must be careful: when the object you construct
is part of a quoted constant in the macro expansion.

178 GNU Emacs Lisp Reference Manual

If the macro is expanded just once, in compilation, then the object is constructed just
once, during compilation. But in interpreted execution, the macro is expanded each time
the macro call runs, and this means a new object is constructed each time.

In most clean Lisp code, this difference won’t matter. It can matter only if you perform
side-effects on the objects constructed by the macro definition. Thus, to avoid trouble,
avoid side effects on objects constructed by macro definitions. Here is an example of how
such side effects can get you into trouble:

(defmacro empty-object ()
(l1ist ’quote (cons nil nil)))

(defun initialize (condition)
(let ((object (empty-object)))
(if condition
(setcar object condition))

object))
If initialize is interpreted, a new list (nil) is constructed each time initialize is
called. Thus, no side effect survives between calls. If initialize is compiled, then the
macro empty-object is expanded during compilation, producing a single “constant” (nil)
that is reused and altered each time initialize is called.

One way to avoid pathological cases like this is to think of empty-object as a funny
kind of constant, not as a memory allocation construct. You wouldn’t use setcar on a
constant such as > (nil), so naturally you won’t use it on (empty-object) either.

Chapter 14: Writing Customization Definitions 179

14 Writing Customization Definitions

This chapter describes how to declare user options for customization, and also customiza-
tion groups for classifying them. We use the term customization item to include both kinds
of customization definitions—as well as face definitions (see Section 38.11.2 [Defining Faces],
page 679).

14.1 Common Item Keywords

All kinds of customization declarations (for variables and groups, and for faces) accept
keyword arguments for specifying various information. This section describes some keywords
that apply to all kinds.

All of these keywords, except :tag, can be used more than once in a given item. Each
use of the keyword has an independent effect. The keyword :tag is an exception because
any given item can only display one name.

:tag label Use label, a string, instead of the item’s name, to label the item in customization
menus and buffers.

:group group
Put this customization item in group group. When you use :group in a
defgroup, it makes the new group a subgroup of group.

If you use this keyword more than once, you can put a single item into more
than one group. Displaying any of those groups will show this item. Please
don’t overdo this, since the result would be annoying.

:1link link-data
Include an external link after the documentation string for this item. This is a
sentence containing an active field which references some other documentation.

There are three alternatives you can use for link-data:

(custom-manual info-node)
Link to an Info node; info-node is a string which specifies the node
name, as in " (emacs)Top". The link appears as ‘[manual]’ in the
customization buffer.

(info-link info-node)
Like custom-manual except that the link appears in the customiza-
tion buffer with the Info node name.

(url-link url)
Link to a web page; url is a string which specifies the URL. The
link appears in the customization buffer as url

(emacs-commentary-1link library)
Link to the commentary section of a library; library is a string
which specifies the library name.

You can specify the text to use in the customization buffer by adding :tag
name after the first element of the link-data; for example, (info-link :tag

180 GNU Emacs Lisp Reference Manual

"foo" "(emacs)Top") makes a link to the Emacs manual which appears in the
buffer as ‘foo’.

An item can have more than one external link; however, most items have none
at all.

:1load file Load file file (a string) before displaying this customization item. Loading is
done with load-1library, and only if the file is not already loaded.

:require feature
Require feature feature (a symbol) when installing a value for this item (an
option or a face) that was saved using the customization feature. This is done
by calling require.
The most common reason to use :require is when a variable enables a feature
such as a minor mode, and just setting the variable won’t have any effect unless
the code which implements the mode is loaded.

14.2 Defining Custom Groups

Each Emacs Lisp package should have one main customization group which contains all
the options, faces and other groups in the package. If the package has a small number of
options and faces, use just one group and put everything in it. When there are more than
twelve or so options and faces, then you should structure them into subgroups, and put
the subgroups under the package’s main customization group. It is OK to put some of the
options and faces in the package’s main group alongside the subgroups.

The package’s main or only group should be a member of one or more of the standard
customization groups. (To display the full list of them, use M-x customize.) Choose one
or more of them (but not too many), and add your group to each of them using the : group
keyword.

The way to declare new customization groups is with defgroup.

defgroup group members doc [keyword value]... Macro
Declare group as a customization group containing members. Do not quote the symbol
group. The argument doc specifies the documentation string for the group. It should
not start with a ‘*’ as in defcustom; that convention is for variables only.

The argument members is a list specifying an initial set of customization items to
be members of the group. However, most often members is nil, and you specify the
group’s members by using the :group keyword when defining those members.

If you want to specify group members through members, each element should have the
form (name widget). Here name is a symbol, and widget is a widget type for editing
that symbol. Useful widgets are custom-variable for a variable, custom-face for a
face, and custom-group for a group.

When a new group is introduced into Emacs, use this keyword in defgroup:
:version version

This option specifies that the group was first introduced in Emacs version
version. The value version must be a string.

Chapter 14: Writing Customization Definitions 181

Tag the group with a version like this when it is introduced, rather than the individual
members (see Section 14.3 [Variable Definitions|, page 181).

In addition to the common keywords (see Section 14.1 [Common Keywords],
page 179), you can also use this keyword in defgroup:

:prefix prefix
If the name of an item in the group starts with prefix, then the tag for
that item is constructed (by default) by omitting prefix.

One group can have any number of prefixes.

The prefix-discarding feature is currently turned off, which means that :prefix currently
has no effect. We did this because we found that discarding the specified prefixes often led
to confusing names for options. This happened because the people who wrote the defgroup
definitions for various groups added :prefix keywords whenever they make logical sense—
that is, whenever the variables in the library have a common prefix.

In order to obtain good results with :prefix, it would be necessary to check the specific
effects of discarding a particular prefix, given the specific items in a group and their names
and documentation. If the resulting text is not clear, then :prefix should not be used in
that case.

It should be possible to recheck all the customization groups, delete the :prefix spec-
ifications which give unclear results, and then turn this feature back on, if someone would
like to do the work.

14.3 Defining Customization Variables

Use defcustom to declare user-editable variables.

defcustom option default doc [keyword value]. . . Macro

Declare option as a customizable user option variable. Do not quote option. The
argument doc specifies the documentation string for the variable. It should often
start with a ‘*’ to mark it as a user option (see Section 11.5 [Defining Variables],
page 137). Do not start the documentation string with ‘*’ for options which cannot
or normally should not be set with set-variable; examples of the former are global
minor mode options such as global-font-lock-mode and examples of the latter are
hooks.

If option is void, defcustom initializes it to default. default should be an expression
to compute the value; be careful in writing it, because it can be evaluated on more
than one occasion. You should normally avoid using backquotes in default because
they are not expanded when editing the value, causing list values to appear to have
the wrong structure.

When you evaluate a defcustom form with C-M-x in Emacs Lisp mode (eval-defun),
a special feature of eval-defun arranges to set the variable unconditionally, without
testing whether its value is void. (The same feature applies to defvar.) See Sec-
tion 11.5 [Defining Variables], page 137.

defcustom accepts the following additional keywords:

182

:type type

GNU Emacs Lisp Reference Manual

Use type as the data type for this option. It specifies which values are legitimate,
and how to display the value. See Section 14.4 [Customization Types], page 184,
for more information.

:options list

Specify list as the list of reasonable values for use in this option. The user
is not restricted to using only these values, but they are offered as convenient
alternatives.

This is meaningful only for certain types, currently including hook, plist and
alist. See the definition of the individual types for a description of how to use
:options.

:version version

This option specifies that the variable was first introduced, or its default value
was changed, in Emacs version version. The value version must be a string.
For example,

(defcustom foo-max 34
"x*Maximum number of foo’s allowed."
:type ’integer
:group ’foo
:version "20.3")

:set setfunction

Specify setfunction as the way to change the value of this option. The function
setfunction should take two arguments, a symbol and the new value, and should
do whatever is necessary to update the value properly for this option (which
may not mean simply setting the option as a Lisp variable). The default for
setfunction is set-default.

:get getfunction

Specify getfunction as the way to extract the value of this option. The function
getfunction should take one argument, a symbol, and should return the “current
value” for that symbol (which need not be the symbol’s Lisp value). The default
is default-value.

:initialize function

function should be a function used to initialize the variable when the defcustom
is evaluated. It should take two arguments, the symbol and value. Here are
some predefined functions meant for use in this way:

custom-initialize-set
Use the variable’s :set function to initialize the variable, but do
not reinitialize it if it is already non-void. This is the default
:initialize function.

custom-initialize-default
Like custom-initialize-set, but use the function set-default
to set the variable, instead of the variable’s :set function. This
is the usual choice for a variable whose :set function enables or
disables a minor mode; with this choice, defining the variable will

Chapter 14: Writing Customization Definitions 183

not call the minor mode function, but customizing the variable will
do so.

custom-initialize-reset
Always use the :set function to initialize the variable. If the vari-
able is already non-void, reset it by calling the :set function using
the current value (returned by the :get method).

custom-initialize-changed
Use the :set function to initialize the variable, if it is already set
or has been customized; otherwise, just use set-default.

:set-after variables
When setting variables according to saved customizations, make sure to set the
variables variables before this one; in other words, delay setting this variable
until after those others have been handled. Use :set-after if setting this
variable won’t work properly unless those other variables already have their
intended values.

The :require option is useful for an option that turns on the operation of a certain
feature. Assuming that the package is coded to check the value of the option, you still need
to arrange for the package to be loaded. You can do that with :require. See Section 14.1
[Common Keywords], page 179. Here is an example, from the library ‘paren.el’:

(defcustom show-paren-mode nil

"Toggle Show Paren mode..."

:set (lambda (symbol value)
(show-paren-mode (or value 0)))

:initialize ’custom-initialize-default

:type ’boolean

:group ’paren-showing

:require ’paren)

If a customization item has a type such as hook or alist, which supports :options,
you can add additional options to the item, outside the defcustom declaration, by calling
custom-add-option. For example, if you define a function my-1isp-mode-initialization
intended to be called from emacs-1isp-mode-hook, you might want to add that to the list
of options for emacs-1isp-mode-hook, but not by editing its definition. You can do it thus:

(custom-add-option ’emacs-lisp-mode-hook
’my-lisp-mode-initialization)

custom-add-option symbol option Function
To the customization symbol, add option.

The precise effect of adding option depends on the customization type of symbol.

Internally, defcustom uses the symbol property standard-value to record the expres-
sion for the default value, and saved-value to record the value saved by the user with the
customization buffer. The saved-value property is actually a list whose car is an expression
which evaluates to the value.

184 GNU Emacs Lisp Reference Manual

14.4 Customization Types

When you define a user option with defcustom, you must specify its customization type.
That is a Lisp object which describes (1) which values are legitimate and (2) how to display
the value in the customization buffer for editing.

You specify the customization type in def custom with the : type keyword. The argument
of :type is evaluated; since types that vary at run time are rarely useful, normally you use
a quoted constant. For example:

(defcustom diff-command "diff"
"*The command to use to run diff."
:type ’(string)
:group ’diff)

In general, a customization type is a list whose first element is a symbol, one of the cus-
tomization type names defined in the following sections. After this symbol come a number
of arguments, depending on the symbol. Between the type symbol and its arguments, you
can optionally write keyword-value pairs (see Section 14.4.4 [Type Keywords]|, page 190).

Some of the type symbols do not use any arguments; those are called simple types. For
a simple type, if you do not use any keyword-value pairs, you can omit the parentheses
around the type symbol. For example just string as a customization type is equivalent to
(string).

14.4.1 Simple Types

This section describes all the simple customization types.

sexp The value may be any Lisp object that can be printed and read back. You can
use sexp as a fall-back for any option, if you don’t want to take the time to
work out a more specific type to use.

integer The value must be an integer, and is represented textually in the customization

buffer.

number The value must be a number, and is represented textually in the customization
buffer.

string The value must be a string, and the customization buffer shows just the con-

‘n?

tents, with no delimiting ‘"’ characters and no quoting with ‘\’.

regexp Like string except that the string must be a valid regular expression.

character
The value must be a character code. A character code is actually an integer,
but this type shows the value by inserting the character in the buffer, rather
than by showing the number.

file The value must be a file name, and you can do completion with M-(TAB).

(file :must-match t)
The value must be a file name for an existing file, and you can do completion

with M-(TAB).

Chapter 14: Writing Customization Definitions 185

directory
The value must be a directory name, and you can do completion with M-(TAB).

hook The value must be a list of functions (or a single function, but that is obso-
lete usage). This customization type is used for hook variables. You can use
the :options keyword in a hook variable’s defcustom to specify a list of func-
tions recommended for use in the hook; see Section 14.3 [Variable Definitions],
page 181.

alist The value must be a list of cons-cells, the CAR of each cell representing a key,
and the CDR of the same cell representing an associated value. The user can
add and delete key/value pairs, and edit both the key and the value of each
pair.
You can specify the key and value types like this:

(alist :key-type key-type :value-type value-type)

where key-type and value-type are customization type specifications. The de-
fault key type is sexp, and the default value type is sexp.

The user can add any key matching the specified key type, but you can give
some keys a preferential treatment by specifying them with the :options (see
Section 14.3 [Variable Definitions|, page 181). The specified keys will always be
shown in the customize buffer (together with a suitable value), with a checkbox
to include or exclude or disable the key/value pair from the alist. The user will
not be able to edit the keys specified by the :options keyword argument.

The argument to the :options keywords should be a list of option specifica-
tions. Ordinarily, the options are simply atoms, which are the specified keys.
For example:

:options ’("foo" "bar" "baz")

specifies that there are three “known” keys, namely "foo", "bar" and "baz",
which will always be shown first.

You may want to restrict the value type for specific keys, for example, the value
associated with the "bar" key can only be an integer. You can specify this by
using a list instead of an atom in the option specification. The first element
will specify the key, like before, while the second element will specify the value
type.

:options ’("foo" ("bar" integer) "baz")
Finally, you may want to change how the key is presented. By default, the
key is simply shown as a const, since the user cannot change the special keys
specified with the :options keyword. However, you may want to use a more
specialized type for presenting the key, like function-item if you know it is a
symbol with a function binding. This is done by using a customization type
specification instead of a symbol for the key.

:options ’("foo" ((function-item some-function) integer) "baz")
Many alists use lists with two elements, instead of cons cells. For example,

(defcustom list-alist ’(("foo" 1) ("bar" 2) ("baz" 3))
"Each element is a list of the form (KEY VALUE).")

instead of

186

plist

symbol

function

variable

face

boolean

GNU Emacs Lisp Reference Manual

(defcustom cons-alist ’(("foo" . 1) ("bar" . 2) ("baz" . 3))
"Each element is a cons-cell (KEY . VALUE).")
Because of the way lists are implemented on top of cons cells, you can treat
list-alist in the example above as a cons cell alist, where the value type is a
list with a single element containing the real value.
(defcustom list-alist ’(("foo" 1) ("bar" 2) ("baz" 3))
"Each element is a list of the form (KEY VALUE)."
:type ’(alist :value-type (group integer)))
The group widget is used here instead of 1ist only because the formatting is
better suited for the purpose.

Similarily, you can have alists with more values associated with each key, using
variations of this trick:
(defcustom person-data ’(("brian" 50 t)
("dorith" 55 nil)
("ken" 52 t))
"Alist of basic info about people.
Each element has the form (NAME AGE MALE-FLAG)."
:type ’(alist :value-type (group age boolean)))

(defcustom pets ’(("brian")
("dorith" "dog" "guppy")
(Ilkenll "catll))
"Alist of people’s pets.
In an element (KEY . VALUE), KEY is the person’s name,
and the VALUE is a list of that person’s pets."
:type ’(alist :value-type (repeat string)))

The plist custom type is similar to the alist (see above), except that the
information is stored as a property list, i.e. a list of this form:

(key value key value key value ...)
The default :key-type for plist is symbol, rather than sexp.

The value must be a symbol. It appears in the customization buffer as the
name of the symbol.

The value must be either a lambda expression or a function name. When it is
a function name, you can do completion with M-(TAB).

The value must be a variable name, and you can do completion with M-(TAB).

The value must be a symbol which is a face name, and you can do completion

with M-(TAB).

The value is boolean—either nil or t. Note that by using choice and const
together (see the next section), you can specify that the value must be nil or
t, but also specify the text to describe each value in a way that fits the specific
meaning of the alternative.

coding-system

The value must be a coding-system name, and you can do completion with

M-(TAB).

Chapter 14: Writing Customization Definitions 187

color

The value must be a valid color name, and you can do completion with M—(TAB).
A sample is provided,

14.4.2 Composite Types

When none of the simple types is appropriate, you can use composite types, which build
new types from other types. Here are several ways of doing that:

(restricted-sexp :match-alternatives criteria)

The value may be any Lisp object that satisfies one of criteria. criteria should
be a list, and each element should be one of these possibilities:

e A predicate—that is, a function of one argument that has no side effects,
and returns either nil or non-nil according to the argument. Using a
predicate in the list says that objects for which the predicate returns non-
nil are acceptable.

e A quoted constant—that is, > object. This sort of element in the list says
that object itself is an acceptable value.

For example,

(restricted-sexp :match-alternatives
(integerp ’t ’nil))

allows integers, t and nil as legitimate values.

The customization buffer shows all legitimate values using their read syntax,
and the user edits them textually.

(cons car-type cdr-type)

The value must be a cons cell, its CAR must fit car-type, and its CDR must fit
cdr-type. For example, (cons string symbol) is a customization type which
matches values such as ("foo" . foo).

In the customization buffer, the CAR and the CDR are displayed and edited
separately, each according to the type that you specify for it.

(list element-types. . .)

The value must be a list with exactly as many elements as the element-types
you have specified; and each element must fit the corresponding element-type.

For example, (1ist integer string function) describes a list of three ele-
ments; the first element must be an integer, the second a string, and the third
a function.

In the customization buffer, each element is displayed and edited separately,
according to the type specified for it.

(vector element-types. . .)

Like 1ist except that the value must be a vector instead of a list. The elements
work the same as in list.

(choice alternative-types. . .)

The value must fit at least one of alternative-types. For example, (choice
integer string) allows either an integer or a string.

188 GNU Emacs Lisp Reference Manual

In the customization buffer, the user selects one of the alternatives using a
menu, and can then edit the value in the usual way for that alternative.

Normally the strings in this menu are determined automatically from the
choices; however, you can specify different strings for the menu by including
the :tag keyword in the alternatives. For example, if an integer stands for a
number of spaces, while a string is text to use verbatim, you might write the
customization type this way,

(choice (integer :tag "Number of spaces")
(string :tag "Literal text"))

so that the menu offers ‘Number of spaces’ and ‘Literal Text’.

In any alternative for which nil is not a valid value, other than a const, you
should specify a valid default for that alternative using the :value keyword.
See Section 14.4.4 [Type Keywords], page 190.

(radio element-types. . .)
This is similar to choice, except that the choices are displayed using ‘radio
buttons’ rather than a menu. This has the advantage of displaying documenta-
tion for the choices when applicable and so is often a good choice for a choice
between constant functions (function-item customization types).

(const value)
The value must be value—nothing else is allowed.

The main use of const is inside of choice. For example, (choice integer
(const nil)) allows either an integer or nil.

:tag is often used with const, inside of choice. For example,

(choice (const :tag "Yes" t)
(const :tag "No" nil)
(const :tag "Ask" foo))

describes a variable for which t means yes, nil means no, and foo means “ask.”

(other value)
This alternative can match any Lisp value, but if the user chooses this alterna-
tive, that selects the value value.

The main use of other is as the last element of choice. For example,

(choice (const :tag "Yes" t)
(const :tag "No" nil)
(other :tag "Ask" foo))

describes a variable for which t means yes, nil means no, and anything else
means “ask.” If the user chooses ‘Ask’ from the menu of alternatives, that
specifies the value foo; but any other value (not t, nil or foo) displays as
‘Ask’, just like foo.

(function-item function)
Like const, but used for values which are functions. This displays the docu-
mentation string as well as the function name. The documentation string is
either the one you specify with :doc, or function’s own documentation string.

Chapter 14: Writing Customization Definitions 189

(variable-item variable)
Like const, but used for values which are variable names. This displays the
documentation string as well as the variable name. The documentation string
is either the one you specify with :doc, or variable’s own documentation string.

(set types...)
The value must be a list, and each element of the list must match one of the
types specified.

This appears in the customization buffer as a checklist, so that each of types
may have either one corresponding element or none. It is not possible to specify
two different elements that match the same one of types. For example, (set
integer symbol) allows one integer and/or one symbol in the list; it does
not allow multiple integers or multiple symbols. As a result, it is rare to use
nonspecific types such as integer in a set.

Most often, the types in a set are const types, as shown here:
(set (const :bold) (const :italic))
Sometimes they describe possible elements in an alist:
(set (cons :tag "Height" (const height) integer)
(cons :tag "Width" (const width) integer))
That lets the user specify a height value optionally and a width value optionally.

(repeat element-type)
The value must be a list and each element of the list must fit the type element-
type. This appears in the customization buffer as a list of elements, with ‘ [INS]’
and ‘[DEL]’ buttons for adding more elements or removing elements.

14.4.3 Splicing into Lists

The :inline feature lets you splice a variable number of elements into the middle of
a list or vector. You use it in a set, choice or repeat type which appears among the
element-types of a 1ist or vector.

Normally, each of the element-types in a 1ist or vector describes one and only one
element of the list or vector. Thus, if an element-type is a repeat, that specifies a list of
unspecified length which appears as one element.

But when the element-type uses :inline, the value it matches is merged directly into the
containing sequence. For example, if it matches a list with three elements, those become
three elements of the overall sequence. This is analogous to using ‘,@ in the backquote
construct.

For example, to specify a list whose first element must be t and whose remaining argu-
ments should be zero or more of foo and bar, use this customization type:

(1ist (const t) (set :inline t foo bar))
This matches values such as (t), (t foo), (t bar) and (t foo bar).

When the element-type is a choice, you use :inline not in the choice itself, but in
(some of) the alternatives of the choice. For example, to match a list which must start
with a file name, followed either by the symbol t or two strings, use this customization
type:

190 GNU Emacs Lisp Reference Manual

(list file
(choice (const t)
(list :inline t string string)))
If the user chooses the first alternative in the choice, then the overall list has two elements
and the second element is t. If the user chooses the second alternative, then the overall list
has three elements and the second and third must be strings.

14.4.4 Type Keywords

You can specify keyword-argument pairs in a customization type after the type name
symbol. Here are the keywords you can use, and their meanings:

:value default
This is used for a type that appears as an alternative inside of choice; it
specifies the default value to use, at first, if and when the user selects this
alternative with the menu in the customization buffer.

Of course, if the actual value of the option fits this alternative, it will appear
showing the actual value, not default.

If nil is not a valid value for the alternative, then it is essential to specify a
valid default with :value.

:format format-string
This string will be inserted in the buffer to represent the value corresponding
to the type. The following ‘%’ escapes are available for use in format-string:

‘% [buttoni]’
Display the text button marked as a button. The :action attribute
specifies what the button will do if the user invokes it; its value is a
function which takes two arguments—the widget which the button
appears in, and the event.

There is no way to specify two different buttons with different ac-
tions.

“%{sample%}’
Show sample in a special face specified by :sample-face.

v’ Substitute the item’s value. How the value is represented depends
on the kind of item, and (for variables) on the customization type.

“hd’ Substitute the item’s documentation string.

‘%h’ Like ‘%d’, but if the documentation string is more than one line,
add an active field to control whether to show all of it or just the
first line.

“ht’ Substitute the tag here. You specify the tag with the :tag keyword.

s Display a literal ‘% .

raction action
Perform action if the user clicks on a button.

Chapter 14: Writing Customization Definitions 191

:button-face face

Use the face face (a face name or a list of face names) for button text displayed
with ‘%[...%]".

:button-prefix prefix
:button-suffix suffix

:tag tag

:doc doc

These specify the text to display before and after a button. Each can be:
nil No text is inserted.

a string The string is inserted literally.

a symbol The symbol’s value is used.

Use tag (a string) as the tag for the value (or part of the value) that corresponds
to this type.

Use doc as the documentation string for this value (or part of the value) that
corresponds to this type. In order for this to work, you must specify a value
for :format, and use ‘%d’ or ‘4h’ in that value.

The usual reason to specify a documentation string for a type is to provide
more information about the meanings of alternatives inside a :choice type or
the parts of some other composite type.

:help-echo motion-doc

When you move to this item with widget-forward or widget-backward, it
will display the string motion-doc in the echo area. In addition, motion-doc is
used as the mouse help-echo string and may actually be a function or form
evaluated to yield a help string as for help-echo text properties.

:match function

Specify how to decide whether a value matches the type. The corresponding
value, function, should be a function that accepts two arguments, a widget and
a value; it should return non-nil if the value is acceptable.

192 GNU Emacs Lisp Reference Manual

Chapter 15: Loading 193

15 Loading

Loading a file of Lisp code means bringing its contents into the Lisp environment in the
form of Lisp objects. Emacs finds and opens the file, reads the text, evaluates each form,
and then closes the file.

The load functions evaluate all the expressions in a file just as the eval-current-buffer
function evaluates all the expressions in a buffer. The difference is that the load functions
read and evaluate the text in the file as found on disk, not the text in an Emacs buffer.

The loaded file must contain Lisp expressions, either as source code or as byte-compiled
code. Each form in the file is called a top-level form. There is no special format for the
forms in a loadable file; any form in a file may equally well be typed directly into a buffer
and evaluated there. (Indeed, most code is tested this way.) Most often, the forms are
function definitions and variable definitions.

)

A file containing Lisp code is often called a Ilibrary. Thus, the “Rmail library” is a file
containing code for Rmail mode. Similarly, a “Lisp library directory” is a directory of files
containing Lisp code.

15.1 How Programs Do Loading

Emacs Lisp has several interfaces for loading. For example, autoload creates a place-
holder object for a function defined in a file; trying to call the autoloading function loads
the file to get the function’s real definition (see Section 15.4 [Autoload], page 197). require
loads a file if it isn’t already loaded (see Section 15.6 [Named Features|, page 200). Ulti-
mately, all these facilities call the load function to do the work.

load filename &optional missing-ok nomessage nosuffix must-suffix Function
This function finds and opens a file of Lisp code, evaluates all the forms in it, and
closes the file.

To find the file, 1oad first looks for a file named ‘filename.elc’, that is, for a file
whose name is filename with ‘.elc’ appended. If such a file exists, it is loaded. If
there is no file by that name, then load looks for a file named ‘filename.el’. If that
file exists, it is loaded. Finally, if neither of those names is found, load looks for
a file named filename with nothing appended, and loads it if it exists. (The load
function is not clever about looking at filename. In the perverse case of a file named
‘foo.el.el’, evaluation of (load "foo.el") will indeed find it.)

4 Y

If the optional argument nosuffix is non-nil, then the suffixes ‘.elc’ and ‘.el’ are
not tried. In this case, you must specify the precise file name you want. By specifying
the precise file name and using t for nosuffix, you can prevent perverse file names
such as ‘foo.el.el’ from being tried.

If the optional argument must-suffix is non-nil, then load insists that the file name
used must end in either ‘.el’ or ‘.elc’, unless it contains an explicit directory name.
If filename does not contain an explicit directory name, and does not end in a suffix,
then load insists on adding one.

If filename is a relative file name, such as ‘foo’ or ‘baz/foo.bar’, load searches for
the file using the variable load-path. It appends filename to each of the directories

194 GNU Emacs Lisp Reference Manual

listed in load-path, and loads the first file it finds whose name matches. The current
default directory is tried only if it is specified in load-path, where nil stands for
the default directory. load tries all three possible suffixes in the first directory in
load-path, then all three suffixes in the second directory, and so on. See Section 15.2
[Library Search|, page 195.

If you get a warning that ‘foo.elc’ is older than ‘foo.el’; it means you should
consider recompiling ‘foo.el’. See Chapter 16 [Byte Compilation], page 205.

When loading a source file (not compiled), load performs character set translation
just as Emacs would do when visiting the file. See Section 33.10 [Coding Systems],
page 590.

Y

Messages like ‘Loading foo...’ and ‘Loading foo...done’ appear in the echo area
during loading unless nomessage is non-nil.

Any unhandled errors while loading a file terminate loading. If the load was done for
the sake of autoload, any function definitions made during the loading are undone.

If load can’t find the file to load, then normally it signals the error file-error
(with ‘Cannot open load file filename’). But if missing-ok is non-nil, then load
just returns nil.

You can use the variable load-read-function to specify a function for load to use
instead of read for reading expressions. See below.

load returns t if the file loads successfully.

load-file filename Command
This command loads the file filename. If filename is a relative file name, then the
current default directory is assumed. load-path is not used, and suffixes are not
appended. Use this command if you wish to specify precisely the file name to load.

load-library library Command
This command loads the library named library. It is equivalent to load, except in
how it reads its argument interactively.

load-in-progress Variable
This variable is non-nil if Emacs is in the process of loading a file, and it is nil
otherwise.

load-read-function Variable

This variable specifies an alternate expression-reading function for load and eval-
region to use instead of read. The function should accept one argument, just as
read does.

Normally, the variable’s value is nil, which means those functions should use read.

Note: Instead of using this variable, it is cleaner to use another, newer feature: to
pass the function as the read-function argument to eval-region. See Section 9.3
[Eval], page 113.

For information about how load is used in building Emacs, see Section E.1 [Building
Emacs], page 777.

Chapter 15: Loading 195

15.2 Library Search

When Emacs loads a Lisp library, it searches for the library in a list of directories specified
by the variable load-path.

load-path User Option
The value of this variable is a list of directories to search when loading files with load.
Each element is a string (which must be a directory name) or nil (which stands for
the current working directory).

The value of load-path is initialized from the environment variable EMACSLOADPATH, if
that exists; otherwise its default value is specified in ‘emacs/src/paths.h’ when Emacs is
built. Then the list is expanded by adding subdirectories of the directories in the list.

The syntax of EMACSLOADPATH is the same as used for PATH; ‘:’ (or ¢;’, according to
the operating system) separates directory names, and ‘.’ is used for the current default
directory. Here is an example of how to set your EMACSLOADPATH variable from a csh
‘.login’ file:

setenv EMACSLOADPATH .:/user/bil/emacs:/usr/local/share/emacs/20.3/1isp
Here is how to set it using sh:

export EMACSLOADPATH
EMACSLOADPATH=. : /user/bil/emacs: /usr/local/share/emacs/20.3/1lisp

Here is an example of code you can place in your init file (see Section 40.1.2 [Init File],
page 722) to add several directories to the front of your default load-path:

(setq load-path
(append (list nil "/user/bil/emacs"
"/usr/local/lisplib"
"~/emacs")
load-path))

In this example, the path searches the current working directory first, followed then by

the ‘/user/bil/emacs’ directory, the ‘/usr/local/lisplib’ directory, and the ‘~/emacs’
directory, which are then followed by the standard directories for Lisp code.

Dumping Emacs uses a special value of load-path. If the value of load-path at the end
of dumping is unchanged (that is, still the same special value), the dumped Emacs switches
to the ordinary load-path value when it starts up, as described above. But if load-path
has any other value at the end of dumping, that value is used for execution of the dumped
Emacs also.

Therefore, if you want to change load-path temporarily for loading a few libraries in
‘site-init.el’ or ‘site-load.el’, you should bind load-path locally with let around
the calls to load.

The default value of load-path, when running an Emacs which has been installed on
the system, includes two special directories (and their subdirectories as well):

"/usr/local/share/emacs/version/site-1isp"
and

"/usr/local/share/emacs/site-1lisp"

196 GNU Emacs Lisp Reference Manual

The first one is for locally installed packages for a particular Emacs version; the second is
for locally installed packages meant for use with all installed Emacs versions.

There are several reasons why a Lisp package that works well in one Emacs version can
cause trouble in another. Sometimes packages need updating for incompatible changes in
Emacs; sometimes they depend on undocumented internal Emacs data that can change
without notice; sometimes a newer Emacs version incorporates a version of the package,
and should be used only with that version.

Emacs finds these directories’ subdirectories and adds them to load-path when it starts
up. Both immediate subdirectories and subdirectories multiple levels down are added to
load-path.

Not all subdirectories are included, though. Subdirectories whose names do not start
with a letter or digit are excluded. Subdirectories named ‘RCS’ or ‘CVS’ are excluded.
Also, a subdirectory which contains a file named ‘.nosearch’ is excluded. You can use
these methods to prevent certain subdirectories of the ‘site-1isp’ directories from being
searched.

If you run Emacs from the directory where it was built—that is, an executable that has
not been formally installed—then load-path normally contains two additional directories.
These are the 1lisp and site-lisp subdirectories of the main build directory. (Both are
represented as absolute file names.)

locate-library library &optional nosuffix path interactive-call Command
This command finds the precise file name for library library. It searches for the library
in the same way load does, and the argument nosuffix has the same meaning as in
load: don’t add suffixes ‘.elc’ or ‘.el’ to the specified name library.

If the path is non-nil, that list of directories is used instead of load-path.

When locate-library is called from a program, it returns the file name as a string.
When the user runs locate-library interactively, the argument interactive-call is t,
and this tells locate-library to display the file name in the echo area.

15.3 Loading Non-Ascii Characters

When Emacs Lisp programs contain string constants with non-ASCII characters, these
can be represented within Emacs either as unibyte strings or as multibyte strings (see
Section 33.1 [Text Representations|, page 583). Which representation is used depends on
how the file is read into Emacs. If it is read with decoding into multibyte representation, the
text of the Lisp program will be multibyte text, and its string constants will be multibyte
strings. If a file containing Latin-1 characters (for example) is read without decoding, the
text of the program will be unibyte text, and its string constants will be unibyte strings.
See Section 33.10 [Coding Systems|, page 590.

To make the results more predictable, Emacs always performs decoding into the multi-
byte representation when loading Lisp files, even if it was started with the ‘~-unibyte’
option. This means that string constants with non-ASCII characters translate into multi-
byte strings. The only exception is when a particular file specifies no decoding.

The reason Emacs is designed this way is so that Lisp programs give predictable results,
regardless of how Emacs was started. In addition, this enables programs that depend on

Chapter 15: Loading 197

using multibyte text to work even in a unibyte Emacs. Of course, such programs should be
designed to notice whether the user prefers unibyte or multibyte text, by checking default-
enable-multibyte-characters, and convert representations appropriately.

In most Emacs Lisp programs, the fact that non-ASCII strings are multibyte strings
should not be noticeable, since inserting them in unibyte buffers converts them to unibyte
automatically. However, if this does make a difference, you can force a particular Lisp file
to be interpreted as unibyte by writing ‘~*-unibyte: t;-*-"in a comment on the file’s first
line. With that designator, the file will unconditionally be interpreted as unibyte, even in an
ordinary multibyte Emacs session. This can matter when making keybindings to non-ASci1
characters written as ?vliteral.

15.4 Autoload

The autoload facility allows you to make a function or macro known in Lisp, but put off
loading the file that defines it. The first call to the function automatically reads the proper
file to install the real definition and other associated code, then runs the real definition as
if it had been loaded all along.

There are two ways to set up an autoloaded function: by calling autoload, and by
writing a special “magic” comment in the source before the real definition. autoload is
the low-level primitive for autoloading; any Lisp program can call autoload at any time.
Magic comments are the most convenient way to make a function autoload, for packages
installed along with Emacs. These comments do nothing on their own, but they serve as a
guide for the command update-file-autoloads, which constructs calls to autoload and
arranges to execute them when Emacs is built.

autoload function filename &optional docstring interactive type Function
This function defines the function (or macro) named function so as to load automat-
ically from filename. The string filename specifies the file to load to get the real
definition of function.

If filename does not contain either a directory name, or the suffix .el or .elc, then
autoload insists on adding one of these suffixes, and it will not load from a file whose
name is just filename with no added suffix.

The argument docstring is the documentation string for the function. Normally,
this should be identical to the documentation string in the function definition itself.
Specifying the documentation string in the call to autoload makes it possible to look
at the documentation without loading the function’s real definition.

If interactive is non-nil, that says function can be called interactively. This lets
completion in M-x work without loading function’s real definition. The complete
interactive specification is not given here; it’s not needed unless the user actually
calls function, and when that happens, it’s time to load the real definition.

You can autoload macros and keymaps as well as ordinary functions. Specify type
as macro if function is really a macro. Specify type as keymap if function is really a
keymap. Various parts of Emacs need to know this information without loading the
real definition.

An autoloaded keymap loads automatically during key lookup when a prefix key’s
binding is the symbol function. Autoloading does not occur for other kinds of access

198 GNU Emacs Lisp Reference Manual

to the keymap. In particular, it does not happen when a Lisp program gets the
keymap from the value of a variable and calls define-key; not even if the variable
name is the same symbol function.

If function already has a non-void function definition that is not an autoload object,
autoload does nothing and returns nil. If the function cell of function is void, or is
already an autoload object, then it is defined as an autoload object like this:

(autoload filename docstring interactive type)
For example,

(symbol-function ’run-prolog)
= (autoload "prolog" 169681 t nil)
In this case, "prolog" is the name of the file to load, 169681 refers to the documen-
tation string in the ‘emacs/etc/DOC-version’ file (see Section 24.1 [Documentation
Basics|, page 387), t means the function is interactive, and nil that it is not a macro
or a keymap.

The autoloaded file usually contains other definitions and may require or provide one
or more features. If the file is not completely loaded (due to an error in the evaluation of
its contents), any function definitions or provide calls that occurred during the load are
undone. This is to ensure that the next attempt to call any function autoloading from this
file will try again to load the file. If not for this, then some of the functions in the file might
be defined by the aborted load, but fail to work properly for the lack of certain subroutines
not loaded successfully because they come later in the file.

If the autoloaded file fails to define the desired Lisp function or macro, then an error is
signaled with data "Autoloading failed to define function function-name".

A magic autoload comment consists of ¢; ; ; ###autoload’, on a line by itself, just before
the real definition of the function in its autoloadable source file. The command M-x update-
file-autoloads writes a corresponding autoload call into ‘loaddefs.el’. Building Emacs
loads ‘loaddefs.el’ and thus calls autoload. M-x update-directory-autoloads is even
more powerful; it updates autoloads for all files in the current directory.

The same magic comment can copy any kind of form into ‘loaddefs.el’. If the form
following the magic comment is not a function-defining form or a defcustom form, it is
copied verbatim. “Function-defining forms” include define-skeleton, define-derived-
mode, define-generic-mode and define-minor-mode as well as defun and defmacro.
To save space, a defcustom form is converted to a defvar in ‘loaddefs.el’, with some
additional information if it uses :require.

You can also use a magic comment to execute a form at build time without executing
it when the file itself is loaded. To do this, write the form on the same line as the magic
comment. Since it is in a comment, it does nothing when you load the source file; but M-x
update-file-autoloads copies it to ‘loaddefs.el’, where it is executed while building
Emacs.

The following example shows how doctor is prepared for autoloading with a magic
comment:

;5 ##t#autoload

(defun doctor ()
"Switch to *doctor* buffer and start giving psychotherapy."

Chapter 15: Loading 199

(interactive)
(switch-to-buffer "xdoctorx")
(doctor-mode))
Here’s what that produces in ‘loaddefs.el’:
(autoload ’doctor "doctor" "\
Switch to *doctor* buffer and start giving psychotherapy."
t)
The backslash and newline immediately following the double-quote are a convention used
only in the preloaded uncompiled Lisp files such as ‘loaddefs.el’; they tell make-docfile
to put the documentation string in the ‘etc/DOC’ file. See Section E.1 [Building Emacs],
page 777. See also the commentary in ‘lib-src/make-docfile.c’.

15.5 Repeated Loading

You can load a given file more than once in an Emacs session. For example, after you
have rewritten and reinstalled a function definition by editing it in a buffer, you may wish
to return to the original version; you can do this by reloading the file it came from.

When you load or reload files, bear in mind that the load and load-library functions
automatically load a byte-compiled file rather than a non-compiled file of similar name.
If you rewrite a file that you intend to save and reinstall, you need to byte-compile the
new version; otherwise Emacs will load the older, byte-compiled file instead of your newer,
non-compiled file! If that happens, the message displayed when loading the file includes,
‘(compiled; note, source is newer)’, to remind you to recompile it.

When writing the forms in a Lisp library file, keep in mind that the file might be loaded
more than once. For example, think about whether each variable should be reinitialized
when you reload the library; defvar does not change the value if the variable is already
initialized. (See Section 11.5 [Defining Variables|, page 137.)

The simplest way to add an element to an alist is like this:

(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist))
But this would add multiple elements if the library is reloaded. To avoid the problem, write
this:
(or (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist)))

To add an element to a list just once, you can also use add-to-list (see Section 11.8
[Setting Variables|, page 142).

Occasionally you will want to test explicitly whether a library has already been loaded.
Here’s one way to test, in a library, whether it has been loaded before:

(defvar foo-was-loaded nil)

(unless foo-was-loaded
execute-first-time-only
(setq foo-was-loaded t))
If the library uses provide to provide a named feature, you can use featurep earlier in the
file to test whether the provide call has been executed before.

200 GNU Emacs Lisp Reference Manual

15.6 Features

provide and require are an alternative to autoload for loading files automatically.
They work in terms of named features. Autoloading is triggered by calling a specific func-
tion, but a feature is loaded the first time another program asks for it by name.

A feature name is a symbol that stands for a collection of functions, variables, etc. The
file that defines them should provide the feature. Another program that uses them may
ensure they are defined by requiring the feature. This loads the file of definitions if it hasn’t
been loaded already.

To require the presence of a feature, call require with the feature name as argument.
require looks in the global variable features to see whether the desired feature has been
provided already. If not, it loads the feature from the appropriate file. This file should call
provide at the top level to add the feature to features; if it fails to do so, require signals
an error.

For example, in ‘emacs/lisp/prolog.el’, the definition for run-prolog includes the
following code:

(defun run-prolog ()
"Run an inferior Prolog process, with I/0 via buffer *prologx."
(interactive)
(require ’comint)
(switch-to-buffer (make-comint "prolog" prolog-program-name))
(inferior-prolog-mode))

The expression (require ’comint) loads the file ‘comint.el’ if it has not yet been loaded.
This ensures that make-comint is defined. Features are normally named after the files that
provide them, so that require need not be given the file name.

The ‘comint.el’ file contains the following top-level expression:
(provide ’comint)

This adds comint to the global features list, so that (require ’comint) will henceforth
know that nothing needs to be done.

When require is used at top level in a file, it takes effect when you byte-compile that
file (see Chapter 16 [Byte Compilation|, page 205) as well as when you load it. This is in
case the required package contains macros that the byte compiler must know about. It also
avoids byte-compiler warnings for functions and variables defined in the file loaded with
require.

Although top-level calls to require are evaluated during byte compilation, provide
calls are not. Therefore, you can ensure that a file of definitions is loaded before it is byte-
compiled by including a provide followed by a require for the same feature, as in the
following example.

(provide ’my-feature) ; Ignored by byte compiler,
; evaluated by load.
(require ’my-feature) ; Evaluated by byte compiler.

The compiler ignores the provide, then processes the require by loading the file in ques-
tion. Loading the file does execute the provide call, so the subsequent require call does
nothing when the file is loaded.

Chapter 15: Loading 201

provide feature Function
This function announces that feature is now loaded, or being loaded, into the current
Emacs session. This means that the facilities associated with feature are or will be
available for other Lisp programs.

The direct effect of calling provide is to add feature to the front of the list features
if it is not already in the list. The argument feature must be a symbol. provide
returns feature.

features
= (bar bish)

(provide ’foo)
= foo
features
= (foo bar bish)

When a file is loaded to satisfy an autoload, and it stops due to an error in the
evaluating its contents, any function definitions or provide calls that occurred during
the load are undone. See Section 15.4 [Autoload], page 197.

require feature &optional filename noerror Function
This function checks whether feature is present in the current Emacs session (using
(featurep feature); see below). The argument feature must be a symbol.

If the feature is not present, then require loads filename with load. If filename is
not supplied, then the name of the symbol feature is used as the base file name to
load. However, in this case, require insists on finding feature with an added suffix;
a file whose name is just feature won’t be used.

If loading the file fails to provide feature, require signals an error, ‘Required feature
feature was not provided’, unless noerror is non-nil.

featurep feature Function
This function returns t if feature has been provided in the current Emacs session (i.e.,
if feature is a member of features.)

features Variable
The value of this variable is a list of symbols that are the features loaded in the
current Emacs session. Each symbol was put in this list with a call to provide. The
order of the elements in the features list is not significant.

15.7 Unloading

You can discard the functions and variables loaded by a library to reclaim memory for
other Lisp objects. To do this, use the function unload-feature:

unload-feature feature &optional force Command
This command unloads the library that provided feature feature. It undefines all func-
tions, macros, and variables defined in that library with defun, defalias, defsubst,

202 GNU Emacs Lisp Reference Manual

defmacro, defconst, defvar, and defcustom. It then restores any autoloads for-
merly associated with those symbols. (Loading saves these in the autoload property
of the symbol.)

Before restoring the previous definitions, unload-feature runs remove-hook to re-
move functions in the library from certain hooks. These hooks include variables whose
names end in ‘hook’ or ‘~hooks’, plus those listed in loadhist-special-hooks. This
is to prevent Emacs from ceasing to function because important hooks refer to func-
tions that are no longer defined.

If these measures are not sufficient to prevent malfunction, a library can define an
explicit unload hook. If feature-unload-hook is defined, it is run as a normal hook
before restoring the previous definitions, instead of the usual hook-removing actions.
The unload hook ought to undo all the global state changes made by the library
that might cease to work once the library is unloaded. unload-feature can cause
problems with libraries that fail to do this, so it should be used with caution.

Ordinarily, unload-feature refuses to unload a library on which other loaded libraries
depend. (A library a depends on library b if a contains a require for b.) If the
optional argument force is non-nil, dependencies are ignored and you can unload
any library.

The unload-feature function is written in Lisp; its actions are based on the variable
load-history.

load-history Variable
This variable’s value is an alist connecting library names with the names of functions
and variables they define, the features they provide, and the features they require.

Fach element is a list and describes one library. The CAR of the list is the name of
the library, as a string. The rest of the list is composed of these kinds of objects:

e Symbols that were defined by this library.
e Cons cells of the form (require . feature) indicating features that were required.

e Cons cells of the form (provide . feature) indicating features that were pro-
vided.

The value of load-history may have one element whose CAR is nil. This element
describes definitions made with eval-buffer on a buffer that is not visiting a file.

The command eval-region updates load-history, but does so by adding the symbols
defined to the element for the file being visited, rather than replacing that element. See
Section 9.3 [Eval], page 113.

Preloaded libraries don’t contribute initially to load-history. Instead, preloading
writes information about preloaded libraries into a file, which can be loaded later on to
add information to load-history describing the preloaded files. This file is installed in
exec—directory and has a name of the form ‘fns-emacsversion.el’.

See the source for the function symbol-file, for an example of code that loads this file
to find functions in preloaded libraries.

Chapter 15: Loading 203

loadhist-special-hooks Variable
This variable holds a list of hooks to be scanned before unloading a library, to remove
functions defined in the library.

15.8 Hooks for Loading

You can ask for code to be executed if and when a particular library is loaded, by calling
eval-after-load.

eval-after-load library form Function
This function arranges to evaluate form at the end of loading the library library, if
and when library is loaded. If library is already loaded, it evaluates form right away.

The library name library must exactly match the argument of load. To get the
proper results when an installed library is found by searching load-path, you should
not include any directory names in library.

An error in form does not undo the load, but does prevent execution of the rest of
form.

In general, well-designed Lisp programs should not use this feature. The clean and
modular ways to interact with a Lisp library are (1) examine and set the library’s variables
(those which are meant for outside use), and (2) call the library’s functions. If you wish to
do (1), you can do it immediately—there is no need to wait for when the library is loaded.
To do (2), you must load the library (preferably with require).

But it is OK to use eval-after-load in your personal customizations if you don’t feel
they must meet the design standards for programs meant for wider use.

after-load-alist Variable
This variable holds an alist of expressions to evaluate if and when particular libraries
are loaded. Each element looks like this:

(filename forms. ..)

The function load checks after-load-alist in order to implement eval-after-
load.

204 GNU Emacs Lisp Reference Manual

Chapter 16: Byte Compilation 205

16 Byte Compilation

Emacs Lisp has a compiler that translates functions written in Lisp into a special rep-
resentation called byte-code that can be executed more efficiently. The compiler replaces
Lisp function definitions with byte-code. When a byte-code function is called, its definition
is evaluated by the byte-code interpreter.

Because the byte-compiled code is evaluated by the byte-code interpreter, instead of
being executed directly by the machine’s hardware (as true compiled code is), byte-code
is completely transportable from machine to machine without recompilation. It is not,
however, as fast as true compiled code.

Compiling a Lisp file with the Emacs byte compiler always reads the file as multibyte
text, even if Emacs was started with ‘~-unibyte’, unless the file specifies otherwise. This is
so that compilation gives results compatible with running the same file without compilation.
See Section 15.3 [Loading Non-ASCII], page 196.

In general, any version of Emacs can run byte-compiled code produced by recent earlier
versions of Emacs, but the reverse is not true. A major incompatible change was intro-
duced in Emacs version 19.29, and files compiled with versions since that one will definitely
not run in earlier versions unless you specify a special option. See Section 16.3 [Docs and
Compilation|, page 208. In addition, the modifier bits in keyboard characters were renum-
bered in Emacs 19.29; as a result, files compiled in versions before 19.29 will not work in
subsequent versions if they contain character constants with modifier bits.

See Section 18.4 [Compilation Errors], page 254, for how to investigate errors occurring
in byte compilation.

16.1 Performance of Byte-Compiled Code

A byte-compiled function is not as efficient as a primitive function written in C, but runs
much faster than the version written in Lisp. Here is an example:
(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))
(while (> (setq n (1- n))
0))
(1ist tl1 (current-time-string))))
= silly-loop
(silly-loop 100000)
= ("Fri Mar 18 17:25:57 1994"
"Fri Mar 18 17:26:28 1994") ; 31 seconds

(byte-compile ’silly-loop)

= [Compiled code not shown]

(silly-loop 100000)

= ("Fri Mar 18 17:26:52 1994"

"Fri Mar 18 17:26:58 1994") ; 6 seconds
In this example, the interpreted code required 31 seconds to run, whereas the byte-

compiled code required 6 seconds. These results are representative, but actual results will
vary greatly.

206 GNU Emacs Lisp Reference Manual

16.2 The Compilation Functions

You can byte-compile an individual function or macro definition with the byte-compile
function. You can compile a whole file with byte-compile-file, or several files with
byte-recompile-directory or batch-byte-compile.

The byte compiler produces error messages and warnings about each file in a buffer
called ‘*Compile-Log*’. These report things in your program that suggest a problem but
are not necessarily erroneous.

Be careful when writing macro calls in files that you may someday byte-compile. Macro
calls are expanded when they are compiled, so the macros must already be defined for
proper compilation. For more details, see Section 13.3 [Compiling Macros|, page 172. If a
program does not work the same way when compiled as it does when interpreted, erroneous
macro definitions are one likely cause (see Section 13.6 [Problems with Macros|, page 174).

Normally, compiling a file does not evaluate the file’s contents or load the file. But it
does execute any require calls at top level in the file. One way to ensure that necessary
macro definitions are available during compilation is to require the file that defines them
(see Section 15.6 [Named Features|, page 200). To avoid loading the macro definition files
when someone runs the compiled program, write eval-when-compile around the require
calls (see Section 16.5 [Eval During Compile], page 209).

byte-compile symbol Function
This function byte-compiles the function definition of symbol, replacing the previous
definition with the compiled one. The function definition of symbol must be the
actual code for the function; i.e., the compiler does not follow indirection to another
symbol. byte-compile returns the new, compiled definition of symbol.

If symbol’s definition is a byte-code function object, byte-compile does nothing and
returns nil. Lisp records only one function definition for any symbol, and if that is
already compiled, non-compiled code is not available anywhere. So there is no way
to “compile the same definition again.”

(defun factorial (integer)
"Compute factorial of INTEGER."
(if (= 1 integer) 1
(* integer (factorial (1- integer)))))
= factorial

(byte-compile ’factorial)

=

#[(integer)
"~H\301U\203"H~@\301\207\302"H\303 HS!\"\207"
[integer 1 * factoriall]
4 "Compute factorial of INTEGER."]

The result is a byte-code function object. The string it contains is the actual byte-
code; each character in it is an instruction or an operand of an instruction. The vector
contains all the constants, variable names and function names used by the function,
except for certain primitives that are coded as special instructions.

Chapter 16: Byte Compilation 207

compile-defun Command
This command reads the defun containing point, compiles it, and evaluates the result.
If you use this on a defun that is actually a function definition, the effect is to install
a compiled version of that function.

byte-compile-file filename Command
This function compiles a file of Lisp code named filename into a file of byte-code. The
output file’s name is made by changing the ‘.el’ suffix into ‘.elc’; if filename does
not end in ‘.el’, it adds ‘.elc’ to the end of filename.
Compilation works by reading the input file one form at a time. If it is a definition
of a function or macro, the compiled function or macro definition is written out.
Other forms are batched together, then each batch is compiled, and written so that
its compiled code will be executed when the file is read. All comments are discarded
when the input file is read.
This command returns t. When called interactively, it prompts for the file name.

% 1ls -1 pushx

-rw-r--r—— 1 lewis 791 Oct 5 20:31 push.el
(byte-compile-file "~/emacs/push.el")
=t
% 1ls -1 pushx
-rw-r--r—— 1 lewis 791 Oct 5 20:31 push.el
-rw-rw-rw- 1 lewis 638 Oct 8 20:25 push.elc
byte-recompile-directory directory flag Command

This function recompiles every ‘.el’ file in directory that needs recompilation. A file
needs recompilation if a ¢.elc’ file exists but is older than the ‘.el’ file.

When a ‘.el’ file has no corresponding .elc’ file, flag says what to do. If it is nil,
these files are ignored. If it is non-nil, the user is asked whether to compile each such
file.

The returned value of this command is unpredictable.

batch-byte-compile Function
This function runs byte-compile-file on files specified on the command line. This
function must be used only in a batch execution of Emacs, as it kills Emacs on
completion. An error in one file does not prevent processing of subsequent files, but
no output file will be generated for it, and the Emacs process will terminate with a
nonzero status code.
% emacs -batch -f batch-byte-compile *.el

byte-code code-string data-vector max-stack Function
This function actually interprets byte-code. A byte-compiled function is actually
defined with a body that calls byte-code. Don’t call this function yourself—only the
byte compiler knows how to generate valid calls to this function.
In Emacs version 18, byte-code was always executed by way of a call to the function
byte-code. Nowadays, byte-code is usually executed as part of a byte-code function
object, and only rarely through an explicit call to byte-code.

208 GNU Emacs Lisp Reference Manual

16.3 Documentation Strings and Compilation

Functions and variables loaded from a byte-compiled file access their documentation
strings dynamically from the file whenever needed. This saves space within Emacs, and
makes loading faster because the documentation strings themselves need not be processed
while loading the file. Actual access to the documentation strings becomes slower as a
result, but this normally is not enough to bother users.

Dynamic access to documentation strings does have drawbacks:

e If you delete or move the compiled file after loading it, Emacs can no longer access the
documentation strings for the functions and variables in the file.

e If you alter the compiled file (such as by compiling a new version), then further access
to documentation strings in this file will give nonsense results.

If your site installs Emacs following the usual procedures, these problems will never
normally occur. Installing a new version uses a new directory with a different name; as
long as the old version remains installed, its files will remain unmodified in the places where
they are expected to be.

However, if you have built Emacs yourself and use it from the directory where you built
it, you will experience this problem occasionally if you edit and recompile Lisp files. When
it happens, you can cure the problem by reloading the file after recompiling it.

Byte-compiled files made with recent versions of Emacs (since 19.29) will not load into
older versions because the older versions don’t support this feature. You can turn off this
feature at compile time by setting byte-compile-dynamic-docstrings to nil; then you
can compile files that will load into older Emacs versions. You can do this globally, or for
one source file by specifying a file-local binding for the variable. One way to do that is by
adding this string to the file’s first line:

—*-byte-compile-dynamic-docstrings: nil;-*-

byte-compile-dynamic-docstrings Variable
If this is non-nil, the byte compiler generates compiled files that are set up for
dynamic loading of documentation strings.

The dynamic documentation string feature writes compiled files that use a special Lisp
reader construct, ‘#@count’. This construct skips the next count characters. It also uses the
‘#$’ construct, which stands for “the name of this file, as a string.” It is usually best not to
use these constructs in Lisp source files, since they are not designed to be clear to humans
reading the file.

16.4 Dynamic Loading of Individual Functions

When you compile a file, you can optionally enable the dynamic function loading feature
(also known as lazy loading). With dynamic function loading, loading the file doesn’t fully
read the function definitions in the file. Instead, each function definition contains a place-
holder which refers to the file. The first time each function is called, it reads the full
definition from the file, to replace the place-holder.

Chapter 16: Byte Compilation 209

The advantage of dynamic function loading is that loading the file becomes much faster.
This is a good thing for a file which contains many separate user-callable functions, if using
one of them does not imply you will probably also use the rest. A specialized mode which
provides many keyboard commands often has that usage pattern: a user may invoke the
mode, but use only a few of the commands it provides.

The dynamic loading feature has certain disadvantages:

e If you delete or move the compiled file after loading it, Emacs can no longer load the
remaining function definitions not already loaded.

e If you alter the compiled file (such as by compiling a new version), then trying to load
any function not already loaded will yield nonsense results.

These problems will never happen in normal circumstances with installed Emacs files.
But they are quite likely to happen with Lisp files that you are changing. The easiest
way to prevent these problems is to reload the new compiled file immediately after each
recompilation.

The byte compiler uses the dynamic function loading feature if the variable byte-
compile-dynamic is non-nil at compilation time. Do not set this variable globally, since
dynamic loading is desirable only for certain files. Instead, enable the feature for specific
source files with file-local variable bindings. For example, you could do it by writing this
text in the source file’s first line:

—-*-byte-compile-dynamic: t;-*-

byte-compile-dynamic Variable
If this is non-nil, the byte compiler generates compiled files that are set up for
dynamic function loading.

fetch-bytecode function Function
This immediately finishes loading the definition of function from its byte-compiled
file, if it is not fully loaded already. The argument function may be a byte-code
function object or a function name.

16.5 Evaluation During Compilation

These features permit you to write code to be evaluated during compilation of a program.

eval-and-compile body Special Form
This form marks body to be evaluated both when you compile the containing code
and when you run it (whether compiled or not).

You can get a similar result by putting body in a separate file and referring to that
file with require. That method is preferable when body is large.

eval-when-compile body Special Form
This form marks body to be evaluated at compile time but not when the compiled
program is loaded. The result of evaluation by the compiler becomes a constant which
appears in the compiled program. If you load the source file, rather than compiling
it, body is evaluated normally.

210 GNU Emacs Lisp Reference Manual

Common Lisp Note: At top level, this is analogous to the Common Lisp idiom (eval-
when (compile eval) ...). Elsewhere, the Common Lisp ‘#.’ reader macro (but not
when interpreting) is closer to what eval-when-compile does.

16.6 Byte-Code Function Objects

Byte-compiled functions have a special data type: they are byte-code function objects.

Internally, a byte-code function object is much like a vector; however, the evaluator
handles this data type specially when it appears as a function to be called. The printed
representation for a byte-code function object is like that for a vector, with an additional
‘#’ before the opening ‘[’.

A byte-code function object must have at least four elements; there is no maximum
number, but only the first six elements have any normal use. They are:

arglist The list of argument symbols.
byte-code The string containing the byte-code instructions.

constants The vector of Lisp objects referenced by the byte code. These include symbols
used as function names and variable names.

stacksize The maximum stack size this function needs.

docstring The documentation string (if any); otherwise, nil. The value may be a number
or a list, in case the documentation string is stored in a file. Use the function
documentation to get the real documentation string (see Section 24.2 [Access-
ing Documentation], page 388).

interactive
The interactive spec (if any). This can be a string or a Lisp expression. It is
nil for a function that isn’t interactive.

Here’s an example of a byte-code function object, in printed representation. It is the
definition of the command backward-sexp.
#[(&optional arg)
"~H\204"F~0@\301"P\302"H[!\207"
l[arg 1 forward-sexp]
2
254435
"pll]
The primitive way to create a byte-code object is with make-byte-code:

make-byte-code &rest elements Function
This function constructs and returns a byte-code function object with elements as its
elements.

You should not try to come up with the elements for a byte-code function yourself,
because if they are inconsistent, Emacs may crash when you call the function. Always leave
it to the byte compiler to create these objects; it makes the elements consistent (we hope).

You can access the elements of a byte-code object using aref; you can also use vconcat
to create a vector with the same elements.

Chapter 16: Byte Compilation 211

16.7 Disassembled Byte-Code

People do not write byte-code; that job is left to the byte compiler. But we provide
a disassembler to satisfy a cat-like curiosity. The disassembler converts the byte-compiled
code into humanly readable form.

The byte-code interpreter is implemented as a simple stack machine. It pushes values
onto a stack of its own, then pops them off to use them in calculations whose results are
themselves pushed back on the stack. When a byte-code function returns, it pops a value
off the stack and returns it as the value of the function.

In addition to the stack, byte-code functions can use, bind, and set ordinary Lisp vari-
ables, by transferring values between variables and the stack.

disassemble object &optional stream Command
This function prints the disassembled code for object. If stream is supplied, then out-
put goes there. Otherwise, the disassembled code is printed to the stream standard-
output. The argument object can be a function name or a lambda expression.

As a special exception, if this function is used interactively, it outputs to a buffer
named ‘*Disassemblex*’.

Here are two examples of using the disassemble function. We have added explanatory
comments to help you relate the byte-code to the Lisp source; these do not appear in the
output of disassemble. These examples show unoptimized byte-code. Nowadays byte-code
is usually optimized, but we did not want to rewrite these examples, since they still serve
their purpose.

(defun factorial (integer)
"Compute factorial of an integer."
(if (= 1 integer) 1
(x integer (factorial (1- integer)))))
= factorial

(factorial 4)
= 24

(disassemble ’factorial)

- byte-code for factorial:
doc: Compute factorial of an integer.
args: (integer)

0 constant 1 ; Push 1 onto stack.

1 varref integer ; Get value of integer
; from the environment
; and push the value
; onto the stack.

2 eqlsign ; Pop top two values off stack,
; compare them,
; and push result onto stack.

212

10

11
12

13

14

15

16

17

goto-if-nil 10

constant 1

goto 17

constant *

varref integer

constant factorial

varref integer
subl

call 1

call 2
return

= nil

GNU Emacs Lisp Reference Manual

; Pop and test top of stack;

if nil, go to 10,
else continue.

; Push 1 onto top of stack.

; Go to 17 (in this case, 1 will be

returned by the function).

; Push symbol * onto stack.

; Push value of integer onto stack.

; Push factorial onto stack.
; Push value of integer onto stack.

; Pop integer, decrement value,

push new value onto stack.

; Stack now contains:

— decremented value of integer
— factorial

— value of integer

— %

; Call function factorial using

the first (i.e., the top) element
of the stack as the argument;
push returned value onto stack.

; Stack now contains:

— result of recursive
call to factorial

— value of integer

— %

; Using the first two

(i.e., the top two)

elements of the stack

as arguments,

call the function *,

pushing the result onto the stack.

; Return the top element

of the stack.

The silly-loop function is somewhat more complex:

Chapter 16: Byte Compilation 213

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))
(while (> (setq n (1- n))
0))
(1ist t1 (current-time-string))))
= silly-loop

(disassemble ’silly-loop)

- byte-code for silly-loop:
doc: Return time before and after N iterations of a loop.
args: (n)

0 constant current-time-string ; Push
; current-time-string
; onto top of stack.

1 call 0 ; Call current-time-string
; with no argument,
; pushing result onto stack.

2 varbind t1 ; Pop stack and bind t1
; to popped value.

3 varref n ; Get value of n from
; the environment and push
; the value onto the stack.

4 subl ; Subtract 1 from top of stack.

5 dup ; Duplicate the top of the stack;
; i.e., copy the top of
; the stack and push the
; copy onto the stack.

6 varset n ; Pop the top of the stack,
; and bind n to the value.

; In effect, the sequence dup varset
; copies the top of the stack

; into the value of n

; without popping it.

7 constant 0O ; Push 0 onto stack.

8 gtr ; Pop top two values off stack,
; test if n is greater than 0
; and push result onto stack.

9 goto-if-nil-else-pop 17 ; Goto 17 ifn <=0
; (this exits the while loop).
; else pop top of stack
; and continue

214

12

13

14

17

18

19

20

21

22

23

constant nil

discard

goto 3

discard

varref t1

b
I
b
I
I
I
b
b
b
b
b
b

b

GNU Emacs Lisp Reference Manual

; Push nil onto stack

(this is the body of the loop).

; Discard result of the body

of the loop (a while loop
is always evaluated for
its side effects).

Jump back to beginning
of while loop.

Discard result of while loop
by popping top of stack.
This result is the value nil that
was not popped by the goto at 9.

; Push value of t1 onto stack.

constant current-time-string ; Push

call 0

list2

unbind 1

return

= nil

b

b
b
I

b

b

; current-time-string
; onto top of stack.

; Call current-time-string again.

; Pop top two elements off stack,

create a list of them,
and push list onto stack.

; Unbind t1 in local environment.

; Return value of the top of stack.

Chapter 17: Advising Emacs Lisp Functions 215

17 Advising Emacs Lisp Functions

The advice feature lets you add to the existing definition of a function, by advising the
function. This is a clean method for a library to customize functions defined by other parts
of Emacs—cleaner than redefining the whole function.

Each function can have multiple pieces of advice, separately defined. Each defined piece
of advice can be enabled or disabled explicitly. All the enabled pieces of advice for any
given function actually take effect when you activate advice for that function, or when you
define or redefine the function. Note that enabling a piece of advice and activating advice
for a function are not the same thing.

Usage Note: Advice is useful for altering the behavior of existing calls to an existing
function. If you want the new behavior for new calls, or for key bindings, it is cleaner to
define a new function (or a new command) which uses the existing function.

17.1 A Simple Advice Example

The command next-1line moves point down vertically one or more lines; it is the stan-
dard binding of C-n. When used on the last line of the buffer, this command inserts a
newline to create a line to move to if next-line-add-newlines is non-nil (its default is
nil.)

Suppose you wanted to add a similar feature to previous-line, which would insert a

new line at the beginning of the buffer for the command to move to. How could you do
this?

You could do it by redefining the whole function, but that is not modular. The advice
feature provides a cleaner alternative: you can effectively add your code to the existing
function definition, without actually changing or even seeing that definition. Here is how
to do this:

(defadvice previous-line (before next-line-at-end (arg))
"Insert an empty line when moving up from the top line."
(if (and next-line-add-newlines (= arg 1)

(save-excursion (beginning-of-line) (bobp)))
(progn
(beginning-of-line)
(newline))))

This expression defines a piece of advice for the function previous-line. This piece of
advice is named next-line-at-end, and the symbol before says that it is before-advice
which should run before the regular definition of previous-line. (arg) specifies how the
advice code can refer to the function’s arguments.

When this piece of advice runs, it creates an additional line, in the situation where that
is appropriate, but does not move point to that line. This is the correct way to write the
advice, because the normal definition will run afterward and will move back to the newly
inserted line.

Defining the advice doesn’t immediately change the function previous-line. That
happens when you activate the advice, like this:

216 GNU Emacs Lisp Reference Manual

(ad-activate ’previous-line)

This is what actually begins to use the advice that has been defined so far for the function
previous-line. Henceforth, whenever that function is run, whether invoked by the user
with C-p or M-x, or called from Lisp, it runs the advice first, and its regular definition
second.

This example illustrates before-advice, which is one class of advice: it runs before the
function’s base definition. There are two other advice classes: after-advice, which runs after
the base definition, and around-advice, which lets you specify an expression to wrap around
the invocation of the base definition.

17.2 Defining Advice

To define a piece of advice, use the macro defadvice. A call to defadvice has the
following syntax, which is based on the syntax of defun and defmacro, but adds more:
(defadvice function (class name
[position] [arglist]
flags...)
[documentation-string]
[interactive-form]
body-forms. . .)
Here, function is the name of the function (or macro or special form) to be advised. From
now on, we will write just “function” when describing the entity being advised, but this
always includes macros and special forms.

class specifies the class of the advice—one of before, after, or around. Before-advice
runs before the function itself; after-advice runs after the function itself; around-advice is
wrapped around the execution of the function itself. After-advice and around-advice can
override the return value by setting ad-return-value.

ad-return-value Variable
While advice is executing, after the function’s original definition has been executed,
this variable holds its return value, which will ultimately be returned to the caller
after finishing all the advice. After-advice and around-advice can arrange to return
some other value by storing it in this variable.

The argument name is the name of the advice, a non-nil symbol. The advice name
uniquely identifies one piece of advice, within all the pieces of advice in a particular class
for a particular function. The name allows you to refer to the piece of advice—to redefine
it, or to enable or disable it.

In place of the argument list in an ordinary definition, an advice definition calls for
several different pieces of information.

The optional position specifies where, in the current list of advice of the specified class,
this new advice should be placed. It should be either first, last or a number that specifies
a zero-based position (first is equivalent to 0). If no position is specified, the default is
first. Position values outside the range of existing positions in this class are mapped to
the beginning or the end of the range, whichever is closer. The position value is ignored
when redefining an existing piece of advice.

Chapter 17: Advising Emacs Lisp Functions 217

The optional arglist can be used to define the argument list for the sake of advice.
This becomes the argument list of the combined definition that is generated in order to
run the advice (see Section 17.10 [Combined Definition|, page 224). Therefore, the advice
expressions can use the argument variables in this list to access argument values.

The argument list used in advice need not be the same as the argument list used in
the original function, but must be compatible with it, so that it can handle the ways the
function is actually called. If two pieces of advice for a function both specify an argument
list, they must specify the same argument list.

See Section 17.8 [Argument Access in Advice|, page 222, for more information about
argument lists and advice, and a more flexible way for advice to access the arguments.

The remaining elements, flags, are symbols that specify further information about how
to use this piece of advice. Here are the valid symbols and their meanings:

activate Activate the advice for function now. Changes in a function’s advice always
take effect the next time you activate advice for the function; this flag says to
do so, for function, immediately after defining this piece of advice.

This flag has no immediate effect if function itself is not defined yet (a situation
known as forward advice), because it is impossible to activate an undefined
function’s advice. However, defining function will automatically activate its
advice.

protect Protect this piece of advice against non-local exits and errors in preceding code
and advice. Protecting advice places it as a cleanup in an unwind-protect
form, so that it will execute even if the previous code gets an error or uses
throw. See Section 10.5.4 [Cleanups|, page 131.

compile Compile the combined definition that is used to run the advice. This flag is
ignored unless activate is also specified. See Section 17.10 [Combined Defini-
tion], page 224.

disable Initially disable this piece of advice, so that it will not be used unless subse-
quently explicitly enabled. See Section 17.6 [Enabling Advice], page 221.

preactivate
Activate advice for function when this defadvice is compiled or macroex-
panded. This generates a compiled advised definition according to the cur-
rent advice state, which will be used during activation if appropriate. See
Section 17.7 [Preactivation], page 221.

This is useful only if this defadvice is byte-compiled.

The optional documentation-string serves to document this piece of advice. When advice
is active for function, the documentation for function (as returned by documentation)
combines the documentation strings of all the advice for function with the documentation
string of its original function definition.

The optional interactive-form form can be supplied to change the interactive behavior
of the original function. If more than one piece of advice has an interactive-form, then the
first one (the one with the smallest position) found among all the advice takes precedence.

The possibly empty list of body-forms specifies the body of the advice. The body of an
advice can access or change the arguments, the return value, the binding environment, and
perform any other kind of side effect.

218 GNU Emacs Lisp Reference Manual

Warning: When you advise a macro, keep in mind that macros are expanded when a
program is compiled, not when a compiled program is run. All subroutines used by the
advice need to be available when the byte compiler expands the macro.

ad-unadvise function Command
This command deletes the advice from function.

ad-unadvise-all Command
This command deletes all pieces of advice from all functions.

17.3 Around-Advice

Around-advice lets you “wrap” a Lisp expression “around” the original function defini-
tion. You specify where the original function definition should go by means of the special
symbol ad-do-it. Where this symbol occurs inside the around-advice body, it is replaced
with a progn containing the forms of the surrounded code. Here is an example:

(defadvice foo (around foo-around)
"Ignore case in ‘foo’."
(let ((case-fold-search t))
ad-do-it))
Its effect is to make sure that case is ignored in searches when the original definition of foo
is run.

ad-do-it Variable
This is not really a variable, but it is somewhat used like one in around-advice. It
specifies the place to run the function’s original definition and other “earlier” around-
advice.

If the around-advice does not use ad-do-it, then it does not run the original function
definition. This provides a way to override the original definition completely. (It also
overrides lower-positioned pieces of around-advice).

If the around-advice uses ad-do-it more than once, the original definition is run at each
place. In this way, around-advice can execute the original definition (and lower-positioned
pieces of around-advice) several times. Another way to do that is by using ad-do-it inside
of a loop.

17.4 Computed Advice

The macro defadvice resembles defun in that the code for the advice, and all other
information about it, are explicitly stated in the source code. You can also create advice
whose details are computed, using the function ad-add-advice.

ad-add-advice function advice class position Function
Calling ad-add-advice adds advice as a piece of advice to function in class class.
The argument advice has this form:

Chapter 17: Advising Emacs Lisp Functions 219

(name protected enabled definition)

Here protected and enabled are flags, and definition is the expression that says what
the advice should do. If enabled is nil, this piece of advice is initially disabled (see
Section 17.6 [Enabling Advice], page 221).

If function already has one or more pieces of advice in the specified class, then position
specifies where in the list to put the new piece of advice. The value of position can
either be first, last, or a number (counting from 0 at the beginning of the list).
Numbers outside the range are mapped to the beginning or the end of the range,
whichever is closer. The position value is ignored when redefining an existing piece
of advice.

If function already has a piece of advice with the same name, then the position
argument is ignored and the old advice is replaced with the new one.

17.5 Activation of Advice

By default, advice does not take effect when you define it—only when you activate
advice for the function that was advised. You can request the activation of advice for a
function when you define the advice, by specifying the activate flag in the defadvice.
But normally you activate the advice for a function by calling the function ad-activate or
one of the other activation commands listed below.

Separating the activation of advice from the act of defining it permits you to add several
pieces of advice to one function efficiently, without redefining the function over and over
as each advice is added. More importantly, it permits defining advice for a function before
that function is actually defined.

When a function’s advice is first activated, the function’s original definition is saved,
and all enabled pieces of advice for that function are combined with the original definition
to make a new definition. (Pieces of advice that are currently disabled are not used; see
Section 17.6 [Enabling Advice|, page 221.) This definition is installed, and optionally byte-
compiled as well, depending on conditions described below.

In all of the commands to activate advice, if compile is t, the command also compiles
the combined definition which implements the advice.

ad-activate function &optional compile Command
This command activates all the advice defined for function.

To activate advice for a function whose advice is already active is not a no-op. It is
a useful operation which puts into effect any changes in that function’s advice since the
previous activation of advice for that function.

ad-deactivate function Command
This command deactivates the advice for function.

ad-update function &optional compile Command
This command activates the advice for function if its advice is already activated. This
is useful if you change the advice.

220 GNU Emacs Lisp Reference Manual

ad-activate-all &optional compile Command
This command activates the advice for all functions.

ad-deactivate-all Command
This command deactivates the advice for all functions.

ad-update-all &optional compile Command
This command activates the advice for all functions whose advice is already activated.
This is useful if you change the advice of some functions.

ad-activate-regexp regexp &optional compile Command
This command activates all pieces of advice whose names match regexp. More pre-
cisely, it activates all advice for any function which has at least one piece of advice
that matches regexp.

ad-deactivate-regexp regexp Command
This command deactivates all pieces of advice whose names match regexp. More
precisely, it deactivates all advice for any function which has at least one piece of
advice that matches regexp.

ad-update-regexp regexp &optional compile Command
This command activates pieces of advice whose names match regexp, but only those
for functions whose advice is already activated.

Reactivating a function’s advice is useful for putting into effect all the changes that
have been made in its advice (including enabling and disabling specific pieces of ad-
vice; see Section 17.6 [Enabling Advice], page 221) since the last time it was activated.

ad-start-advice Command
Turn on automatic advice activation when a function is defined or redefined. If you
turn on this mode, then advice takes effect immediately when defined.

ad-stop-advice Command
Turn off automatic advice activation when a function is defined or redefined.

ad-default-compilation-action User Option
This variable controls whether to compile the combined definition that results from
activating advice for a function.

A value of always specifies to compile unconditionally. A value of nil specifies never
compile the advice.

A value of maybe specifies to compile if the byte-compiler is already loaded. A value of
like-original specifies to compile the advice if the original definition of the advised
function is compiled or a built-in function.

This variable takes effect only if the compile argument of ad-activate (or any of the

above functions) was supplied as nil. If that argument is non-nil, that means to
compile the advice regardless.

Chapter 17: Advising Emacs Lisp Functions 221

If the advised definition was constructed during “preactivation” (see Section 17.7 [Pre-
activation|, page 221), then that definition must already be compiled, because it was
constructed during byte-compilation of the file that contained the defadvice with the
preactivate flag.

17.6 Enabling and Disabling Advice

Each piece of advice has a flag that says whether it is enabled or not. By enabling or
disabling a piece of advice, you can turn it on and off without having to undefine and redefine
it. For example, here is how to disable a particular piece of advice named my-advice for
the function foo:

(ad-disable-advice ’foo ’before ’my-advice)

This function by itself only changes the enable flag for a piece of advice. To make the
change take effect in the advised definition, you must activate the advice for foo again:

(ad-activate ’foo)

ad-disable-advice function class name Command
This command disables the piece of advice named name in class class on function.

ad-enable-advice function class name Command
This command enables the piece of advice named name in class class on function.

You can also disable many pieces of advice at once, for various functions, using a regular
expression. As always, the changes take real effect only when you next reactivate advice for
the functions in question.

ad-disable-regexp regexp Command
This command disables all pieces of advice whose names match regexp, in all classes,
on all functions.

ad-enable-regexp regexp Command
This command enables all pieces of advice whose names match regexp, in all classes,
on all functions.

17.7 Preactivation

Constructing a combined definition to execute advice is moderately expensive. When a
library advises many functions, this can make loading the library slow. In that case, you
can use preactivation to construct suitable combined definitions in advance.

To use preactivation, specify the preactivate flag when you define the advice with
defadvice. This defadvice call creates a combined definition which embodies this piece
of advice (whether enabled or not) plus any other currently enabled advice for the same
function, and the function’s own definition. If the defadvice is compiled, that compiles
the combined definition also.

When the function’s advice is subsequently activated, if the enabled advice for the func-
tion matches what was used to make this combined definition, then the existing combined

222 GNU Emacs Lisp Reference Manual

definition is used, thus avoiding the need to construct one. Thus, preactivation never causes
wrong results—but it may fail to do any good, if the enabled advice at the time of activation
doesn’t match what was used for preactivation.

Here are some symptoms that can indicate that a preactivation did not work properly,
because of a mismatch.

e Activation of the advised function takes longer than usual.
e The byte-compiler gets loaded while an advised function gets activated.

e byte-compile is included in the value of features even though you did not ever
explicitly use the byte-compiler.

Compiled preactivated advice works properly even if the function itself is not defined
until later; however, the function needs to be defined when you compile the preactivated
advice.

There is no elegant way to find out why preactivated advice is not being used. What you
can do is to trace the function ad-cache-id-verification-code (with the function trace-
function-background) before the advised function’s advice is activated. After activation,
check the value returned by ad-cache-id-verification-code for that function: verified
means that the preactivated advice was used, while other values give some information about
why they were considered inappropriate.

Warning: There is one known case that can make preactivation fail, in that a precon-
structed combined definition is used even though it fails to match the current state of advice.
This can happen when two packages define different pieces of advice with the same name,
in the same class, for the same function. But you should avoid that anyway.

17.8 Argument Access in Advice

The simplest way to access the arguments of an advised function in the body of a piece
of advice is to use the same names that the function definition uses. To do this, you need
to know the names of the argument variables of the original function.

While this simple method is sufficient in many cases, it has a disadvantage: it is not
robust, because it hard-codes the argument names into the advice. If the definition of the
original function changes, the advice might break.

Another method is to specify an argument list in the advice itself. This avoids the need
to know the original function definition’s argument names, but it has a limitation: all the
advice on any particular function must use the same argument list, because the argument
list actually used for all the advice comes from the first piece of advice for that function.

A more robust method is to use macros that are translated into the proper access forms
at activation time, i.e., when constructing the advised definition. Access macros access
actual arguments by position regardless of how these actual arguments get distributed onto
the argument variables of a function. This is robust because in Emacs Lisp the meaning of
an argument is strictly determined by its position in the argument list.

ad-get-arg position Macro
This returns the actual argument that was supplied at position.

Chapter 17: Advising Emacs Lisp Functions 223

ad-get-args position Macro
This returns the list of actual arguments supplied starting at position.

ad-set-arg position value Macro
This sets the value of the actual argument at position to value

ad-set-args position value-list Macro
This sets the list of actual arguments starting at position to value-list.

Now an example. Suppose the function foo is defined as
(defun foo (x y &optional z &rest r) ...)
and is then called with
(foo 01 2345 6)
which means that x is 0, y is 1, z is 2 and r is (3 4 5 6) within the body of foo. Here is
what ad-get-arg and ad-get-args return in this case:
(ad-get-arg 0) = 0
(ad-get-arg 1) = 1
(ad-get-arg 2) = 2
(ad-get-arg 3) = 3
(ad-get-args 2) = (2 3 4 5 6)
(ad-get-args 4) = (4 5 6)
Setting arguments also makes sense in this example:
(ad-set-arg 5 "five")
has the effect of changing the sixth argument to "five". If this happens in advice executed
before the body of foo is run, then r will be (3 4 "five" 6) within that body.
Here is an example of setting a tail of the argument list:
(ad-set-args 0 (56 4 321 0))
If this happens in advice executed before the body of foo is run, then within that body, x
will be 5, y will be 4, z will be 3, and r will be (2 1 0) inside the body of foo.
These argument constructs are not really implemented as Lisp macros. Instead they are
implemented specially by the advice mechanism.

17.9 Definition of Subr Argument Lists

When the advice facility constructs the combined definition, it needs to know the argu-
ment list of the original function. This is not always possible for primitive functions. When
advice cannot determine the argument list, it uses (&rest ad-subr-args), which always
works but is inefficient because it constructs a list of the argument values. You can use
ad-define-subr-args to declare the proper argument names for a primitive function:

ad-define-subr-args function arglist Function
This function specifies that arglist should be used as the argument list for function
function.

For example,
(ad-define-subr-args ’fset ’(sym newdef))
specifies the argument list for the function fset.

224 GNU Emacs Lisp Reference Manual

17.10 The Combined Definition

Suppose that a function has n pieces of before-advice (numbered from 0 through n—1),
m pieces of around-advice and k pieces of after-advice. Assuming no piece of advice is
protected, the combined definition produced to implement the advice for a function looks
like this:

(lambda arglist
[[advised-docstring] [(interactive ...)]]
(let (ad-return-value)
before-0-body-form. . .

before-n—1-body-form. . .
around-0-body-form. . .
around-1-body-form. . .

around-m—1-body-form. . .
(setq ad-return-value
apply original definition to arglist)
end-of-around-m—1-body-form. . .

end-of-around-1-body-form. . .
end-of-around-0-body-form. . .
after-0-body-form. . .

after-k—1-body-form. . .
ad-return-value))

Macros are redefined as macros, which means adding macro to the beginning of the
combined definition.

The interactive form is present if the original function or some piece of advice specifies
one. When an interactive primitive function is advised, advice uses a special method: it
calls the primitive with call-interactively so that it will read its own arguments. In
this case, the advice cannot access the arguments.

The body forms of the various advice in each class are assembled according to their
specified order. The forms of around-advice I are included in one of the forms of around-
advice I — 1.

The innermost part of the around advice onion is
apply original definition to arglist
whose form depends on the type of the original function. The variable ad-return-value is
set to whatever this returns. The variable is visible to all pieces of advice, which can access
and modify it before it is actually returned from the advised function.
The semantic structure of advised functions that contain protected pieces of advice is the
same. The only difference is that unwind-protect forms ensure that the protected advice

gets executed even if some previous piece of advice had an error or a non-local exit. If any
around-advice is protected, then the whole around-advice onion is protected as a result.

Chapter 18: Debugging Lisp Programs 225

18 Debugging Lisp Programs

There are three ways to investigate a problem in an Emacs Lisp program, depending on
what you are doing with the program when the problem appears.

e If the problem occurs when you run the program, you can use a Lisp debugger to
investigate what is happening during execution. In addition to the ordinary debugger,
FEmacs comes with a source level debugger, Edebug. This chapter describes both of
them.

e If the problem is syntactic, so that Lisp cannot even read the program, you can use
the Emacs facilities for editing Lisp to localize it.

e If the problem occurs when trying to compile the program with the byte compiler, you
need to know how to examine the compiler’s input buffer.

Another useful debugging tool is the dribble file. When a dribble file is open, Emacs
copies all keyboard input characters to that file. Afterward, you can examine the file to
find out what input was used. See Section 40.8 [Terminal Input], page 738.

For debugging problems in terminal descriptions, the open-termscript function can be
useful. See Section 40.9 [Terminal Output], page 742.

18.1 The Lisp Debugger

The ordinary Lisp debugger provides the ability to suspend evaluation of a form. While
evaluation is suspended (a state that is commonly known as a break), you may examine the
run time stack, examine the values of local or global variables, or change those values. Since
a break is a recursive edit, all the usual editing facilities of Emacs are available; you can
even run programs that will enter the debugger recursively. See Section 21.12 [Recursive
Editing], page 319.

18.1.1 Entering the Debugger on an Error

The most important time to enter the debugger is when a Lisp error happens. This
allows you to investigate the immediate causes of the error.

However, entry to the debugger is not a normal consequence of an error. Many commands
frequently cause Lisp errors when invoked inappropriately (such as C-f at the end of the
buffer), and during ordinary editing it would be very inconvenient to enter the debugger
each time this happens. So if you want errors to enter the debugger, set the variable debug-
on-error to non-nil. (The command toggle-debug-on-error provides an easy way to

do this.)

debug-on-error User Option
This variable determines whether the debugger is called when an error is signaled and
not handled. If debug-on-error is t, all kinds of errors call the debugger (except
those listed in debug-ignored-errors). If it is nil, none call the debugger.

The value can also be a list of error conditions that should call the debugger. For
example, if you set it to the list (void-variable), then only errors about a variable
that has no value invoke the debugger.

226 GNU Emacs Lisp Reference Manual

When this variable is non-nil, Emacs does not create an error handler around process
filter functions and sentinels. Therefore, errors in these functions also invoke the
debugger. See Chapter 37 [Processes|, page 641.

debug-ignored-errors User Option

This variable specifies certain kinds of errors that should not enter the debugger. Its
value is a list of error condition symbols and/or regular expressions. If the error has
any of those condition symbols, or if the error message matches any of the regular
expressions, then that error does not enter the debugger, regardless of the value of
debug-on-error.

The normal value of this variable lists several errors that happen often during editing
but rarely result from bugs in Lisp programs. However, “rarely” is not “never”; if your
program fails with an error that matches this list, you will need to change this list in
order to debug the error. The easiest way is usually to set debug-ignored-errors
to nil.

debug-on-signal User Option

Normally, errors that are caught by condition-case never run the debugger, even
if debug-on-error is non-nil. In other words, condition-case gets a chance to
handle the error before the debugger gets a chance.

If you set debug-on-signal to a non-nil value, then the debugger gets the first chance
at every error; an error will invoke the debugger regardless of any condition-case,
if it fits the criteria specified by the values of debug-on-error and debug-ignored-
errors.

Warning: This variable is strong medicine! Various parts of Emacs handle errors in
the normal course of affairs, and you may not even realize that errors happen there.
If you set debug-on-signal to a non-nil value, those errors will enter the debugger.

Warning: debug-on-signal has no effect when debug-on-error is nil.

To debug an error that happens during loading of the init file, use the option
‘-—debug-init’. This binds debug-on-error to t while loading the init file, and bypasses
the condition-case which normally catches errors in the init file.

If your init file sets debug-on-error, the effect may not last past the end of loading the
init file. (This is an undesirable byproduct of the code that implements the ‘--debug-init’
command line option.) The best way to make the init file set debug-on-error permanently
is with after-init-hook, like this:

(add-hook ’after-init-hook
(lambda () (setq debug-on-error t)))

18.1.2 Debugging Infinite Loops

When a program loops infinitely and fails to return, your first problem is to stop the
loop. On most operating systems, you can do this with C-g, which causes a quit.

Ordinary quitting gives no information about why the program was looping. To get more
information, you can set the variable debug-on-quit to non-nil. Quitting with C-g is not

Chapter 18: Debugging Lisp Programs 227

considered an error, and debug-on-error has no effect on the handling of C-g. Likewise,
debug-on-quit has no effect on errors.

Once you have the debugger running in the middle of the infinite loop, you can proceed
from the debugger using the stepping commands. If you step through the entire loop, you
will probably get enough information to solve the problem.

debug-on-quit User Option
This variable determines whether the debugger is called when quit is signaled and
not handled. If debug-on-quit is non-nil, then the debugger is called whenever you
quit (that is, type C-g). If debug-on-quit is nil, then the debugger is not called
when you quit. See Section 21.10 [Quitting], page 316.

18.1.3 Entering the Debugger on a Function Call

To investigate a problem that happens in the middle of a program, one useful technique is
to enter the debugger whenever a certain function is called. You can do this to the function
in which the problem occurs, and then step through the function, or you can do this to a
function called shortly before the problem, step quickly over the call to that function, and
then step through its caller.

debug-on-entry function-name Command
This function requests function-name to invoke the debugger each time it is called. It
works by inserting the form (debug ’debug) into the function definition as the first
form.

Any function defined as Lisp code may be set to break on entry, regardless of whether
it is interpreted code or compiled code. If the function is a command, it will enter
the debugger when called from Lisp and when called interactively (after the reading
of the arguments). You can’t debug primitive functions (i.e., those written in C) this
way.

When debug-on-entry is called interactively, it prompts for function-name in the
minibuffer. If the function is already set up to invoke the debugger on entry, debug-
on-entry does nothing. debug-on-entry always returns function-name.

Note: if you redefine a function after using debug-on-entry on it, the code to enter
the debugger is discarded by the redefinition. In effect, redefining the function cancels
the break-on-entry feature for that function.

(defun fact (n)
(if (zerop n) 1
(* n (fact (1- n)))))
= fact
(debug-on-entry ’fact)
= fact
(fact 3)

228 GNU Emacs Lisp Reference Manual

—————— Buffer: *Backtracex ---—--—-

Entering:

* fact(3)
eval-region(4870 4878 t)
byte-code("...")
eval-last-sexp(nil)
(let ...)

eval-insert-last-sexp(nil)
* call-interactively(eval-insert-last-sexp)
—————— Buffer: *Backtracex --——---

(symbol-function ’fact)
= (lambda (n)
(debug (quote debug))
(if (zerop n) 1 (x n (fact (1- n)))))

cancel-debug-on-entry function-name Command
This function undoes the effect of debug-on-entry on function-name. When called
interactively, it prompts for function-name in the minibuffer. If function-name is nil
or the empty string, it cancels break-on-entry for all functions.

Calling cancel-debug-on-entry does nothing to a function which is not currently
set up to break on entry. It always returns function-name.

18.1.4 Explicit Entry to the Debugger

You can cause the debugger to be called at a certain point in your program by writing the
expression (debug) at that point. To do this, visit the source file, insert the text ‘(debug)’
at the proper place, and type C-M-x. Warning: if you do this for temporary debugging
purposes, be sure to undo this insertion before you save the file!

The place where you insert ‘(debug)’ must be a place where an additional form can
be evaluated and its value ignored. (If the value of (debug) isn’t ignored, it will alter the
execution of the program!) The most common suitable places are inside a progn or an
implicit progn (see Section 10.1 [Sequencing], page 117).

18.1.5 Using the Debugger

When the debugger is entered, it displays the previously selected buffer in one window
and a buffer named ‘*Backtrace*’ in another window. The backtrace buffer contains one
line for each level of Lisp function execution currently going on. At the beginning of this
buffer is a message describing the reason that the debugger was invoked (such as the error
message and associated data, if it was invoked due to an error).

The backtrace buffer is read-only and uses a special major mode, Debugger mode, in
which letters are defined as debugger commands. The usual Emacs editing commands are
available; thus, you can switch windows to examine the buffer that was being edited at the
time of the error, switch buffers, visit files, or do any other sort of editing. However, the
debugger is a recursive editing level (see Section 21.12 [Recursive Editing], page 319) and
it is wise to go back to the backtrace buffer and exit the debugger (with the g command)

Chapter 18: Debugging Lisp Programs 229

when you are finished with it. Exiting the debugger gets out of the recursive edit and kills
the backtrace buffer.

The backtrace buffer shows you the functions that are executing and their argument
values. It also allows you to specify a stack frame by moving point to the line describing
that frame. (A stack frame is the place where the Lisp interpreter records information
about a particular invocation of a function.) The frame whose line point is on is considered
the current frame. Some of the debugger commands operate on the current frame.

The debugger itself must be run byte-compiled, since it makes assumptions about how
many stack frames are used for the debugger itself. These assumptions are false if the
debugger is running interpreted.

18.1.6 Debugger Commands

Inside the debugger (in Debugger mode), these special commands are available in addi-
tion to the usual cursor motion commands. (Keep in mind that all the usual facilities of
Emacs, such as switching windows or buffers, are still available.)

The most important use of debugger commands is for stepping through code, so that
you can see how control flows. The debugger can step through the control structures of an
interpreted function, but cannot do so in a byte-compiled function. If you would like to
step through a byte-compiled function, replace it with an interpreted definition of the same
function. (To do this, visit the source for the function and type C-M-x on its definition.)

Here is a list of Debugger mode commands:

c Exit the debugger and continue execution. When continuing is possible, it
resumes execution of the program as if the debugger had never been entered
(aside from any side-effects that you caused by changing variable values or data
structures while inside the debugger).

Continuing is possible after entry to the debugger due to function entry or
exit, explicit invocation, or quitting. You cannot continue if the debugger was
entered because of an error.

d Continue execution, but enter the debugger the next time any Lisp function is
called. This allows you to step through the subexpressions of an expression,
seeing what values the subexpressions compute, and what else they do.

The stack frame made for the function call which enters the debugger in this
way will be flagged automatically so that the debugger will be called again when
the frame is exited. You can use the u command to cancel this flag.

b Flag the current frame so that the debugger will be entered when the frame
is exited. Frames flagged in this way are marked with stars in the backtrace
buffer.

u Don’t enter the debugger when the current frame is exited. This cancels a b

command on that frame. The visible effect is to remove the star from the line
in the backtrace buffer.

e Read a Lisp expression in the minibuffer, evaluate it, and print the value in the
echo area. The debugger alters certain important variables, and the current
buffer, as part of its operation; e temporarily restores their values from outside

230 GNU Emacs Lisp Reference Manual

the debugger, so you can examine and change them. This makes the debugger
more transparent. By contrast, M-: does nothing special in the debugger; it
shows you the variable values within the debugger.

R Like e, but also save the result of evaluation in the buffer ‘*Debugger-recordx*’.
q Terminate the program being debugged; return to top-level Emacs command
execution.

If the debugger was entered due to a C-g but you really want to quit, and not
debug, use the g command.

r Return a value from the debugger. The value is computed by reading an ex-
pression with the minibuffer and evaluating it.

The r command is useful when the debugger was invoked due to exit from a
Lisp call frame (as requested with b or by entering the frame with d); then the
value specified in the r command is used as the value of that frame. It is also
useful if you call debug and use its return value. Otherwise, r has the same
effect as ¢, and the specified return value does not matter.

You can’t use r when the debugger was entered due to an error.

18.1.7 Invoking the Debugger

Here we describe in full detail the function debug that is used to invoke the debugger.

debug &rest debugger-args Function
This function enters the debugger. It switches buffers to a buffer named
‘*Backtrace*’ (or ‘*Backtracex<2>’ if it is the second recursive entry to the
debugger, etc.), and fills it with information about the stack of Lisp function calls.
It then enters a recursive edit, showing the backtrace buffer in Debugger mode.

The Debugger mode ¢ and r commands exit the recursive edit; then debug switches
back to the previous buffer and returns to whatever called debug. This is the only
way the function debug can return to its caller.

The use of the debugger-args is that debug displays the rest of its arguments at the
top of the ‘*Backtrace*’ buffer, so that the user can see them. Except as described
below, this is the only way these arguments are used.

However, certain values for first argument to debug have a special significance. (Nor-
mally, these values are used only by the internals of Emacs, and not by programmers
calling debug.) Here is a table of these special values:

lambda A first argument of lambda means debug was called because of entry to a
function when debug-on-next-call was non-nil. The debugger displays
‘Entering:’ as a line of text at the top of the buffer.

debug debug as first argument indicates a call to debug because of entry to
a function that was set to debug on entry. The debugger displays
‘Entering:’, just as in the lambda case. It also marks the stack frame
for that function so that it will invoke the debugger when exited.

Chapter 18: Debugging Lisp Programs 231

t When the first argument is t, this indicates a call to debug due to evalu-
ation of a list form when debug-on-next-call is non-nil. The debugger
displays the following as the top line in the buffer:

Beginning evaluation of function call form:

exit When the first argument is exit, it indicates the exit of a stack frame
previously marked to invoke the debugger on exit. The second argument
given to debug in this case is the value being returned from the frame. The
debugger displays ‘Return value:’ in the top line of the buffer, followed
by the value being returned.

error When the first argument is error, the debugger indicates that it is being
entered because an error or quit was signaled and not handled, by dis-
playing ‘Signaling:’ followed by the error signaled and any arguments
to signal. For example,

(let ((debug-on-error t))
(/ 10))

—————— Buffer: *Backtracex ---—---
Signaling: (arith-error)

/(1 0)

—————— Buffer: *Backtracex ---—--—-

If an error was signaled, presumably the variable debug-on-error is non-
nil. If quit was signaled, then presumably the variable debug-on-quit
is non-nil.

nil Use nil as the first of the debugger-args when you want to enter the
debugger explicitly. The rest of the debugger-args are printed on the
top line of the buffer. You can use this feature to display messages—for
example, to remind yourself of the conditions under which debug is called.

18.1.8 Internals of the Debugger

This section describes functions and variables used internally by the debugger.

debugger Variable
The value of this variable is the function to call to invoke the debugger. Its value
must be a function of any number of arguments, or, more typically, the name of a
function. This function should invoke some kind of debugger. The default value of
the variable is debug.

The first argument that Lisp hands to the function indicates why it was called. The
convention for arguments is detailed in the description of debug.

backtrace Command
This function prints a trace of Lisp function calls currently active. This is the function
used by debug to fill up the ‘*Backtrace*’ buffer. It is written in C, since it must
have access to the stack to determine which function calls are active. The return
value is always nil.

232

GNU Emacs Lisp Reference Manual

In the following example, a Lisp expression calls backtrace explicitly. This prints

the backtrace to the stream standard-output, which, in this case, is the buffer

‘backtrace-output’.

Each line of the backtrace represents one function call. The line shows the values of

the function’s arguments if they are all known; if they are still being computed, the

line says so. The arguments of special forms are elided.
(with-output-to-temp-buffer "backtrace-output"

(let ((var 1))
(save-excursion
(setq var (eval ’(progn
(1+ var)
(list ’testing (backtrace))))))))

——————————— Buffer: backtrace-output ---—-———------

backtrace()

(list ...computing arguments...)

(progn ...)

eval ((progn (1+ var) (list (quote testing) (backtrace))))
(setq ...)

(save-excursion ...)

(let ...)

(with-output-to-temp-buffer ...)
eval-region(1973 2142 #<buffer *scratch*>)
byte-code("... for eval-print-last-sexp ...")
eval-print-last-sexp(nil)

* call-interactively(eval-print-last-sexp)
——————————— Buffer: backtrace-output ------------

The character ‘*’ indicates a frame whose debug-on-exit flag is set.

debug-on-next-call Variable

If this variable is non-nil, it says to call the debugger before the next eval, apply
or funcall. Entering the debugger sets debug-on-next-call to nil.

The d command in the debugger works by setting this variable.

backtrace-debug Ievel flag Function

This function sets the debug-on-exit flag of the stack frame Ievel levels down the stack,
giving it the value flag. If flag is non-nil, this will cause the debugger to be entered
when that frame later exits. Even a nonlocal exit through that frame will enter the

debugger.
This function is used only by the debugger.

command-debug-status Variable

This variable records the debugging status of the current interactive command. Each
time a command is called interactively, this variable is bound to nil. The debugger
can set this variable to leave information for future debugger invocations during the
same command invocation.

Chapter 18: Debugging Lisp Programs 233

The advantage of using this variable rather than an ordinary global variable is that
the data will never carry over to a subsequent command invocation.

backtrace-frame frame-number Function
The function backtrace-frame is intended for use in Lisp debuggers. It returns
information about what computation is happening in the stack frame frame-number
levels down.

If that frame has not evaluated the arguments yet, or is a special form, the value is
(nil function arg-forms. . .).

If that frame has evaluated its arguments and called its function already, the return
value is (t function arg-values. ..).

In the return value, function is whatever was supplied as the CAR of the evaluated
list, or a lambda expression in the case of a macro call. If the function has a &rest
argument, that is represented as the tail of the list arg-values.

If frame-number is out of range, backtrace-frame returns nil.

18.2 Edebug

Edebug is a source-level debugger for Emacs Lisp programs with which you can:
e Step through evaluation, stopping before and after each expression.
e Set conditional or unconditional breakpoints.
e Stop when a specified condition is true (the global break event).
e Trace slow or fast, stopping briefly at each stop point, or at each breakpoint.
e Display expression results and evaluate expressions as if outside of Edebug.

e Automatically re-evaluate a list of expressions and display their results each time Ede-
bug updates the display.

e Output trace info on function enter and exit.

e Stop when an error occurs.

e Display a backtrace, omitting Edebug’s own frames.

e Specify argument evaluation for macros and defining forms.
e Obtain rudimentary coverage testing and frequency counts.

The first three sections below should tell you enough about Edebug to enable you to use
it.

18.2.1 Using Edebug

To debug a Lisp program with Edebug, you must first instrument the Lisp code that
you want to debug. A simple way to do this is to first move point into the definition of
a function or macro and then do C-u C-M-x (eval-defun with a prefix argument). See
Section 18.2.2 [Instrumenting], page 234, for alternative ways to instrument code.

Once a function is instrumented, any call to the function activates Edebug. Depending

on which Edebug execution mode you have selected, activating Edebug may stop execution
and let you step through the function, or it may update the display and continue execution

234 GNU Emacs Lisp Reference Manual

while checking for debugging commands. The default execution mode is step, which stops
execution. See Section 18.2.3 [Edebug Execution Modes|, page 235.

Within Edebug, you normally view an Emacs buffer showing the source of the Lisp code
you are debugging. This is referred to as the source code buffer, and it is temporarily
read-only.

An arrow at the left margin indicates the line where the function is executing. Point
initially shows where within the line the function is executing, but this ceases to be true if
you move point yourself.

If you instrument the definition of fac (shown below) and then execute (fac 3), here is
what you would normally see. Point is at the open-parenthesis before if.

(defun fac (n)
=>x(if (< 0 n)
(* n (fac (1- n)))
1))

The places within a function where Edebug can stop execution are called stop points.
These occur both before and after each subexpression that is a list, and also after each
variable reference. Here we use periods to show the stop points in the function fac:

(defun fac (n)
.(Af .(< 0nmn.).
.(* n. .(fac (1- n.).).).
DI
The special commands of Edebug are available in the source code buffer in addition to
the commands of Emacs Lisp mode. For example, you can type the Edebug command
to execute until the next stop point. If you type once after entry to fac, here is the
display you will see:
(defun fac (n)
=>(if x(< 0 n)
(x* n (fac (1- n)))
1)

When Edebug stops execution after an expression, it displays the expression’s value in
the echo area.

Other frequently used commands are b to set a breakpoint at a stop point, g to execute
until a breakpoint is reached, and q to exit Edebug and return to the top-level command
loop. Type ? to display a list of all Edebug commands.

18.2.2 Instrumenting for Edebug

In order to use Edebug to debug Lisp code, you must first instrument the code. Instru-
menting code inserts additional code into it, to invoke Edebug at the proper places.

Once you have loaded Edebug, the command C-M-x (eval-defun) is redefined so that
when invoked with a prefix argument on a definition, it instruments the definition before
evaluating it. (The source code itself is not modified.) If the variable edebug-all-defs is
non-nil, that inverts the meaning of the prefix argument: in this case, C-M-x instruments
the definition unless it has a prefix argument. The default value of edebug-all-defs isnil.
The command M-x edebug-all-defs toggles the value of the variable edebug-all-defs.

Chapter 18: Debugging Lisp Programs 235

If edebug-all-defs is non-nil, then the commands eval-region, eval-current-—
buffer, and eval-buffer also instrument any definitions they evaluate. Similarly, edebug-
all-forms controls whether eval-region should instrument any form, even non-defining
forms. This doesn’t apply to loading or evaluations in the minibuffer. The command M-x
edebug-all-forms toggles this option.

Another command, M-x edebug-eval-top-level-form, is available to instrument any
top-level form regardless of the values of edebug-all-defs and edebug-all-forms.

While Edebug is active, the command I (edebug-instrument-callee) instruments the
definition of the function or macro called by the list form after point, if is not already instru-
mented. This is possible only if Edebug knows where to find the source for that function;
for this reading, after loading Edebug, eval-region records the position of every defini-
tion it evaluates, even if not instrumenting it. See also the i command (see Section 18.2.4
[Jumping], page 236), which steps into the call after instrumenting the function.

Edebug knows how to instrument all the standard special forms, interactive forms
with an expression argument, anonymous lambda expressions, and other defining forms.
However, Edebug cannot determine on its own what a user-defined macro will do with
the arguments of a macro call, so you must provide that information; see Section 18.2.15
[Instrumenting Macro Calls|, page 246, for details.

When Edebug is about to instrument code for the first time in a session, it runs the hook
edebug-setup-hook, then sets it to nil. You can use this to load Edebug specifications
(see Section 18.2.15 [Instrumenting Macro Calls|, page 246) associated with a package you
are using, but only when you use Edebug.

To remove instrumentation from a definition, simply re-evaluate its definition in a way
that does not instrument. There are two ways of evaluating forms that never instrument
them: from a file with load, and from the minibuffer with eval-expression (M-:).

If Edebug detects a syntax error while instrumenting, it leaves point at the erroneous
code and signals an invalid-read-syntax error.

See Section 18.2.9 [Edebug Eval], page 240, for other evaluation functions available inside
of Edebug.

18.2.3 Edebug Execution Modes

Edebug supports several execution modes for running the program you are debugging.
We call these alternatives Edebug execution modes; do not confuse them with major or
minor modes. The current Edebug execution mode determines how far Edebug continues
execution before stopping—whether it stops at each stop point, or continues to the next
breakpoint, for example—and how much Edebug displays the progress of the evaluation
before it stops.

Normally, you specify the Edebug execution mode by typing a command to continue the
program in a certain mode. Here is a table of these commands; all except for S resume
execution of the program, at least for a certain distance.

S Stop: don’t execute any more of the program, but wait for more Edebug com-
mands (edebug-stop).

Step: stop at the next stop point encountered (edebug-step-mode).

236 GNU Emacs Lisp Reference Manual

n Next: stop at the next stop point encountered after an expression (edebug-
next-mode). Also see edebug-forward-sexp in Section 18.2.5 [Edebug Misc],
page 237.

t Trace: pause one second at each Edebug stop point (edebug-trace-mode).

T Rapid trace: update the display at each stop point, but don’t actually pause

(edebug-Trace-fast-mode).

g Go: run until the next breakpoint (edebug-go-mode). See Section 18.2.6
[Breakpoints|, page 238.

c Continue: pause one second at each breakpoint, and then continue (edebug-
continue-mode).

o Rapid continue: move point to each breakpoint, but don’t pause (edebug-
Continue-fast-mode).

G Go non-stop: ignore breakpoints (edebug-Go-nonstop-mode). You can still
stop the program by typing S, or any editing command.

In general, the execution modes earlier in the above list run the program more slowly or
stop sooner than the modes later in the list.

While executing or tracing, you can interrupt the execution by typing any Edebug com-
mand. Edebug stops the program at the next stop point and then executes the command
you typed. For example, typing t during execution switches to trace mode at the next stop
point. You can use S to stop execution without doing anything else.

If your function happens to read input, a character you type intending to interrupt
execution may be read by the function instead. You can avoid such unintended results by
paying attention to when your program wants input.

Keyboard macros containing the commands in this section do not completely work:
exiting from Edebug, to resume the program, loses track of the keyboard macro. This
is not easy to fix. Also, defining or executing a keyboard macro outside of Edebug does
not affect commands inside Edebug. This is usually an advantage. See also the edebug-
continue-kbd-macro option (see Section 18.2.16 [Edebug Options], page 251).

When you enter a new Edebug level, the initial execution mode comes from the value
of the variable edebug-initial-mode. By default, this specifies step mode. Note that you
may reenter the same Edebug level several times if, for example, an instrumented function
is called several times from one command.

18.2.4 Jumping

The commands described in this section execute until they reach a specified location.
All except i make a temporary breakpoint to establish the place to stop, then switch to go
mode. Any other breakpoint reached before the intended stop point will also stop execution.
See Section 18.2.6 [Breakpoints], page 238, for the details on breakpoints.

These commands may fail to work as expected in case of nonlocal exit, as that can bypass
the temporary breakpoint where you expected the program to stop.

h Proceed to the stop point near where point is (edebug-goto-here).

Chapter 18: Debugging Lisp Programs 237

f Run the program forward over one expression (edebug-forward-sexp).
o) Run the program until the end of the containing sexp.
i Step into the function or macro called by the form after point.

The h command proceeds to the stop point near the current location of point, using a
temporary breakpoint. See Section 18.2.6 [Breakpoints|, page 238, for more information
about breakpoints.

The f command runs the program forward over one expression. More precisely, it sets
a temporary breakpoint at the position that C-M-f would reach, then executes in go mode
so that the program will stop at breakpoints.

With a prefix argument n, the temporary breakpoint is placed n sexps beyond point. If
the containing list ends before n more elements, then the place to stop is after the containing
expression.

You must check that the position C-M-f finds is a place that the program will really get
to. In cond, for example, this may not be true.

For flexibility, the £ command does forward-sexp starting at point, rather than at the
stop point. If you want to execute one expression from the current stop point, first type w,
to move point there, and then type f.

The o command continues “out of” an expression. It places a temporary breakpoint at
the end of the sexp containing point. If the containing sexp is a function definition itself, o
continues until just before the last sexp in the definition. If that is where you are now, it
returns from the function and then stops. In other words, this command does not exit the
currently executing function unless you are positioned after the last sexp.

The i command steps into the function or macro called by the list form after point, and
stops at its first stop point. Note that the form need not be the one about to be evaluated.
But if the form is a function call about to be evaluated, remember to use this command
before any of the arguments are evaluated, since otherwise it will be too late.

The i command instruments the function or macro it’s supposed to step into, if it isn’t
instrumented already. This is convenient, but keep in mind that the function or macro
remains instrumented unless you explicitly arrange to deinstrument it.

18.2.5 Miscellaneous Edebug Commands

Some miscellaneous Edebug commands are described here.

? Display the help message for Edebug (edebug-help).
c-] Abort one level back to the previous command level (abort-recursive-edit).
q Return to the top level editor command loop (top-level). This exits all re-

cursive editing levels, including all levels of Edebug activity. However, instru-
mented code protected with unwind-protect or condition-case forms may
resume debugging.

qQ Like g, but don’t stop even for protected code (top-level-nonstop).

r Redisplay the most recently known expression result in the echo area (edebug-
previous-result).

238 GNU Emacs Lisp Reference Manual

d Display a backtrace, excluding Edebug’s own functions for clarity (edebug-
backtrace).

You cannot use debugger commands in the backtrace buffer in Edebug as you
would in the standard debugger.

The backtrace buffer is killed automatically when you continue execution.

You can invoke commands from Edebug that activate Edebug again recursively. When-
ever Edebug is active, you can quit to the top level with g or abort one recursive edit level
with C-J]. You can display a backtrace of all the pending evaluations with d.

18.2.6 Breakpoints

Edebug’s step mode stops execution when the next stop point is reached. There are
three other ways to stop Edebug execution once it has started: breakpoints, the global
break condition, and source breakpoints.

While using Edebug, you can specify breakpoints in the program you are testing: these
are places where execution should stop. You can set a breakpoint at any stop point, as
defined in Section 18.2.1 [Using Edebug], page 233. For setting and unsetting breakpoints,
the stop point that is affected is the first one at or after point in the source code buffer.
Here are the Edebug commands for breakpoints:

b Set a breakpoint at the stop point at or after point (edebug-set-breakpoint).
If you use a prefix argument, the breakpoint is temporary—it turns off the first
time it stops the program.

u Unset the breakpoint (if any) at the stop point at or after point (edebug-unset-
breakpoint).

x condition
Set a conditional breakpoint which stops the program only if condition evaluates
to a non-nil value (edebug-set-conditional-breakpoint). With a prefix
argument, the breakpoint is temporary.

B Move point to the next breakpoint in the current definition (edebug-next-
breakpoint).

While in Edebug, you can set a breakpoint with b and unset one with u. First move
point to the Edebug stop point of your choice, then type b or u to set or unset a breakpoint
there. Unsetting a breakpoint where none has been set has no effect.

Re-evaluating or reinstrumenting a definition removes all of its previous breakpoints.

A conditional breakpoint tests a condition each time the program gets there. Any errors
that occur as a result of evaluating the condition are ignored, as if the result were nil. To
set a conditional breakpoint, use x, and specify the condition expression in the minibuffer.
Setting a conditional breakpoint at a stop point that has a previously established conditional
breakpoint puts the previous condition expression in the minibuffer so you can edit it.

You can make a conditional or unconditional breakpoint temporary by using a prefix
argument with the command to set the breakpoint. When a temporary breakpoint stops
the program, it is automatically unset.

Chapter 18: Debugging Lisp Programs 239

Edebug always stops or pauses at a breakpoint, except when the Edebug mode is Go-
nonstop. In that mode, it ignores breakpoints entirely.

To find out where your breakpoints are, use the B command, which moves point to the
next breakpoint following point, within the same function, or to the first breakpoint if there
are no following breakpoints. This command does not continue execution—it just moves
point in the buffer.

18.2.6.1 Global Break Condition

A global break condition stops execution when a specified condition is satisfied, no matter
where that may occur. Edebug evaluates the global break condition at every stop point; if
it evaluates to a non-nil value, then execution stops or pauses depending on the execution
mode, as if a breakpoint had been hit. If evaluating the condition gets an error, execution
does not stop.

The condition expression is stored in edebug-global-break-condition. You can spec-
ify a new expression using the X command (edebug-set-global-break-condition).

The global break condition is the simplest way to find where in your code some event
occurs, but it makes code run much more slowly. So you should reset the condition to nil
when not using it.

18.2.6.2 Source Breakpoints

All breakpoints in a definition are forgotten each time you reinstrument it. If you wish
to make a breakpoint that won’t be forgotten, you can write a source breakpoint, which is
simply a call to the function edebug in your source code. You can, of course, make such
a call conditional. For example, in the fac function, you can insert the first line as shown
below, to stop when the argument reaches zero:

(defun fac (n)
(if (= n 0) (edebug))
(if (< 0 n)
(x* n (fac (1- n)))
1)

When the fac definition is instrumented and the function is called, the call to edebug
acts as a breakpoint. Depending on the execution mode, Edebug stops or pauses there.

If no instrumented code is being executed when edebug is called, that function calls
debug.

18.2.7 Trapping Errors

Emacs normally displays an error message when an error is signaled and not handled with
condition-case. While Edebug is active and executing instrumented code, it normally
responds to all unhandled errors. You can customize this with the options edebug-on-
error and edebug-on-quit; see Section 18.2.16 [Edebug Options], page 251.

When Edebug responds to an error, it shows the last stop point encountered before the
error. This may be the location of a call to a function which was not instrumented, and
within which the error actually occurred. For an unbound variable error, the last known

240 GNU Emacs Lisp Reference Manual

stop point might be quite distant from the offending variable reference. In that case, you
might want to display a full backtrace (see Section 18.2.5 [Edebug Misc|, page 237).

If you change debug-on-error or debug-on-quit while Edebug is active, these changes
will be forgotten when Edebug becomes inactive. Furthermore, during Edebug’s recursive
edit, these variables are bound to the values they had outside of Edebug.

18.2.8 Edebug Views

These Edebug commands let you view aspects of the buffer and window status as they
were before entry to Edebug. The outside window configuration is the collection of windows
and contents that were in effect outside of Edebug.

v Temporarily view the outside window configuration (edebug-view-outside).

P Temporarily display the outside current buffer with point at its outside posi-
tion (edebug-bounce-point). With a prefix argument n, pause for n seconds
instead.

W Move point back to the current stop point in the source code buffer (edebug-
where).

If you use this command in a different window displaying the same buffer, that
window will be used instead to display the current definition in the future.

7 Toggle whether Edebug saves and restores the outside window configuration
(edebug-toggle-save-windows).

With a prefix argument, W only toggles saving and restoring of the selected
window. To specify a window that is not displaying the source code buffer, you
must use C-x X W from the global keymap.

You can view the outside window configuration with v or just bounce to the point in
the current buffer with p, even if it is not normally displayed. After moving point, you may
wish to jump back to the stop point with w from a source code buffer.

Each time you use W to turn saving off, Edebug forgets the saved outside window
configuration—so that even if you turn saving back on, the current window configuration
remains unchanged when you next exit Edebug (by continuing the program). However, the
automatic redisplay of ‘*edebug*’ and ‘*edebug-trace*’ may conflict with the buffers you
wish to see unless you have enough windows open.

18.2.9 Evaluation

While within Edebug, you can evaluate expressions “as if” Edebug were not running.
Edebug tries to be invisible to the expression’s evaluation and printing. Evaluation of
expressions that cause side effects will work as expected, except for changes to data that
Edebug explicitly saves and restores. See Section 18.2.14 [The Outside Context|, page 244,
for details on this process.

e exp

Evaluate expression exp in the context outside of Edebug (edebug-eval-
expression). That is, Edebug tries to minimize its interference with the
evaluation.

Chapter 18: Debugging Lisp Programs 241

M-: exp

Evaluate expression exp in the context of Edebug itself.

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

Edebug supports evaluation of expressions containing references to lexically bound sym-
bols created by the following constructs in ‘cl.el’ (version 2.03 or later): lexical-let,
macrolet, and symbol-macrolet.

18.2.10 Evaluation List Buffer

You can use the evaluation list buffer, called ‘*edebug*’, to evaluate expressions interac-
tively. You can also set up the evaluation list of expressions to be evaluated automatically
each time Edebug updates the display.

E Switch to the evaluation list buffer ‘*edebug*’ (edebug-visit-eval-list).

In the ‘*edebug#’ buffer you can use the commands of Lisp Interaction mode (see section
“Lisp Interaction” in The GNU Emacs Manual) as well as these special commands:

C-j Evaluate the expression before point, in the outside context, and insert the
value in the buffer (edebug-eval-print-last-sexp).

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

C-c C-u Build a new evaluation list from the contents of the buffer (edebug-update-
eval-list).

C-c C-d Delete the evaluation list group that point is in (edebug-delete-eval-item).
C-c C-w Switch back to the source code buffer at the current stop point (edebug-where).

You can evaluate expressions in the evaluation list window with C-j or C-x C-e, just as
you would in ‘*scratch*’; but they are evaluated in the context outside of Edebug.

The expressions you enter interactively (and their results) are lost when you continue
execution; but you can set up an evaluation list consisting of expressions to be evaluated
each time execution stops.

To do this, write one or more evaluation list groups in the evaluation list buffer. An
evaluation list group consists of one or more Lisp expressions. Groups are separated by
comment lines.

The command C-c C-u (edebug-update-eval-list) rebuilds the evaluation list, scan-
ning the buffer and using the first expression of each group. (The idea is that the second
expression of the group is the value previously computed and displayed.)

Each entry to Edebug redisplays the evaluation list by inserting each expression in the
buffer, followed by its current value. It also inserts comment lines so that each expression
becomes its own group. Thus, if you type C-c C-u again without changing the buffer text,
the evaluation list is effectively unchanged.

If an error occurs during an evaluation from the evaluation list, the error message is

displayed in a string as if it were the result. Therefore, expressions that use variables not
currently valid do not interrupt your debugging.

242 GNU Emacs Lisp Reference Manual

Here is an example of what the evaluation list window looks like after several expressions
have been added to it:

(current-buffer)
#<buffer *scratchx>

(selected-window)
#<window 16 on *scratchx*>

bad-var
"Symbol’s value as variable is void: bad-var"

this-command
eval-last-sexp

To delete a group, move point into it and type C-c C-d, or simply delete the text for
the group and update the evaluation list with C-c C-u. To add a new expression to the
evaluation list, insert the expression at a suitable place, insert a new comment line, then
type C-c C-u. You need not insert dashes in the comment line—its contents don’t matter.

After selecting ‘*edebug*’, you can return to the source code buffer with C-c C-w. The
‘xedebug*’ buffer is killed when you continue execution, and recreated next time it is needed.

18.2.11 Printing in Edebug

If an expression in your program produces a value containing circular list structure, you
may get an error when Edebug attempts to print it.

One way to cope with circular structure is to set print-length or print-level to trun-
cate the printing. Edebug does this for you; it binds print-length and print-level to 50
if they were nil. (Actually, the variables edebug-print-length and edebug-print-level
specify the values to use within Edebug.) See Section 19.6 [Output Variables], page 262.

edebug-print-length User Option
If non-nil, Edebug binds print-length to this value while printing results. The
default value is 50.

edebug-print-level User Option
If non-nil, Edebug binds print-level to this value while printing results. The
default value is 50.

You can also print circular structures and structures that share elements more informa-
tively by binding print-circle to a non-nil value.

Here is an example of code that creates a circular structure:

Chapter 18: Debugging Lisp Programs 243

(setq a ’(x y))

(setcar a a)
Custom printing prints this as ‘Result: #1=(#1# y)’. The ‘#1=" notation labels the struc-
ture that follows it with the label ‘1’, and the ‘#1#’ notation references the previously labeled
structure. This notation is used for any shared elements of lists or vectors.

edebug-print-circle User Option
If non-nil, Edebug binds print-circle to this value while printing results. The
default value is nil.

Other programs can also use custom printing; see ‘cust-print.el’ for details.

18.2.12 Trace Buffer

Edebug can record an execution trace, storing it in a buffer named ‘*edebug-tracex*’.
This is a log of function calls and returns, showing the function names and their arguments
and values. To enable trace recording, set edebug-trace to a non-nil value.

Making a trace buffer is not the same thing as using trace execution mode (see Sec-
tion 18.2.3 [Edebug Execution Modes], page 235).

When trace recording is enabled, each function entry and exit adds lines to the trace
buffer. A function entry record consists of ‘::::{’; followed by the function name and
argument values. A function exit record consists of ‘::::}’, followed by the function name
and result of the function.

The number of ‘:’s in an entry shows its recursion depth. You can use the braces in the
trace buffer to find the matching beginning or end of function calls.

You can customize trace recording for function entry and exit by redefining the functions
edebug-print-trace-before and edebug-print-trace-after.

edebug-tracing string body. . . Macro
This macro requests additional trace information around the execution of the body
forms. The argument string specifies text to put in the trace buffer. All the arguments
are evaluated, and edebug-tracing returns the value of the last form in body.

edebug-trace format-string &rest format-args Function
This function inserts text in the trace buffer. It computes the text with (apply
’format format-string format-args). It also appends a newline to separate entries.

edebug-tracing and edebug-trace insert lines in the trace buffer whenever they are
called, even if Edebug is not active. Adding text to the trace buffer also scrolls its window
to show the last lines inserted.

18.2.13 Coverage Testing

Edebug provides rudimentary coverage testing and display of execution frequency.

Coverage testing works by comparing the result of each expression with the previous
result; each form in the program is considered “covered” if it has returned two different

244 GNU Emacs Lisp Reference Manual

values since you began testing coverage in the current Emacs session. Thus, to do coverage
testing on your program, execute it under various conditions and note whether it behaves
correctly; Edebug will tell you when you have tried enough different conditions that each
form has returned two different values.

Coverage testing makes execution slower, so it is only done if edebug-test-coverage
is non-nil. Frequency counting is performed for all execution of an instrumented function,
even if the execution mode is Go-nonstop, and regardless of whether coverage testing is
enabled.

Use M-x edebug-display-freq-count to display both the coverage information and the
frequency counts for a definition.

edebug-display-freq-count Command
This command displays the frequency count data for each line of the current definition.

The frequency counts appear as comment lines after each line of code, and you can
undo all insertions with one undo command. The counts appear under the ‘(’ before
an expression or the ‘)’ after an expression, or on the last character of a variable.
To simplify the display, a count is not shown if it is equal to the count of an earlier
expression on the same line.

The character ‘=’ following the count for an expression says that the expression has
returned the same value each time it was evaluated. In other words, it is not yet
“covered” for coverage testing purposes.

To clear the frequency count and coverage data for a definition, simply reinstrument
it with eval-defun.

For example, after evaluating (fac 5) with a source breakpoint, and setting edebug-
test-coverage to t, when the breakpoint is reached, the frequency data looks like this:

(defun fac (n)
(if (= n 0) (edebug))

s #6 1 0 =5
(if (< 0 n)
; #5 =
(* n (fac (1- n)))
o # 5 0
1))
s # 0

The comment lines show that fac was called 6 times. The first if statement returned
5 times with the same result each time; the same is true of the condition on the second if.
The recursive call of fac did not return at all.

18.2.14 The Outside Context

Edebug tries to be transparent to the program you are debugging, but it does not succeed
completely. Edebug also tries to be transparent when you evaluate expressions with e or
with the evaluation list buffer, by temporarily restoring the outside context. This section
explains precisely what context Edebug restores, and how Edebug fails to be completely
transparent.

Chapter 18: Debugging Lisp Programs 245

18.2.14.1 Checking Whether to Stop

Whenever Edebug is entered, it needs to save and restore certain data before even
deciding whether to make trace information or stop the program.

e max-lisp-eval-depth and max-specpdl-size are both incremented once to reduce
Edebug’s impact on the stack. You could, however, still run out of stack space when
using Edebug.

e The state of keyboard macro execution is saved and restored. While Edebug is active,
executing-macro is bound to edebug-continue-kbd-macro.

18.2.14.2 Edebug Display Update

When Edebug needs to display something (e.g., in trace mode), it saves the current
window configuration from “outside” Edebug (see Section 28.17 [Window Configurations],
page 479). When you exit Edebug (by continuing the program), it restores the previous
window configuration.

Emacs redisplays only when it pauses. Usually, when you continue execution, the pro-
gram re-enters Edebug at a breakpoint or after stepping, without pausing or reading input
in between. In such cases, Emacs never gets a chance to redisplay the “outside” configura-
tion. Consequently, what you see is the same window configuration as the last time Edebug
was active, with no interruption.

Entry to Edebug for displaying something also saves and restores the following data
(though some of them are deliberately not restored if an error or quit signal occurs).

e Which buffer is current, and the positions of point and the mark in the current buffer,
are saved and restored.

e The outside window configuration is saved and restored if edebug-save-windows is
non-nil (see Section 18.2.14.2 [Edebug Display Update], page 245).

The window configuration is not restored on error or quit, but the outside selected
window is reselected even on error or quit in case a save-excursion is active. If the
value of edebug-save-windows is a list, only the listed windows are saved and restored.

The window start and horizontal scrolling of the source code buffer are not restored,
however, so that the display remains coherent within Edebug.

e The value of point in each displayed buffer is saved and restored if edebug-save-
displayed-buffer-points is non-nil.

e The variables overlay-arrow-position and overlay-arrow-string are saved and

restored. So you can safely invoke Edebug from the recursive edit elsewhere in the
same buffer.

e cursor-in-echo-area is locally bound to nil so that the cursor shows up in the
window.

18.2.14.3 Edebug Recursive Edit

When Edebug is entered and actually reads commands from the user, it saves (and later
restores) these additional data:

e The current match data. See Section 34.6 [Match Data], page 615.

246 GNU Emacs Lisp Reference Manual

e last-command, this-command, last-command-char, last-input-char, last-input-
event, last-command-event, last-event-frame, last-nonmenu-event, and track-
mouse. Commands used within Edebug do not affect these variables outside of Edebug.

The key sequence returned by this-command-keys is changed by executing commands
within Edebug and there is no way to reset the key sequence from Lisp.

Edebug cannot save and restore the value of unread-command-events. Entering Ede-
bug while this variable has a nontrivial value can interfere with execution of the program
you are debugging.

e Complex commands executed while in Edebug are added to the variable command-
history. In rare cases this can alter execution.

e Within Edebug, the recursion depth appears one deeper than the recursion depth
outside Edebug. This is not true of the automatically updated evaluation list window.

e standard-output and standard-input are bound to nil by the recursive-edit, but
Edebug temporarily restores them during evaluations.

e The state of keyboard macro definition is saved and restored. While Edebug is active,
defining-kbd-macro is bound to edebug-continue-kbd-macro.

18.2.15 Instrumenting Macro Calls

When Edebug instruments an expression that calls a Lisp macro, it needs additional
information about the macro to do the job properly. This is because there is no a-priori
way to tell which subexpressions of the macro call are forms to be evaluated. (Evaluation
may occur explicitly in the macro body, or when the resulting expansion is evaluated, or
any time later.)

Therefore, you must define an Edebug specification for each macro that Edebug will
encounter, to explain the format of calls to that macro. To do this, use def-edebug-spec.

def-edebug-spec macro specification Macro
Specify which expressions of a call to macro macro are forms to be evaluated. For
simple macros, the specification often looks very similar to the formal argument list of
the macro definition, but specifications are much more general than macro arguments.

The macro argument can actually be any symbol, not just a macro name.

Here is a simple example that defines the specification for the for example macro (see
Section 13.6.2 [Argument Evaluation], page 175), followed by an alternative, equivalent
specification.

(def-edebug-spec for
(symbolp "from" form "to" form "do" &rest form))

(def-edebug-spec for
(symbolp [’from form] [’to form] [’do bodyl))

Here is a table of the possibilities for specification and how each directs processing of
arguments.

t All arguments are instrumented for evaluation.

0 None of the arguments is instrumented.

Chapter 18: Debugging Lisp Programs 247

a symbol The symbol must have an Edebug specification which is used instead. This
indirection is repeated until another kind of specification is found. This allows
you to inherit the specification from another macro.

a list The elements of the list describe the types of the arguments of a calling form.
The possible elements of a specification list are described in the following sec-
tions.

18.2.15.1 Specification List

A specification list is required for an Edebug specification if some arguments of a macro
call are evaluated while others are not. Some elements in a specification list match one or
more arguments, but others modify the processing of all following elements. The latter,
called specification keywords, are symbols beginning with ‘&’ (such as &optional).

A specification list may contain sublists which match arguments that are themselves
lists, or it may contain vectors used for grouping. Sublists and groups thus subdivide
the specification list into a hierarchy of levels. Specification keywords apply only to the
remainder of the sublist or group they are contained in.

When a specification list involves alternatives or repetition, matching it against an actual
macro call may require backtracking. See Section 18.2.15.2 [Backtracking], page 249, for
more details.

Edebug specifications provide the power of regular expression matching, plus some
context-free grammar constructs: the matching of sublists with balanced parentheses, re-
cursive processing of forms, and recursion via indirect specifications.

Here’s a table of the possible elements of a specification list, with their meanings:

sexp A single unevaluated Lisp object, which is not instrumented.
form A single evaluated expression, which is instrumented.

place A place to store a value, as in the Common Lisp setf construct.
body Short for &rest form. See &rest below.

function-form
A function form: either a quoted function symbol, a quoted lambda expression,
or a form (that should evaluate to a function symbol or lambda expression).
This is useful when an argument that’s a lambda expression might be quoted
with quote rather than function, since it instruments the body of the lambda
expression either way.

lambda-expr
A lambda expression with no quoting.

&optional
All following elements in the specification list are optional; as soon as one does
not match, Edebug stops matching at this level.

To make just a few elements optional followed by non-optional elements, use
[&optional specs...]. To specify that several elements must all match or
none, use &optional [specs...]. See the defun example below.

248

&rest

&or

¬

&define

nil

gate

GNU Emacs Lisp Reference Manual

All following elements in the specification list are repeated zero or more times.
In the last repetition, however, it is not a problem if the expression runs out
before matching all of the elements of the specification list.

To repeat only a few elements, use [&rest specs...]. To specify several ele-
ments that must all match on every repetition, use &rest [specs...].

Each of the following elements in the specification list is an alternative. One of
the alternatives must match, or the &or specification fails.

Each list element following &or is a single alternative. To group two or more
list elements as a single alternative, enclose them in [...].

Each of the following elements is matched as alternatives as if by using &or, but
if any of them match, the specification fails. If none of them match, nothing is
matched, but the ¬ specification succeeds.

Indicates that the specification is for a defining form. The defining form itself
is not instrumented (that is, Edebug does not stop before and after the defining
form), but forms inside it typically will be instrumented. The &define keyword
should be the first element in a list specification.

This is successful when there are no more arguments to match at the current ar-
gument list level; otherwise it fails. See sublist specifications and the backquote
example below.

No argument is matched but backtracking through the gate is disabled while
matching the remainder of the specifications at this level. This is primarily
used to generate more specific syntax error messages. See Section 18.2.15.2
[Backtracking], page 249, for more details. Also see the let example below.

other-symbol

[elements. .

"string"

Any other symbol in a specification list may be a predicate or an indirect
specification.

If the symbol has an Edebug specification, this indirect specification should
be either a list specification that is used in place of the symbol, or a function
that is called to process the arguments. The specification may be defined with
def-edebug-spec just as for macros. See the defun example below.

Otherwise, the symbol should be a predicate. The predicate is called with the
argument and the specification fails if the predicate returns nil. In either case,
that argument is not instrumented.

Some suitable predicates include symbolp, integerp, stringp, vectorp, and
atom.

.1
A vector of elements groups the elements into a single group specification. Its
meaning has nothing to do with vectors.

The argument should be a symbol named string. This specification is equivalent
to the quoted symbol, ’>symbol, where the name of symbol is the string, but
the string form is preferred.

Chapter 18:

Debugging Lisp Programs 249

(vector elements. . .)

(elements. .

The argument should be a vector whose elements must match the elements in
the specification. See the backquote example below.

)
Any other list is a sublist specification and the argument must be a list whose
elements match the specification elements.

A sublist specification may be a dotted list and the corresponding list argu-
ment may then be a dotted list. Alternatively, the last CDR of a dotted list
specification may be another sublist specification (via a grouping or an indi-
rect specification, e.g., (spec . [(more specs...)])) whose elements match
the non-dotted list arguments. This is useful in recursive specifications such as
in the backquote example below. Also see the description of a nil specification
above for terminating such recursion.

Note that a sublist specification written as (specs . nil) is equivalent to
(specs), and (specs . (sublist-elements...)) is equivalent to (specs
sublist-elements...).

Here is a list of additional specifications that may appear only after &define. See the
defun example below.

name

‘name

arg

lambda-1lis

def-body

def-form

18.2.15.2

The argument, a symbol, is the name of the defining form.

A defining form is not required to have a name field; and it may have multiple
name fields.

This construct does not actually match an argument. The element following
:name should be a symbol; it is used as an additional name component for the
definition. You can use this to add a unique, static component to the name of
the definition. It may be used more than once.

The argument, a symbol, is the name of an argument of the defining form.
However, lambda-list keywords (symbols starting with ‘&’) are not allowed.

t
This matches a lambda list—the argument list of a lambda expression.

The argument is the body of code in a definition. This is like body, described
above, but a definition body must be instrumented with a different Edebug call
that looks up information associated with the definition. Use def-body for the
highest level list of forms within the definition.

The argument is a single, highest-level form in a definition. This is like def-
body, except use this to match a single form rather than a list of forms. As a
special case, def-form also means that tracing information is not output when
the form is executed. See the interactive example below.

Backtracking in Specifications

If a specification fails to match at some point, this does not necessarily mean a syntax
error will be signaled; instead, backtracking will take place until all alternatives have been

250 GNU Emacs Lisp Reference Manual

exhausted. Eventually every element of the argument list must be matched by some ele-
ment in the specification, and every required element in the specification must match some
argument.

When a syntax error is detected, it might not be reported until much later after higher-
level alternatives have been exhausted, and with the point positioned further from the real
error. But if backtracking is disabled when an error occurs, it can be reported immediately.
Note that backtracking is also reenabled automatically in several situations; it is reenabled
when a new alternative is established by &optional, &rest, or &or, or at the start of
processing a sublist, group, or indirect specification. The effect of enabling or disabling
backtracking is limited to the remainder of the level currently being processed and lower
levels.

Backtracking is disabled while matching any of the form specifications (that is, form,
body, def-form, and def-body). These specifications will match any form so any error
must be in the form itself rather than at a higher level.

Backtracking is also disabled after successfully matching a quoted symbol or string spec-
ification, since this usually indicates a recognized construct. But if you have a set of alter-
native constructs that all begin with the same symbol, you can usually work around this
constraint by factoring the symbol out of the alternatives, e.g., ["foo" &or [first casel
[second case] ...].

Most needs are satisfied by these two ways that bactracking is automatically disabled,
but occasionally it is useful to explicitly disable backtracking by using the gate specification.
This is useful when you know that no higher alternatives could apply. See the example of
the let specification.

18.2.15.3 Specification Examples

It may be easier to understand Edebug specifications by studying the examples provided
here.

A let special form has a sequence of bindings and a body. Each of the bindings is either
a symbol or a sublist with a symbol and optional expression. In the specification below,
notice the gate inside of the sublist to prevent backtracking once a sublist is found.
(def-edebug-spec let
((&rest
&or symbolp (gate symbolp &optional form))
body))

Edebug uses the following specifications for defun and defmacro and the associated
argument list and interactive specifications. It is necessary to handle interactive forms
specially since an expression argument it is actually evaluated outside of the function body.

(def-edebug-spec defmacro defun) ; Indirect ref to defun spec.
(def-edebug-spec defun
(&define name lambda-list

[&optional stringp] ; Match the doc string, if present.
[&optional ("interactive" interactive)]
def-body))

(def-edebug-spec lambda-list

Chapter 18: Debugging Lisp Programs 251

(([&rest arg]
[&optional ["&optional" arg &rest arg]]
&optional ["&rest" arg]
)))

(def-edebug-spec interactive
(&optional &or stringp def-form)) ; Notice: def-form

The specification for backquote below illustrates how to match dotted lists and use nil
to terminate recursion. It also illustrates how components of a vector may be matched.
(The actual specification defined by Edebug does not support dotted lists because doing so
causes very deep recursion that could fail.)

4

(def-edebug-spec ‘ (backquote-form)) ; Alias just for clarity.
(def-edebug-spec backquote-form
(&or ([&or "," ",@"] &or ("quote" backquote-form) form)
(backquote-form . [&or nil backquote-form])
(vector &rest backquote-form)
sexp))

18.2.16 Edebug Options

These options affect the behavior of Edebug:

edebug-setup-hook User Option

Functions to call before Edebug is used. Each time it is set to a new value, Edebug
will call those functions once and then edebug-setup-hook is reset to nil. You could
use this to load up Edebug specifications associated with a package you are using but
only when you also use Edebug. See Section 18.2.2 [Instrumenting], page 234.

edebug-all-defs User Option

If this is non-nil, normal evaluation of defining forms such as defun and defmacro
instruments them for Edebug. This applies to eval-defun, eval-region, eval-
buffer, and eval-current-buffer.

Use the command M-x edebug-all-defs to toggle the value of this option. See
Section 18.2.2 [Instrumenting], page 234.

edebug-all-forms User Option

If this isnon-nil, the commands eval-defun, eval-region, eval-buffer, and eval-
current-buffer instrument all forms, even those that don’t define anything. This
doesn’t apply to loading or evaluations in the minibuffer.

Use the command M-x edebug-all-forms to toggle the value of this option. See
Section 18.2.2 [Instrumenting], page 234.

edebug-save-windows User Option

If this is non-nil, Edebug saves and restores the window configuration. That takes
some time, so if your program does not care what happens to the window configura-
tions, it is better to set this variable to nil.

252 GNU Emacs Lisp Reference Manual

If the value is a list, only the listed windows are saved and restored.

You can use the W command in Edebug to change this variable interactively. See
Section 18.2.14.2 [Edebug Display Update], page 245.

edebug-save-displayed-buffer-points User Option
If this is non-nil, Edebug saves and restores point in all displayed buffers.

Saving and restoring point in other buffers is necessary if you are debugging code that
changes the point of a buffer which is displayed in a non-selected window. If Edebug
or the user then selects the window, point in that buffer will move to the window’s
value of point.

Saving and restoring point in all buffers is expensive, since it requires selecting each
window twice, so enable this only if you need it. See Section 18.2.14.2 [Edebug Display
Update], page 245.

edebug-initial-mode User Option
If this variable is non-nil, it specifies the initial execution mode for Edebug when it is
first activated. Possible values are step, next, go, Go—nonstop, trace, Trace-fast,
continue, and Continue-fast.

The default value is step. See Section 18.2.3 [Edebug Execution Modes], page 235.

edebug-trace User Option
Non-nil means display a trace of function entry and exit. Tracing output is displayed
in a buffer named ‘xedebug-tracex’, one function entry or exit per line, indented by
the recursion level.

The default value is nil.

Also see edebug-tracing, in Section 18.2.12 [Trace Buffer], page 243.

edebug-test-coverage User Option
If non-nil, Edebug tests coverage of all expressions debugged. See Section 18.2.13
[Coverage Testing], page 243.

edebug-continue-kbd-macro User Option
If non-nil, continue defining or executing any keyboard macro that is executing
outside of Edebug. Use this with caution since it is not debugged. See Section 18.2.3
[Edebug Execution Modes]|, page 235.

edebug-on-error User Option
Edebug binds debug-on-error to this value, if debug-on-error was previously nil.
See Section 18.2.7 [Trapping Errors|, page 239.

edebug-on-quit User Option
Edebug binds debug-on-quit to this value, if debug-on-quit was previously nil.
See Section 18.2.7 [Trapping Errors|, page 239.

If you change the values of edebug-on-error or edebug-on-quit while Edebug is active,
their values won’t be used until the nezt time Edebug is invoked via a new command.

Chapter 18: Debugging Lisp Programs 253

edebug-global-break-condition User Option
If non-nil, an expression to test for at every stop point. If the result is non-nil, then
break. Errors are ignored. See Section 18.2.6.1 [Global Break Condition], page 239.

18.3 Debugging Invalid Lisp Syntax

The Lisp reader reports invalid syntax, but cannot say where the real problem is. For
example, the error “End of file during parsing” in evaluating an expression indicates an
excess of open parentheses (or square brackets). The reader detects this imbalance at the
end of the file, but it cannot figure out where the close parenthesis should have been.
Likewise, “Invalid read syntax: ")"” indicates an excess close parenthesis or missing open
parenthesis, but does not say where the missing parenthesis belongs. How, then, to find
what to change?

If the problem is not simply an imbalance of parentheses, a useful technique is to try
C-M-e at the beginning of each defun, and see if it goes to the place where that defun
appears to end. If it does not, there is a problem in that defun.

However, unmatched parentheses are the most common syntax errors in Lisp, and we
can give further advice for those cases. (In addition, just moving point through the code
with Show Paren mode enabled might find the mismatch.)

18.3.1 Excess Open Parentheses

The first step is to find the defun that is unbalanced. If there is an excess open paren-
thesis, the way to do this is to go to the end of the file and type C-u C-M-u. This will move
you to the beginning of the defun that is unbalanced.

The next step is to determine precisely what is wrong. There is no way to be sure of this
except by studying the program, but often the existing indentation is a clue to where the
parentheses should have been. The easiest way to use this clue is to reindent with C-M-q
and see what moves. But don’t do this yet! Keep reading, first.

Before you do this, make sure the defun has enough close parentheses. Otherwise, C-M-q
will get an error, or will reindent all the rest of the file until the end. So move to the end of
the defun and insert a close parenthesis there. Don’t use C-M-e to move there, since that
too will fail to work until the defun is balanced.

Now you can go to the beginning of the defun and type C-M-q. Usually all the lines from
a certain point to the end of the function will shift to the right. There is probably a missing
close parenthesis, or a superfluous open parenthesis, near that point. (However, don’t
assume this is true; study the code to make sure.) Once you have found the discrepancy,
undo the C-M-q with C-_, since the old indentation is probably appropriate to the intended
parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation
actually fit the intended nesting of parentheses, and you have put back those parentheses,
C-M-q should not change anything.

18.3.2 Excess Close Parentheses

To deal with an excess close parenthesis, first go to the beginning of the file, then type
C-u -1 C-M-u to find the end of the unbalanced defun.

254 GNU Emacs Lisp Reference Manual

Then find the actual matching close parenthesis by typing C-M-f at the beginning of
that defun. This will leave you somewhere short of the place where the defun ought to end.
It is possible that you will find a spurious close parenthesis in that vicinity.

If you don’t see a problem at that point, the next thing to do is to type C-M-q at
the beginning of the defun. A range of lines will probably shift left; if so, the missing
open parenthesis or spurious close parenthesis is probably near the first of those lines.
(However, don’t assume this is true; study the code to make sure.) Once you have found
the discrepancy, undo the C-M-q with C-_, since the old indentation is probably appropriate
to the intended parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation
actually fits the intended nesting of parentheses, and you have put back those parentheses,
C-M-q should not change anything.

18.4 Debugging Problems in Compilation

When an error happens during byte compilation, it is normally due to invalid syntax
in the program you are compiling. The compiler prints a suitable error message in the
‘*Compile-Log*’ buffer, and then stops. The message may state a function name in which
the error was found, or it may not. Either way, here is how to find out where in the file the
error occurred.

What you should do is switch to the buffer * *Compiler Input*’. (Note that the buffer
name starts with a space, so it does not show up in M-x list-buffers.) This buffer contains
the program being compiled, and point shows how far the byte compiler was able to read.

If the error was due to invalid Lisp syntax, point shows exactly where the invalid syntax
was detected. The cause of the error is not necessarily near by! Use the techniques in the
previous section to find the error.

If the error was detected while compiling a form that had been read successfully, then
point is located at the end of the form. In this case, this technique can’t localize the error
precisely, but can still show you which function to check.

Chapter 19: Reading and Printing Lisp Objects 255

19 Reading and Printing Lisp Objects

Printing and reading are the operations of converting Lisp objects to textual form and
vice versa. They use the printed representations and read syntax described in Chapter 2
[Lisp Data Types]|, page 9.

This chapter describes the Lisp functions for reading and printing. It also describes
streams, which specify where to get the text (if reading) or where to put it (if printing).

19.1 Introduction to Reading and Printing

Reading a Lisp object means parsing a Lisp expression in textual form and producing a
corresponding Lisp object. This is how Lisp programs get into Lisp from files of Lisp code.
We call the text the read syntax of the object. For example, the text ‘(a . 5)’ is the read
syntax for a cons cell whose CAR is a and whose CDR is the number 5.

Printing a Lisp object means producing text that represents that object—converting
the object to its printed representation (see Section 2.1 [Printed Representation], page 9).
Printing the cons cell described above produces the text ‘(a . 5)°.

Reading and printing are more or less inverse operations: printing the object that results
from reading a given piece of text often produces the same text, and reading the text that
results from printing an object usually produces a similar-looking object. For example,
printing the symbol foo produces the text ‘foo’, and reading that text returns the symbol
foo. Printing a list whose elements are a and b produces the text ‘(a b)’, and reading that
text produces a list (but not the same list) with elements a and b.

However, these two operations are not precisely inverse to each other. There are three
kinds of exceptions:

e Printing can produce text that cannot be read. For example, buffers, windows, frames,
subprocesses and markers print as text that starts with ‘#’; if you try to read this text,
you get an error. There is no way to read those data types.

e One object can have multiple textual representations. For example, ‘1’ and ‘01’ rep-
resent the same integer, and ‘(a b)’ and ‘(a . (b))’ represent the same list. Reading
will accept any of the alternatives, but printing must choose one of them.

e Comments can appear at certain points in the middle of an object’s read sequence
without affecting the result of reading it.

19.2 Input Streams

Most of the Lisp functions for reading text take an input stream as an argument. The
input stream specifies where or how to get the characters of the text to be read. Here are
the possible types of input stream:

buffer The input characters are read from buffer, starting with the character directly
after point. Point advances as characters are read.

marker The input characters are read from the buffer that marker is in, starting with the
character directly after the marker. The marker position advances as characters
are read. The value of point in the buffer has no effect when the stream is a
marker.

256

string

function

nil

symbol

GNU Emacs Lisp Reference Manual

The input characters are taken from string, starting at the first character in the
string and using as many characters as required.

The input characters are generated by function, which must support two kinds
of calls:

e When it is called with no arguments, it should return the next character.

e When it is called with one argument (always a character), function should
save the argument and arrange to return it on the next call. This is called
unreading the character; it happens when the Lisp reader reads one char-
acter too many and wants to “put it back where it came from”. In this
case, it makes no difference what value function returns.

t used as a stream means that the input is read from the minibuffer. In fact,
the minibuffer is invoked once and the text given by the user is made into a
string that is then used as the input stream. If Emacs is running in batch mode,
standard input is used instead of the minibuffer. For example,

(message "%s" (read t))
will read a Lisp expression from standard input and print the result to standard
output.

nil supplied as an input stream means to use the value of standard-input
instead; that value is the default input stream, and must be a non-nil input
stream.

A symbol as input stream is equivalent to the symbol’s function definition (if
any).

Here is an example of reading from a stream that is a buffer, showing where point is
located before and after:

------ Buffer: foo ----------
Thisx is the contents of foo.
—————— Buffer: foo - ————-—---
(read (get-buffer "foo"))
= 1is
(read (get-buffer "foo"))
= the
—————— Buffer: foo --—————----

This is thex contents of foo.

—————— Buffer: foo --————---—-

Note that the first read skips a space. Reading skips any amount of whitespace preceding
the significant text.

Here is an example of reading from a stream that is a marker, initially positioned at the
beginning of the buffer shown. The value read is the symbol This.

—————— Buffer: foo ~———————-

This is the contents of foo.

—————— Buffer: foo - ————————-

Chapter 19: Reading and Printing Lisp Objects 257

(setq m (set-marker (make-marker) 1 (get-buffer "foo")))
= #<marker at 1 in foo>

(read m)
= This
m
= #<marker at 5 in foo> ;; Before the first space.

Here we read from the contents of a string;:

(read "(When in) the course")
= (When in)
The following example reads from the minibuffer. The prompt is: ‘Lisp expression:
(That is always the prompt used when you read from the stream t.) The user’s input is
shown following the prompt.

(read t)
= 23
—————————— Buffer: Minibuffer ---————----
Lisp expression: 23
—————————— Buffer: Minibuffer ----—-—-----

Finally, here is an example of a stream that is a function, named useless-stream.
Before we use the stream, we initialize the variable useless-1list to a list of characters.
Then each call to the function useless-stream obtains the next character in the list or
unreads a character by adding it to the front of the list.

I

(setq useless-list (append "XY()" nil))
= (88 89 40 41)

(defun useless-stream (&optional unread)
(if unread
(setq useless-list (cons unread useless-list))
(progl (car useless-list)
(setq useless-1list (cdr useless-list)))))
= useless-stream
Now we read using the stream thus constructed:

(read ’useless-stream)
= XY
useless-list
= (40 41)

Note that the open and close parentheses remain in the list. The Lisp reader encountered
the open parenthesis, decided that it ended the input, and unread it. Another attempt to
read from the stream at this point would read ‘()’ and return nil.

get-file-char Function
This function is used internally as an input stream to read from the input file opened
by the function load. Don’t use this function yourself.

19.3 Input Functions

This section describes the Lisp functions and variables that pertain to reading.

258 GNU Emacs Lisp Reference Manual

In the functions below, stream stands for an input stream (see the previous section). If
stream is nil or omitted, it defaults to the value of standard-input.

An end-of-file error is signaled if reading encounters an unterminated list, vector, or
string.

read &optional stream Function
This function reads one textual Lisp expression from stream, returning it as a Lisp
object. This is the basic Lisp input function.

read-from-string string &optional start end Function
This function reads the first textual Lisp expression from the text in string. It returns
a cons cell whose CAR is that expression, and whose CDR is an integer giving the
position of the next remaining character in the string (i.e., the first one not read).

If start is supplied, then reading begins at index start in the string (where the first
character is at index 0). If you specify end, then reading is forced to stop just before
that index, as if the rest of the string were not there.
For example:
(read-from-string "(setq x 55) (setq y 5)")
= ((setq x 55) . 11)

(read-from-string "\"A short string\"")
= ("A short string" . 16)

; ;5 Read starting at the first character.
(read-from-string "(list 112)" 0)
= ((list 112) . 10)
;5 Read starting at the second character.
(read-from-string "(list 112)" 1)
= (list . 5)
;5 Read starting at the seventh character,
¥ and stopping at the ninth.
(read-from-string "(list 112)" 6 8)
= (11 . 8)

standard-input Variable
This variable holds the default input stream—the stream that read uses when the
stream argument is nil.

19.4 Output Streams

An output stream specifies what to do with the characters produced by printing. Most
print functions accept an output stream as an optional argument. Here are the possible
types of output stream:

buffer The output characters are inserted into buffer at point. Point advances as
characters are inserted.

marker The output characters are inserted into the buffer that marker points into, at
the marker position. The marker position advances as characters are inserted.

Chapter 19: Reading and Printing Lisp Objects 259

function

nil

symbol

The value of point in the buffer has no effect on printing when the stream is a
marker, and this kind of printing does not move point.

The output characters are passed to function, which is responsible for storing
them away. It is called with a single character as argument, as many times as
there are characters to be output, and is responsible for storing the characters
wherever you want to put them.

The output characters are displayed in the echo area.

nil specified as an output stream means to use the value of standard-output
instead; that value is the default output stream, and must not be nil.

A symbol as output stream is equivalent to the symbol’s function definition (if
any).

Many of the valid output streams are also valid as input streams. The difference between
input and output streams is therefore more a matter of how you use a Lisp object, than of
different types of object.

Here is an example of a buffer used as an output stream. Point is initially located as
shown immediately before the ‘h’ in ‘the’. At the end, point is located directly before that

same ‘h’.

------ Buffer: foo ----------

This is txhe contents of foo.

—————— Buffer: foo - ————————-

(print "This is the output" (get-buffer "foo"))

= "This is the output"

This is t
"This is the output"
xhe contents of foo.

—————— Buffer: foo --———————-

Now we show a use of a marker as an output stream. Initially, the marker is in buffer
foo, between the ‘t’ and the ‘h’ in the word ‘the’. At the end, the marker has advanced over
the inserted text so that it remains positioned before the same ‘h’. Note that the location
of point, shown in the usual fashion, has no effect.

—————— Buffer: foo --———-—----

This is the *output

—————— Buffer: foo --———-——-—-

(setq m (copy-marker 10))

= #<marker at 10 in foo>

(print "More output for foo." m)

= "More output for foo."

—————————— Buffer: foo ----------
This is t

"More output for foo."

he xoutput

—————— Buffer: foo --——————-—-

260 GNU Emacs Lisp Reference Manual

= #<marker at 34 in foo>
The following example shows output to the echo area:
(print "Echo Area output" t)
= "Echo Area output"
—————————— Echo Area —————————-
"Echo Area output"
—————————— Echo Area ------——--

Finally, we show the use of a function as an output stream. The function eat-output
takes each character that it is given and conses it onto the front of the list last-output
(see Section 5.5 [Building Lists|, page 68). At the end, the list contains all the characters
output, but in reverse order.

(setq last-output nil)
= nil
(defun eat-output (c)

(setq last-output (cons c¢ last-output)))
= eat-output

(print "This is the output" ’eat-output)
= "This is the output"

last-output
= (10 34 116 117 112 116 117 111 32 101 104
116 32 115 105 32 115 105 104 84 34 10)
Now we can put the output in the proper order by reversing the list:
(concat (nreverse last-output))
j n
\"This is the output\"

Calling concat converts the list to a string so you can see its contents more clearly.

19.5 Output Functions

This section describes the Lisp functions for printing Lisp objects—converting objects
into their printed representation.

Some of the Emacs printing functions add quoting characters to the output when nec-
essary so that it can be read properly. The quoting characters used are ‘"’ and ‘\’; they
distinguish strings from symbols, and prevent punctuation characters in strings and sym-
bols from being taken as delimiters when reading. See Section 2.1 [Printed Representation],
page 9, for full details. You specify quoting or no quoting by the choice of printing function.

If the text is to be read back into Lisp, then you should print with quoting characters
to avoid ambiguity. Likewise, if the purpose is to describe a Lisp object clearly for a Lisp
programmer. However, if the purpose of the output is to look nice for humans, then it is
usually better to print without quoting.

Lisp objects can refer to themselves. Printing a self-referential object in the normal way
would require an infinite amount of text, and the attempt could cause infinite recursion.

Chapter 19: Reading and Printing Lisp Objects 261

Emacs detects such recursion and prints ‘#level’ instead of recursively printing an object
already being printed. For example, here ‘#0’ indicates a recursive reference to the object
at level 0 of the current print operation:
(setq foo (list nil))
= (nil)
(setcar foo foo)
= (#0)
In the functions below, stream stands for an output stream. (See the previous section
for a description of output streams.) If stream is nil or omitted, it defaults to the value of
standard-output.

print object &optional stream Function

The print function is a convenient way of printing. It outputs the printed represen-
tation of object to stream, printing in addition one newline before object and another
after it. Quoting characters are used. print returns object. For example:
(progn (print ’The\ cat\ in)
(print "the hat")
(print " came back"))
_|
- The\ cat\ in
_|
- "the hat"
_|
- " came back"
_{
= " came back"

prinl object &optional stream Function

This function outputs the printed representation of object to stream. It does not
print newlines to separate output as print does, but it does use quoting characters
just like print. It returns object.
(progn (prinl ’The\ cat\ in)
(prinl "the hat")
(prinl " came back"))
- The\ cat\ in"the hat"" came back"
= " came back"

princ object &optional stream Function

This function outputs the printed representation of object to stream. It returns
object.

This function is intended to produce output that is readable by people, not by read,
so it doesn’t insert quoting characters and doesn’t put double-quotes around the
contents of strings. It does not add any spacing between calls.
(progn
(princ ’The\ cat)
(princ " in the \"hat\""))
- The cat in the "hat"
= " in the \"hat\""

262 GNU Emacs Lisp Reference Manual

terpri &optional stream Function
This function outputs a newline to stream. The name stands for “terminate print”.

write-char character &optional stream Function
This function outputs character to stream. It returns character.

prinl-to-string object &optional noescape Function
This function returns a string containing the text that prinl would have printed for
the same argument.
(prinl-to-string ’foo)
= "foo"
(prinl-to-string (mark-marker))
= "#<marker at 2773 in strings.texi>"
If noescape is non-nil, that inhibits use of quoting characters in the output. (This
argument is supported in Emacs versions 19 and later.)

(prinl-to-string "foo")

ll\"foo\ll"
(prinl-to-string "foo" t)
= "foo"

See format, in Section 4.6 [String Conversion|, page 55, for other ways to obtain the
printed representation of a Lisp object as a string.

with-output-to-string body... Macro
This macro executes the body forms with standard-output set up to feed output
into a string. Then it returns that string.
For example, if the current buffer name is ‘foo’,
(with-output-to-string
(princ "The buffer is ")
(princ (buffer-name)))

returns "The buffer is foo".

19.6 Variables Affecting Output

standard-output Variable
The value of this variable is the default output stream—the stream that print func-
tions use when the stream argument is nil.

print-escape-newlines Variable
If this variable is non-nil, then newline characters in strings are printed as ‘\n’ and
formfeeds are printed as ‘\f’. Normally these characters are printed as actual newlines
and formfeeds.

This variable affects the print functions prinl and print that print with quoting. It
does not affect princ. Here is an example using prini:

Chapter 19: Reading and Printing Lisp Objects 263

(prinl "a\nb")

4 "a
- b"
= "a

bll
(let ((print-escape-newlines t))
(prinl "a\nb"))
- "a\nb"
= "a
bll
In the second expression, the local binding of print-escape-newlines is in effect
during the call to prinl, but not during the printing of the result.

print-escape-nonascii Variable
If this variable is non-nil, then unibyte non-ASCII characters in strings are uncondi-
tionally printed as backslash sequences by the print functions prinl and print that
print with quoting.
Those functions also use backslash sequences for unibyte non-Ascii characters, re-
gardless of the value of this variable, when the output stream is a multibyte buffer or
a marker pointing into one.

print-escape-multibyte Variable
If this variable is non-nil, then multibyte non-ASCII characters in strings are uncon-
ditionally printed as backslash sequences by the print functions prinl and print that
print with quoting.
Those functions also use backslash sequences for multibyte non-ASCII characters, re-
gardless of the value of this variable, when the output stream is a unibyte buffer or a
marker pointing into one.

print-length Variable
The value of this variable is the maximum number of elements to print in any list,
vector or bool-vector. If an object being printed has more than this many elements,
it is abbreviated with an ellipsis.
If the value is nil (the default), then there is no limit.

(setq print-length 2)

= 2
(print *(1 2 3 4 5))
4 @2 ...
= (12 ...)
print-level Variable

The value of this variable is the maximum depth of nesting of parentheses and brackets
when printed. Any list or vector at a depth exceeding this limit is abbreviated with
an ellipsis. A value of nil (which is the default) means no limit.

These variables are used for detecting and reporting circular and shared structure—but
they are only defined in Emacs 21.

264 GNU Emacs Lisp Reference Manual

print-circle Variable
If non-nil, this variable enables detection of circular and shared structure in printing.

print-gensym Variable
If non-nil, this variable enables detection of uninterned symbols (see Section 8.3
[Creating Symbols], page 101) in printing. When this is enabled, uninterned symbols
print with the prefix ‘#:’, which tells the Lisp reader to produce an uninterned symbol.

Chapter 20: Minibuffers 265

20 Minibuffers

A minibuffer is a special buffer that Emacs commands use to read arguments more
complicated than the single numeric prefix argument. These arguments include file names,
buffer names, and command names (as in M-x). The minibuffer is displayed on the bottom
line of the frame, in the same place as the echo area, but only while it is in use for reading
an argument.

20.1 Introduction to Minibuffers

In most ways, a minibuffer is a normal Emacs buffer. Most operations within a buffer,
such as editing commands, work normally in a minibuffer. However, many operations for
managing buffers do not apply to minibuffers. The name of a minibuffer always has the
form ¢ *Minibuf-number’, and it cannot be changed. Minibuffers are displayed only in
special windows used only for minibuffers; these windows always appear at the bottom of
a frame. (Sometimes frames have no minibuffer window, and sometimes a special kind of
frame contains nothing but a minibuffer window; see Section 29.8 [Minibuffers and Frames],
page 495.)

The text in the minibuffer always starts with the prompt string, the text that was spec-
ified by the program that is using the minibuffer to tell the user what sort of input to type.
This text is marked read-only so you won’t accidentally delete or change it. It is also marked
as a field (see Section 32.19.10 [Fields], page 574), so that certain motion functions, including
beginning-of-line, forward-word, forward-sentence, and forward-paragraph, stop at
the boundary between the prompt and the actual text. (In older Emacs versions, the prompt
was displayed using a special mechanism and was not part of the buffer contents.)

The minibuffer’s window is normally a single line; it grows automatically if necessary if
the contents require more space. You can explicitly resize it temporarily with the window
sizing commands; it reverts to its normal size when the minibuffer is exited. You can resize
it permanently by using the window sizing commands in the frame’s other window, when
the minibuffer is not active. If the frame contains just a minibuffer, you can change the
minibuffer’s size by changing the frame’s size.

If a command uses a minibuffer while there is an active minibuffer, this is called a
recursive minibuffer. The first minibuffer is named ¢ *Minibuf-0%’. Recursive minibuffers
are named by incrementing the number at the end of the name. (The names begin with a
space so that they won’t show up in normal buffer lists.) Of several recursive minibuffers,
the innermost (or most recently entered) is the active minibuffer. We usually call this “the”
minibuffer. You can permit or forbid recursive minibuffers by setting the variable enable-
recursive-minibuffers or by putting properties of that name on command symbols (see
Section 20.9 [Minibuffer Misc], page 284).

Like other buffers, a minibuffer may use any of several local keymaps (see Chapter 22
[Keymaps], page 325); these contain various exit commands and in some cases completion
commands (see Section 20.5 [Completion|, page 271).

e minibuffer-local-map is for ordinary input (no completion).

e minibuffer-local-ns-map is similar, except that exits just like RET). This is
used mainly for Mocklisp compatibility.

266 GNU Emacs Lisp Reference Manual

e minibuffer-local-completion-map is for permissive completion.

e minibuffer-local-must-match-map is for strict completion and for cautious comple-
tion.

When Emacs is running in batch mode, any request to read from the minibuffer actually
reads a line from the standard input descriptor that was supplied when Emacs was started.

20.2 Reading Text Strings with the Minibuffer

Most often, the minibuffer is used to read text as a string. It can also be used to read a
Lisp object in textual form. The most basic primitive for minibuffer input is read-from-
minibuffer; it can do either one.

In most cases, you should not call minibuffer input functions in the middle of a Lisp
function. Instead, do all minibuffer input as part of reading the arguments for a command,
in the interactive specification. See Section 21.2 [Defining Commands], page 288.

read-from-minibuffer prompt-string &optional initial-contents Function
keymap read hist default inherit-input-method

This function is the most general way to get input through the minibuffer. By default,

it accepts arbitrary text and returns it as a string; however, if read is non-nil, then

it uses read to convert the text into a Lisp object (see Section 19.3 [Input Functions],
page 257).

The first thing this function does is to activate a minibuffer and display it with
prompt-string as the prompt. This value must be a string. Then the user can edit
text in the minibuffer.

When the user types a command to exit the minibuffer, read-from-minibuffer
constructs the return value from the text in the minibuffer. Normally it returns a
string containing that text. However, if read is non-nil, read-from-minibuffer
reads the text and returns the resulting Lisp object, unevaluated. (See Section 19.3
[Input Functions], page 257, for information about reading.)

The argument default specifies a default value to make available through the history
commands. It should be a string, or nil. If read is non-nil, then default is also
used as the input to read, if the user enters empty input. However, in the usual case
(where read is nil), read-from-minibuffer does not return default when the user
enters empty input; it returns an empty string, "". In this respect, it is different from
all the other minibuffer input functions in this chapter.

If keymap is non-nil, that keymap is the local keymap to use in the minibuffer.
If keymap is omitted or nil, the value of minibuffer-local-map is used as the
keymap. Specifying a keymap is the most important way to customize the minibuffer
for various applications such as completion.

The argument hist specifies which history list variable to use for saving the input and

for history commands used in the minibuffer. It defaults to minibuffer-history.
See Section 20.4 [Minibuffer History], page 270.

If the variable minibuffer-allow-text-properties is non-nil, then the string
which is returned includes whatever text properties were present in the minibuffer.
Otherwise all the text properties are stripped when the value is returned.

Chapter 20: Minibuffers 267

If the argument inherit-input-method is non-nil, then the minibuffer inherits the
current input method (see Section 33.11 [Input Methods|, page 599) and the setting of
enable-multibyte-characters (see Section 33.1 [Text Representations|, page 583)
from whichever buffer was current before entering the minibuffer.

If initial-contents is a string, read-from-minibuffer inserts it into the minibuffer,
leaving point at the end, before the user starts to edit the text. The minibuffer
appears with this text as its initial contents.

Alternatively, initial-contents can be a cons cell of the form (string . position). This
means to insert string in the minibuffer but put point position characters from the
beginning, rather than at the end.

Usage note: The initial-contents argument and the default argument are two alter-
native features for more or less the same job. It does not make sense to use both
features in a single call to read-from-minibuffer. In general, we recommend using
default, since this permits the user to insert the default value when it is wanted, but
does not burden the user with deleting it from the minibuffer on other occasions.

read-string prompt &optional initial history default Function
inherit-input-method
This function reads a string from the minibuffer and returns it. The arguments prompt
and initial are used as in read-from-minibuffer. The keymap used is minibuffer-
local-map.

The optional argument history, if non-nil, specifies a history list and optionally the
initial position in the list. The optional argument default specifies a default value
to return if the user enters null input; it should be a string. The optional argument
inherit-input-method specifies whether to inherit the current buffer’s input method.

This function is a simplified interface to the read-from-minibuffer function:

(read-string prompt initial history default inherit)

(let ((value
(read-from-minibuffer prompt initial nil nil
history default inherit)))
(if (equal value "")
default
value))

minibuffer-allow-text-properties Variable
If this variable is nil, then read-from-minibuffer strips all text properties from
the minibuffer input before returning it. Since all minibuffer input uses read-from-
minibuffer, this variable applies to all minibuffer input.

Note that the completion functions discard text properties unconditionally, regardless
of the value of this variable.

minibuffer-local-map Variable
This is the default local keymap for reading from the minibuffer. By default, it makes
the following bindings:

268 GNU Emacs Lisp Reference Manual

C-j exit-minibuffer
RET exit-minibuffer
C-g abort-recursive-edit
M-n next-history-element
M-p previous-history-element
M-r next-matching-history-element
M-s previous-matching-history-element
read-no-blanks-input prompt &optional initial inherit-input-method Function

This function reads a string from the minibuffer, but does not allow whitespace char-
acters as part of the input: instead, those characters terminate the input. The
arguments prompt, initial, and inherit-input-method are used as in read-from-
minibuffer.

This is a simplified interface to the read-from-minibuffer function, and passes the
value of the minibuffer-local-ns-map keymap as the keymap argument for that
function. Since the keymap minibuffer-local-ns-map does not rebind C-gq, it is
possible to put a space into the string, by quoting it.

(read-no-blanks-input prompt initial)

(read-from-minibuffer prompt initial minibuffer-local-ns-map)

minibuffer-local-ns-map Variable
This built-in variable is the keymap used as the minibuffer local keymap in the func-
tion read-no-blanks-input. By default, it makes the following bindings, in addition
to those of minibuffer-local-map:

exit-minibuffer
TAB exit—-minibuffer
7 self-insert—-and-exit

20.3 Reading Lisp Objects with the Minibuffer

This section describes functions for reading Lisp objects with the minibuffer.

read-minibuffer prompt &optional initial Function
This function reads a Lisp object using the minibuffer, and returns it without evalu-
ating it. The arguments prompt and initial are used as in read-from-minibuffer.

This is a simplified interface to the read-from-minibuffer function:

(read-minibuffer prompt initial)

(read-from-minibuffer prompt initial nil t)

Here is an example in which we supply the string " (testing)" as initial input:

Chapter 20: Minibuffers 269

(read-minibuffer
"Enter an expression: " (format "¥%s" ’(testing)))

;3 Here is how the minibuffer is displayed:

—————————— Buffer: Minibuffer ----——----
Enter an expression: (testing)x
—————————— Buffer: Minibuffer -----—-----

The user can type immediately to use the initial input as a default, or can edit
the input.

eval-minibuffer prompt &optional initial Function
This function reads a Lisp expression using the minibuffer, evaluates it, then returns
the result. The arguments prompt and initial are used as in read-from-minibuffer.

This function simply evaluates the result of a call to read-minibuffer:

(eval-minibuffer prompt initial)

(eval (read-minibuffer prompt initial))

edit-and-eval-command prompt form Function
This function reads a Lisp expression in the minibuffer, and then evaluates it. The
difference between this command and eval-minibuffer is that here the initial form is
not optional and it is treated as a Lisp object to be converted to printed representation
rather than as a string of text. It is printed with prini, so if it is a string, double-
quote characters (‘"’) appear in the initial text. See Section 19.5 [Output Functions],
page 260.

The first thing edit-and-eval-command does is to activate the minibuffer with
prompt as the prompt. Then it inserts the printed representation of form in the
minibuffer, and lets the user edit it. When the user exits the minibuffer, the edited
text is read with read and then evaluated. The resulting value becomes the value of
edit-and-eval-command.

In the following example, we offer the user an expression with initial text which is a
valid form already:

(edit-and-eval-command "Please edit: " ’ (forward-word 1))

;5 After evaluation of the preceding expression,
¥ the following appears in the minibuffer:

—————————— Buffer: Minibuffer ----——----
Please edit: (forward-word 1)x
—————————— Buffer: Minibuffer ---————----

Typing right away would exit the minibuffer and evaluate the expression, thus
moving point forward one word. edit-and-eval-command returns nil in this exam-
ple.

270 GNU Emacs Lisp Reference Manual

20.4 Minibuffer History

A minibuffer history list records previous minibuffer inputs so the user can reuse them
conveniently. A history list is actually a symbol, not a list; it is a variable whose value is a
list of strings (previous inputs), most recent first.

There are many separate history lists, used for different kinds of inputs. It’s the Lisp
programmer’s job to specify the right history list for each use of the minibuffer.

The basic minibuffer input functions read-from-minibuffer and completing-read
both accept an optional argument named hist which is how you specify the history list.
Here are the possible values:

variable ~ Use variable (a symbol) as the history list.

(variable . startpos)
Use variable (a symbol) as the history list, and assume that the initial history
position is startpos (an integer, counting from zero which specifies the most
recent element of the history).

If you specify startpos, then you should also specify that element of the history
as the initial minibuffer contents, for consistency.

If you don’t specify hist, then the default history list minibuffer-history is used. For
other standard history lists, see below. You can also create your own history list variable;
just initialize it to nil before the first use.

Both read-from-minibuffer and completing-read add new elements to the history
list automatically, and provide commands to allow the user to reuse items on the list. The
only thing your program needs to do to use a history list is to initialize it and to pass its
name to the input functions when you wish. But it is safe to modify the list by hand when
the minibuffer input functions are not using it.

Here are some of the standard minibuffer history list variables:

minibuffer-history Variable
The default history list for minibuffer history input.

query-replace-history Variable
A history list for arguments to query-replace (and similar arguments to other com-
mands).

file-name-history Variable

A history list for file-name arguments.

buffer-name-history Variable
A history list for buffer-name arguments.

regexp-history Variable
A history list for regular expression arguments.

extended-command-history Variable
A history list for arguments that are names of extended commands.

Chapter 20: Minibuffers 271

shell-command-history Variable
A history list for arguments that are shell commands.

read-expression-history Variable
A history list for arguments that are Lisp expressions to evaluate.

20.5 Completion

Completion is a feature that fills in the rest of a name starting from an abbreviation
for it. Completion works by comparing the user’s input against a list of valid names and
determining how much of the name is determined uniquely by what the user has typed.
For example, when you type C-x b (switch-to-buffer) and then type the first few letters
of the name of the buffer to which you wish to switch, and then type (minibuffer-
complete), Emacs extends the name as far as it can.

Standard Emacs commands offer completion for names of symbols, files, buffers, and
processes; with the functions in this section, you can implement completion for other kinds
of names.

The try-completion function is the basic primitive for completion: it returns the longest
determined completion of a given initial string, with a given set of strings to match against.

The function completing-read provides a higher-level interface for completion. A call
to completing-read specifies how to determine the list of valid names. The function then
activates the minibuffer with a local keymap that binds a few keys to commands useful for
completion. Other functions provide convenient simple interfaces for reading certain kinds
of names with completion.

20.5.1 Basic Completion Functions

The two functions try-completion and all-completions have nothing in themselves
to do with minibuffers. We describe them in this chapter so as to keep them near the
higher-level completion features that do use the minibuffer.

try-completion string collection &optional predicate Function
This function returns the longest common substring of all possible completions of
string in collection. The value of collection must be an alist, an obarray, or a function
that implements a virtual set of strings (see below).

Completion compares string against each of the permissible completions specified by
collection; if the beginning of the permissible completion equals string, it matches.
If no permissible completions match, try-completion returns nil. If only one per-
missible completion matches, and the match is exact, then try-completion returns
t. Otherwise, the value is the longest initial sequence common to all the permissible
completions that match.

If collection is an alist (see Section 5.8 [Association Lists|, page 79), the CARs of the
alist elements form the set of permissible completions.

If collection is an obarray (see Section 8.3 [Creating Symbols|, page 101), the names
of all symbols in the obarray form the set of permissible completions. The global
variable obarray holds an obarray containing the names of all interned Lisp symbols.

272 GNU Emacs Lisp Reference Manual

Note that the only valid way to make a new obarray is to create it empty and then
add symbols to it one by one using intern. Also, you cannot intern a given symbol
in more than one obarray.

If the argument predicate is non-nil, then it must be a function of one argument.
It is used to test each possible match, and the match is accepted only if predicate
returns non-nil. The argument given to predicate is either a cons cell from the alist
(the CAR of which is a string) or else it is a symbol (not a symbol name) from the
obarray.

You can also use a symbol that is a function as collection. Then the function is
solely responsible for performing completion; try-completion returns whatever this
function returns. The function is called with three arguments: string, predicate and
nil. (The reason for the third argument is so that the same function can be used
in all-completions and do the appropriate thing in either case.) See Section 20.5.6
[Programmed Completion], page 279.

In the first of the following examples, the string ‘foo’ is matched by three of the alist
CARs. All of the matches begin with the characters ‘fooba’, so that is the result. In
the second example, there is only one possible match, and it is exact, so the value is
t.
(try-completion
Ilfooﬂ
>(("foobarl" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4)))
= "fooba"

(try-completion "foo" ’(("barfoo" 2) ("foo" 3)))
=t
In the following example, numerous symbols begin with the characters ‘forw’, and all
of them begin with the word ‘forward’. In most of the symbols, this is followed with

3

a ‘=’, but not in all, so no more than ‘forward’ can be completed.

(try-completion "forw" obarray)
= "forward"
Finally, in the following example, only two of the three possible matches pass the
predicate test (the string ‘foobaz’ is too short). Both of those begin with the string
‘foobar’.
(defun test (s)
(> (length (car s)) 6))
= test
(try-completion
"foo"
>(("foobarl" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
’test)
= "foobar"

all-completions string collection &optional predicate nospace Function
This function returns a list of all possible completions of string. The arguments to this
function (aside from nospace) are the same as those of try-completion. If nospace
is non-nil, completions that start with a space are ignored unless string also starts
with a space.

Chapter 20: Minibuffers 273

If collection is a function, it is called with three arguments: string, predicate and
t; then all-completions returns whatever the function returns. See Section 20.5.6
[Programmed Completion], page 279.

Here is an example, using the function test shown in the example for
try-completion:

(defun test (s)
(> (length (car s)) 6))

= test
(all-completions
llfooll
>(("foobarl" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
‘test)

= ("foobarl" "foobar2")

completion-ignore-case Variable
If the value of this variable is non-nil, Emacs does not consider case significant in
completion.

20.5.2 Completion and the Minibuffer

This section describes the basic interface for reading from the minibuffer with completion.

completing-read prompt collection &optional predicate require-match Function
initial hist default inherit-input-method
This function reads a string in the minibuffer, assisting the user by providing com-
pletion. It activates the minibuffer with prompt prompt, which must be a string.

The actual completion is done by passing collection and predicate to the function
try-completion. This happens in certain commands bound in the local keymaps
used for completion.

If require-match is nil, the exit commands work regardless of the input in the mini-
buffer. If require-match is t, the usual minibuffer exit commands won’t exit unless
the input completes to an element of collection. If require-match is neither nil nor
t, then the exit commands won’t exit unless the input already in the buffer matches
an element of collection.

However, empty input is always permitted, regardless of the value of require-match;
in that case, completing-read returns default. The value of default (if non-nil) is
also available to the user through the history commands.

The user can exit with null input by typing with an empty minibuffer. Then
completing-read returns "". This is how the user requests whatever default the
command uses for the value being read. The user can return using in this way
regardless of the value of require-match, and regardless of whether the empty string
is included in collection.

The function completing-read works by calling read-minibuffer. It uses
minibuffer-local-completion-map as the keymap if require-match is nil,
and uses minibuffer-local-must-match-map if require-match is non-nil. See
Section 20.5.3 [Completion Commands|, page 274.

274 GNU Emacs Lisp Reference Manual

The argument hist specifies which history list variable to use for saving the input
and for minibuffer history commands. It defaults to minibuffer-history. See Sec-
tion 20.4 [Minibuffer History], page 270.

If initial is non-nil, completing-read inserts it into the minibuffer as part of the
input. Then it allows the user to edit the input, providing several commands to
attempt completion. In most cases, we recommend using default, and not initial.

We discourage use of a non-nil value for initial, because it is an intrusive interface.
The history list feature (which did not exist when we introduced initial) offers a far
more convenient and general way for the user to get the default and edit it, and it is
always available.

If the argument inherit-input-method is non-nil, then the minibuffer inherits the
current input method (see Section 33.11 [Input Methods], page 599) and the setting of
enable-multibyte-characters (see Section 33.1 [Text Representations|, page 583)
from whichever buffer was current before entering the minibuffer.

Completion ignores case when comparing the input against the possible matches, if
the built-in variable completion-ignore-case is non-nil. See Section 20.5.1 [Basic
Completion], page 271.

Here’s an example of using completing-read:

(completing-read

"Complete a foo: "

>(("foobari" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
nil t "fo")

;5 After evaluation of the preceding expression,

¥ the following appears in the minibuffer:

—————————— Buffer: Minibuffer -----—-----
Complete a foo: fox
—————————— Buffer: Minibuffer —————————-

If the user then types (DEL) (DEL) b (RET), completing-read returns barfoo.

The completing-read function binds three variables to pass informa-

tion to the commands that actually do completion. These variables are
minibuffer-completion-table, minibuffer-completion-predicate and
minibuffer-completion-confirm. For more information about them, see

Section 20.5.3 [Completion Commands|, page 274.

20.5.3 Minibuffer Commands that Do Completion

This section describes the keymaps, commands and user options used in the minibuffer
to do completion.

minibuffer-local-completion-map Variable
completing-read uses this value as the local keymap when an exact match of one
of the completions is not required. By default, this keymap makes the following
bindings:

? minibuffer-completion-help

Chapter 20: Minibuffers 275

minibuffer-complete-word
TAB minibuffer-complete

with other characters bound as in minibuffer-local-map (see Section 20.2 [Text
from Minibuffer], page 266).

minibuffer-local-must-match-map Variable
completing-read uses this value as the local keymap when an exact match of one of
the completions is required. Therefore, no keys are bound to exit-minibuffer, the
command that exits the minibuffer unconditionally. By default, this keymap makes
the following bindings:

? minibuffer-completion-help
minibuffer-complete-word

TAB minibuffer-complete

C-j minibuffer-complete-and-exit
RET minibuffer-complete-and-exit

with other characters bound as in minibuffer-local-map.

minibuffer-completion-table Variable
The value of this variable is the alist or obarray used for completion in the mini-
buffer. This is the global variable that contains what completing-read passes to
try-completion. It is used by minibuffer completion commands such asminibuffer-
complete-word.

minibuffer-completion-predicate Variable
This variable’s value is the predicate that completing-read passes to try-
completion. The variable is also used by the other minibuffer completion
functions.

minibuffer-complete-word Command
This function completes the minibuffer contents by at most a single word. Even if
the minibuffer contents have only one completion, minibuffer-complete-word does
not add any characters beyond the first character that is not a word constituent. See
Chapter 35 [Syntax Tables], page 621.

minibuffer-complete Command
This function completes the minibuffer contents as far as possible.

minibuffer-complete-and-exit Command
This function completes the minibuffer contents, and exits if confirmation is not
required, i.e., ifminibuffer-completion-confirmisnil. If confirmation is required,
it is given by repeating this command immediately—the command is programmed to
work without confirmation when run twice in succession.

276 GNU Emacs Lisp Reference Manual

minibuffer-completion-confirm Variable
When the value of this variable is non-nil, Emacs asks for confirmation of a com-
pletion before exiting the minibuffer. The function minibuffer-complete-and-exit
checks the value of this variable before it exits.

minibuffer-completion-help Command
This function creates a list of the possible completions of the current minibuffer
contents. It works by calling all-completions using the value of the variable
minibuffer-completion-table as the collection argument, and the value of
minibuffer-completion-predicate as the predicate argument. The list of
completions is displayed as text in a buffer named ‘*Completions*’.

display-completion-list completions Function
This function displays completions to the stream in standard-output, usually a
buffer. (See Chapter 19 [Read and Print], page 255, for more information about
streams.) The argument completions is normally a list of completions just returned
by all-completions, but it does not have to be. Each element may be a symbol or
a string, either of which is simply printed, or a list of two strings, which is printed as
if the strings were concatenated.

This function is called by minibuffer-completion-help. The most common way to
use it is together with with-output-to-temp-buffer, like this:
(with-output-to-temp-buffer "*Completions*"
(display-completion-list
(all-completions (buffer-string) my-alist)))

completion-auto-help User Option
If this variable is non-nil, the completion commands automatically display a list of
possible completions whenever nothing can be completed because the next character
is not uniquely determined.

20.5.4 High-Level Completion Functions

This section describes the higher-level convenient functions for reading certain sorts of
names with completion.

In most cases, you should not call these functions in the middle of a Lisp function. When
possible, do all minibuffer input as part of reading the arguments for a command, in the
interactive specification. See Section 21.2 [Defining Commands], page 288.

read-buffer prompt &optional default existing Function
This function reads the name of a buffer and returns it as a string. The argument
default is the default name to use, the value to return if the user exits with an empty
minibuffer. If non-nil, it should be a string or a buffer. It is mentioned in the prompt,
but is not inserted in the minibuffer as initial input.

If existing is non-nil, then the name specified must be that of an existing buffer. The
usual commands to exit the minibuffer do not exit if the text is not valid, and

Chapter 20: Minibuffers 277

does completion to attempt to find a valid name. (However, default is not checked
for validity; it is returned, whatever it is, if the user exits with the minibuffer empty.)

In the following example, the user enters ‘minibuffer.t’, and then types RET). The
argument existing is t, and the only buffer name starting with the given input is
‘minibuffer.texi’, so that name is the value.

(read-buffer "Buffer name? " "foo" t)

;3 After evaluation of the preceding expression,
B the following prompt appears,

s with an empty minibuffer:

—————————— Buffer: Minibuffer ----------

Buffer name? (default foo) *
—————————— Buffer: Minibuffer --———————-

;3 The user types minibuffer.t ([RET).
= "minibuffer.texi"

read-buffer-function Variable
This variable specifies how to read buffer names. For example, if you set this variable
to iswitchb-read-buffer, all Emacs commands that call read-buffer to read a
buffer name will actually use the iswitchb package to read it.

read-command prompt &optional default Function
This function reads the name of a command and returns it as a Lisp symbol. The
argument prompt is used as in read-from-minibuffer. Recall that a command is
anything for which commandp returns t, and a command name is a symbol for which
commandp returns t. See Section 21.3 [Interactive Call], page 292.

The argument default specifies what to return if the user enters null input. It can be
a symbol or a string; if it is a string, read-command interns it before returning it. If
default is nil, that means no default has been specified; then if the user enters null
input, the return value is nil.

(read-command "Command name? ")

;3 After evaluation of the preceding expression,
¥ the following prompt appears with an empty minibuffer:

—————————— Buffer: Minibuffer ---——————-
Command name?
—————————— Buffer: Minibuffer ----——----

If the user types forward-c (RET), then this function returns forward-char.

The read-command function is a simplified interface to completing-read. It uses the
variable obarray so as to complete in the set of extant Lisp symbols, and it uses the
commandp predicate so as to accept only command names:

(read-command prompt)

(intern (completing-read prompt obarray
’commandp t nil))

278 GNU Emacs Lisp Reference Manual

read-variable prompt &optional default Function
This function reads the name of a user variable and returns it as a symbol.

The argument default specifies what to return if the user enters null input. It can be
a symbol or a string; if it is a string, read-variable interns it before returning it. If
default is nil, that means no default has been specified; then if the user enters null
input, the return value is nil.

(read-variable "Variable name? ")

;5 After evaluation of the preceding expression,
;5 the following prompt appears,

;3 with an empty minibuffer:

—————————— Buffer: Minibuffer -----——-----
Variable name? %

—————————— Buffer: Minibuffer ---—-—-—----

If the user then types fill-p (RET), read-variable returns fill-prefix.

This function is similar to read-command, but uses the predicate user-variable-p
instead of commandp:

(read-variable prompt)

(intern
(completing-read prompt obarray
’user-variable-p t nil))

See also the functions read-coding-system and read-non-nil-coding-system, in Sec-
tion 33.10.4 [User-Chosen Coding Systems|, page 593.

20.5.5 Reading File Names

Here is another high-level completion function, designed for reading a file name. It
provides special features including automatic insertion of the default directory.

read-file-name prompt &optional directory default existing initial Function
This function reads a file name in the minibuffer, prompting with prompt and pro-
viding completion. If default is non-nil, then the function returns default if the user
just types RET). default is not checked for validity; it is returned, whatever it is, if
the user exits with the minibuffer empty.

If existing is non-nil, then the user must specify the name of an existing file;
performs completion to make the name valid if possible, and then refuses to exit if
it is not valid. If the value of existing is neither nil nor t, then also requires
confirmation after completion. If existing is nil, then the name of a nonexistent file
is acceptable.

The argument directory specifies the directory to use for completion of relative file
names. If insert-default-directory is non-nil, directory is also inserted in the
minibuffer as initial input. It defaults to the current buffer’s value of default-
directory.

Chapter 20: Minibuffers 279

If you specify initial, that is an initial file name to insert in the buffer (after directory,
if that is inserted). In this case, point goes at the beginning of initial. The default for
initial is nil—don’t insert any file name. To see what initial does, try the command
C-x C-v. Note: we recommend using default rather than initial in most cases.

Here is an example:

(read-file-name "The file is ")

;3 After evaluation of the preceding expression,
;3 the following appears in the minibuffer:

—————————— Buffer: Minibuffer ----------

The file is /gp/gnu/elisp/*

—————————— Buffer: Minibuffer —————————-
Typing manual results in the following;:

—————————— Buffer: Minibuffer ---—-—-——---

The file is /gp/gnu/elisp/manual.texix

—————————— Buffer: Minibuffer ----------

If the user types (RET), read-file-name returns the file name as the string
"/gp/gnu/elisp/manual . texi".

insert-default-directory User Option

This variable is used by read-file-name. Its value controls whether read-file-
name starts by placing the name of the default directory in the minibuffer, plus the
initial file name if any. If the value of this variable is nil, then read-file-name does
not place any initial input in the minibuffer (unless you specify initial input with the
initial argument). In that case, the default directory is still used for completion of
relative file names, but is not displayed.
For example:

; ;5 Here the minibuffer starts out with the default directory.

(let ((insert-default-directory t))

(read-file-name "The file is "))

—————————— Buffer: Minibuffer ----——----
The file is “lewis/manual/*
—————————— Buffer: Minibuffer --————----

; ;5 Here the minibuffer is empty and only the prompt

HE appears on its line.

(let ((insert-default-directory nil))
(read-file-name "The file is "))

—————————— Buffer: Minibuffer ---——————-
The file is %
—————————— Buffer: Minibuffer ----——----

20.5.6 Programmed Completion

Sometimes it is not possible to create an alist or an obarray containing all the intended
possible completions. In such a case, you can supply your own function to compute the
completion of a given string. This is called programmed completion.

280 GNU Emacs Lisp Reference Manual

To use this feature, pass a symbol with a function definition as the collection argument
to completing-read. The function completing-read arranges to pass your completion
function along to try-completion and all-completions, which will then let your function
do all the work.

The completion function should accept three arguments:
e The string to be completed.

e The predicate function to filter possible matches, or nil if none. Your function should
call the predicate for each possible match, and ignore the possible match if the predicate
returns nil.

e A flag specifying the type of operation.

There are three flag values for three operations:

e nil specifies try-completion. The completion function should return the completion
of the specified string, or t if the string is a unique and exact match already, or nil if
the string matches no possibility.

If the string is an exact match for one possibility, but also matches other longer possi-
bilities, the function should return the string, not t.

e t specifies all-completions. The completion function should return a list of all pos-
sible completions of the specified string.

e lambda specifies a test for an exact match. The completion function should return t if
the specified string is an exact match for some possibility; nil otherwise.

It would be consistent and clean for completion functions to allow lambda expressions
(lists that are functions) as well as function symbols as collection, but this is impossible.
Lists as completion tables are already assigned another meaning—as alists. It would be
unreliable to fail to handle an alist normally because it is also a possible function. So
you must arrange for any function you wish to use for completion to be encapsulated in a
symbol.

Emacs uses programmed completion when completing file names. See Section 25.8.6
[File Name Completion], page 420.

20.6 Yes-or-No Queries

This section describes functions used to ask the user a yes-or-no question. The function
y-or-n-p can be answered with a single character; it is useful for questions where an
inadvertent wrong answer will not have serious consequences. yes-or-no-p is suitable for
more momentous questions, since it requires three or four characters to answer.

If either of these functions is called in a command that was invoked using the mouse—
more precisely, if last-nonmenu-event (see Section 21.4 [Command Loop Info], page 295)
is either nil or a list—then it uses a dialog box or pop-up menu to ask the question.
Otherwise, it uses keyboard input. You can force use of the mouse or use of keyboard input
by binding last-nonmenu-event to a suitable value around the call.

Strictly speaking, yes—or-no-p uses the minibuffer and y-or-n-p does not; but it seems
best to describe them together.

Chapter 20: Minibuffers 281

y-or-n-p prompt Function
This function asks the user a question, expecting input in the echo area. It returns
t if the user types y, nil if the user types n. This function also accepts to
mean yes and to mean no. It accepts C-J] to mean “quit”, like C-g, because the
question might look like a minibuffer and for that reason the user might try to use
C-] to get out. The answer is a single character, with no needed to terminate
it. Upper and lower case are equivalent.

“Asking the question” means printing prompt in the echo area, followed by the string
‘(y or n) ’. If the input is not one of the expected answers (y, n, SPC), (DEL), or
something that quits), the function responds ‘Please answer y or n.’, and repeats
the request.

This function does not actually use the minibuffer, since it does not allow editing
of the answer. It actually uses the echo area (see Section 38.4 [The Echo Area],
page 663), which uses the same screen space as the minibuffer. The cursor moves to
the echo area while the question is being asked.

The answers and their meanings, even ‘y’ and ‘n’, are not hardwired. The keymap
query-replace-map specifies them. See Section 34.5 [Search and Replace], page 614.

In the following example, the user first types g, which is invalid. At the next prompt
the user types y.

(y-or-n-p "Do you need a 1lift? ")

;3 After evaluation of the preceding expression,
;3 the following prompt appears in the echo area:

—————————— Echo area —————————-
Do you need a 1lift? (y or n)
—————————— Echo area - ——————-—-

;3 If the user then types g, the following appears:

—————————— Echo area —————————-
Please answer y or n. Do you need a lift? (y or n)
—————————— Echo area ----------

;5 When the user types a valid answer,
B it is displayed after the question:

—————————— Echo area ----------

Do you need a 1ift? (y or n) y

—————————— Echo area —-—-—--------
We show successive lines of echo area messages, but only one actually appears on the
screen at a time.

y-or-n-p-with-timeout prompt seconds default-value Function
Like y-or-n-p, except that if the user fails to answer within seconds seconds, this
function stops waiting and returns default-value. It works by setting up a timer;
see Section 40.7 [Timers|, page 736. The argument seconds may be an integer or a
floating point number.

282 GNU Emacs Lisp Reference Manual

yes-or-no-p prompt Function
This function asks the user a question, expecting input in the minibuffer. It returns t
if the user enters ‘yes’, nil if the user types ‘no’. The user must type to finalize
the response. Upper and lower case are equivalent.

yes-or-no-p starts by displaying prompt in the echo area, followed by ‘(yes or no) .
The user must type one of the expected responses; otherwise, the function responds
‘Please answer yes or no.’, waits about two seconds and repeats the request.

yes-or-no-p requires more work from the user than y-or-n-p and is appropriate for
more crucial decisions.

Here is an example:

(yes-or-no-p "Do you really want to remove everything? ")

;3 After evaluation of the preceding expression,
;3 the following prompt appears,
s with an empty minibuffer:

—————————— Buffer: minibuffer ---—-—-—----
Do you really want to remove everything? (yes or no)
—————————— Buffer: minibuffer - ————-—-—-
If the user first types y RET), which is invalid because this function demands the entire
word ‘yes’, it responds by displaying these prompts, with a brief pause between them:
—————————— Buffer: minibuffer ---—-—-—-----
Please answer yes or no.

Do you really want to remove everything? (yes or no)
—————————— Buffer: minibuffer ----————---

20.7 Asking Multiple Y-or-N Questions

When you have a series of similar questions to ask, such as “Do you want to save
this buffer” for each buffer in turn, you should use map-y-or-n-p to ask the collection
of questions, rather than asking each question individually. This gives the user certain
convenient facilities such as the ability to answer the whole series at once.

map-y-or-n-p prompter actor list &optional help action-alist Function
no-cursor-in-echo-area
This function asks the user a series of questions, reading a single-character answer in
the echo area for each one.

The value of list specifies the objects to ask questions about. It should be either a list
of objects or a generator function. If it is a function, it should expect no arguments,
and should return either the next object to ask about, or nil meaning stop asking
questions.

The argument prompter specifies how to ask each question. If prompter is a string,
the question text is computed like this:

(format prompter object)

where object is the next object to ask about (as obtained from list).

Chapter 20: Minibuffers 283

If not a string, prompter should be a function of one argument (the next object to
ask about) and should return the question text. If the value is a string, that is the
question to ask the user. The function can also return t meaning do act on this object
(and don’t ask the user), or nil meaning ignore this object (and don’t ask the user).

The argument actor says how to act on the answers that the user gives. It should be
a function of one argument, and it is called with each object that the user says yes
for. Its argument is always an object obtained from Iist.

If the argument help is given, it should be a list of this form:
(singular plural action)

where singular is a string containing a singular noun that describes the objects con-
ceptually being acted on, plural is the corresponding plural noun, and action is a
transitive verb describing what actor does.

If you don’t specify help, the default is ("object" "objects" "act on").

Each time a question is asked, the user may enter y, Y, or to act on that object;
n, N, or to skip that object; ! to act on all following objects; or q to exit
(skip all following objects); . (period) to act on the current object and then exit;
or C-h to get help. These are the same answers that query-replace accepts. The
keymap query-replace-map defines their meaning for map-y-or-n-p as well as for
query-replace; see Section 34.5 [Search and Replace], page 614.

You can use action-alist to specify additional possible answers and what they mean.
It is an alist of elements of the form (char function help), each of which defines one
additional answer. In this element, char is a character (the answer); function is a
function of one argument (an object from list); help is a string.

When the user responds with char, map-y-or-n-p calls function. If it returns non-
nil, the object is considered “acted upon”, and map-y-or-n-p advances to the next
object in list. If it returns nil, the prompt is repeated for the same object.

Normally, map-y-or-n-p binds cursor-in-echo-area while prompting. But if no-
cursor-in-echo-area is non-nil, it does not do that.

If map-y-or-n-p is called in a command that was invoked using the mouse—more
precisely, if last-nonmenu-event (see Section 21.4 [Command Loop Info|, page 295)
is either nil or a list—then it uses a dialog box or pop-up menu to ask the question.
In this case, it does not use keyboard input or the echo area. You can force use of the
mouse or use of keyboard input by binding last-nonmenu-event to a suitable value
around the call.

The return value of map-y-or-n-p is the number of objects acted on.

20.8 Reading a Password

To read a password to pass to another program, you can use the function read-passwd.

read-passwd prompt &optional confirm default Function
This function reads a password, prompting with prompt. It does not echo the pass-
word as the user types it; instead, it echoes ‘.’ for each character in the password.

284 GNU Emacs Lisp Reference Manual

The optional argument confirm, if non-nil, says to read the password twice and insist
it must be the same both times. If it isn’t the same, the user has to type it over and
over until the last two times match.

The optional argument default specifies the default password to return if the user
enters empty input. If default is nil, then read-passwd returns the null string in
that case.

20.9 Minibuffer Miscellany

This section describes some basic functions and variables related to minibuffers.

exit-minibuffer Command
This command exits the active minibuffer. It is normally bound to keys in minibuffer
local keymaps.

self-insert-and-exit Command
This command exits the active minibuffer after inserting the last character typed on
the keyboard (found in last-command-char; see Section 21.4 [Command Loop Info],
page 295).

previous-history-element n Command
This command replaces the minibuffer contents with the value of the nth previous
(older) history element.

next-history-element n Command
This command replaces the minibuffer contents with the value of the nth more recent
history element.

previous-matching-history-element pattern n Command
This command replaces the minibuffer contents with the value of the nth previous
(older) history element that matches pattern (a regular expression).

next-matching-history-element pattern n Command
This command replaces the minibuffer contents with the value of the nth next (newer)
history element that matches pattern (a regular expression).

minibuffer-prompt Function
This function returns the prompt string of the currently active minibuffer. If no
minibuffer is active, it returns nil.

minibuffer-prompt-end Function
This function, available starting in Emacs 21, returns the current position of the
end of the minibuffer prompt, if a minibuffer is current. Otherwise, it returns the
minimum valid buffer position.

Chapter 20: Minibuffers 285

minibuffer-contents Function
This function, available starting in Emacs 21, returns the editable contents of the
minibuffer (that is, everything except the prompt) as a string, if a minibuffer is
current. Otherwise, it returns the entire contents of the current buffer.

minibuffer-contents-no-properties Function
This is like minibuffer-contents, except that it does not copy text properties, just
the characters themselves. See Section 32.19 [Text Properties], page 562.

delete-minibuffer-contents Function
This function, available starting in Emacs 21, erases the editable contents of the mini-
buffer (that is, everything except the prompt), if a minibuffer is current. Otherwise,
it erases the entire buffer.

minubuffer-prompt-width Function
This function returns the current display-width of the minibuffer prompt, if a mini-
buffer is current. Otherwise, it returns zero.

minibuffer-setup-hook Variable
This is a normal hook that is run whenever the minibuffer is entered. See Section 23.6
[Hooks]|, page 383.

minibuffer-exit-hook Variable
This is a normal hook that is run whenever the minibuffer is exited. See Section 23.6
[Hooks|, page 383.

minibuffer-help-form Variable
The current value of this variable is used to rebind help-form locally inside the
minibuffer (see Section 24.5 [Help Functions], page 393).

active-minibuffer-window Function
This function returns the currently active minibuffer window, or nil if none is cur-
rently active.

minibuffer-window &optional frame Function
This function returns the minibuffer window used for frame frame. If frame is nil,
that stands for the current frame. Note that the minibuffer window used by a frame
need not be part of that frame—a frame that has no minibuffer of its own necessarily
uses some other frame’s minibuffer window.

window-minibuffer-p window Function
This function returns non-nil if window is a minibuffer window.

It is not correct to determine whether a given window is a minibuffer by comparing it
with the result of (minibuffer-window), because there can be more than one minibuffer
window if there is more than one frame.

286 GNU Emacs Lisp Reference Manual

minibuffer-window-active-p window Function
This function returns non-nil if window, assumed to be a minibuffer window, is
currently active.

minibuffer-scroll-window Variable
If the value of this variable is non-nil, it should be a window object. When the
function scroll-other-window is called in the minibuffer, it scrolls this window.

Finally, some functions and variables deal with recursive minibuffers (see Section 21.12
[Recursive Editing], page 319):

minibuffer-depth Function
This function returns the current depth of activations of the minibuffer, a nonnegative
integer. If no minibuffers are active, it returns zero.

enable-recursive-minibuffers User Option
If this variable is non-nil, you can invoke commands (such as find-file) that use
minibuffers even while the minibuffer window is active. Such invocation produces a
recursive editing level for a new minibuffer. The outer-level minibuffer is invisible
while you are editing the inner one.

If this variable is nil, you cannot invoke minibuffer commands when the minibuffer
window is active, not even if you switch to another window to do it.

If a command name has a property enable-recursive-minibuffers that is non-nil,
then the command can use the minibuffer to read arguments even if it is invoked from the
minibuffer. The minibuffer command next-matching-history-element (normally M-s in
the minibuffer) uses this feature.

Chapter 21: Command Loop 287

21 Command Loop

When you run Emacs, it enters the editor command loop almost immediately. This loop
reads key sequences, executes their definitions, and displays the results. In this chapter,
we describe how these things are done, and the subroutines that allow Lisp programs to do
them.

21.1 Command Loop Overview

The first thing the command loop must do is read a key sequence, which is a sequence
of events that translates into a command. It does this by calling the function read-key-
sequence. Your Lisp code can also call this function (see Section 21.7.1 [Key Sequence
Input], page 309). Lisp programs can also do input at a lower level with read-event (see
Section 21.7.2 [Reading One Event|, page 311) or discard pending input with discard-
input (see Section 21.7.5 [Event Input Misc|, page 313).

The key sequence is translated into a command through the currently active keymaps.
See Section 22.7 [Key Lookup|, page 333, for information on how this is done. The result
should be a keyboard macro or an interactively callable function. If the key is M-x, then
it reads the name of another command, which it then calls. This is done by the command
execute-extended-command (see Section 21.3 [Interactive Call], page 292).

To execute a command requires first reading the arguments for it. This is done by calling
command-execute (see Section 21.3 [Interactive Call], page 292). For commands written
in Lisp, the interactive specification says how to read the arguments. This may use the
prefix argument (see Section 21.11 [Prefix Command Arguments], page 317) or may read
with prompting in the minibuffer (see Chapter 20 [Minibuffers|, page 265). For example,
the command find-file has an interactive specification which says to read a file name
using the minibuffer. The command’s function body does not use the minibuffer; if you
call this command from Lisp code as a function, you must supply the file name string as an
ordinary Lisp function argument.

If the command is a string or vector (i.e., a keyboard macro) then execute-kbd-macro is
used to execute it. You can call this function yourself (see Section 21.15 [Keyboard Macros],
page 322).

To terminate the execution of a running command, type C-g. This character causes
quitting (see Section 21.10 [Quitting], page 316).

pre-command-hook Variable
The editor command loop runs this normal hook before each command. At that
time, this-command contains the command that is about to run, and last-command
describes the previous command. See Section 23.6 [Hooks|, page 383.

post-command-hook Variable
The editor command loop runs this normal hook after each command (including com-
mands terminated prematurely by quitting or by errors), and also when the command
loop is first entered. At that time, this-command describes the command that just
ran, and last-command describes the command before that. See Section 23.6 [Hooks],
page 383.

288 GNU Emacs Lisp Reference Manual

Quitting is suppressed while running pre-command-hook and post-command-hook. If
an error happens while executing one of these hooks, it terminates execution of the hook,
and clears the hook variable to nil so as to prevent an infinite loop of errors.

21.2 Defining Commands

A Lisp function becomes a command when its body contains, at top level, a form that
calls the special form interactive. This form does nothing when actually executed, but
its presence serves as a flag to indicate that interactive calling is permitted. Its argument
controls the reading of arguments for an interactive call.

21.2.1 Using interactive

This section describes how to write the interactive form that makes a Lisp function
an interactively-callable command, and how to examine a commands’s interactive form.

interactive arg-descriptor Special Form
This special form declares that the function in which it appears is a command, and
that it may therefore be called interactively (via M-x or by entering a key sequence
bound to it). The argument arg-descriptor declares how to compute the arguments
to the command when the command is called interactively.

A command may be called from Lisp programs like any other function, but then the
caller supplies the arguments and arg-descriptor has no effect.

The interactive form has its effect because the command loop (actually, its sub-
routine call-interactively) scans through the function definition looking for it,
before calling the function. Once the function is called, all its body forms including
the interactive form are executed, but at this time interactive simply returns
nil without even evaluating its argument.

There are three possibilities for the argument arg-descriptor:

e It may be omitted or nil; then the command is called with no arguments. This leads
quickly to an error if the command requires one or more arguments.

e It may be a Lisp expression that is not a string; then it should be a form that is
evaluated to get a list of arguments to pass to the command.

If this expression reads keyboard input (this includes using the minibuffer), keep in
mind that the integer value of point or the mark before reading input may be incorrect
after reading input. This is because the current buffer may be receiving subprocess
output; if subprocess output arrives while the command is waiting for input, it could
relocate point and the mark.

Here’s an example of what not to do:

(interactive
(1ist (region-beginning) (region-end)
(read-string "Foo: " nil ’my-history)))
Here’s how to avoid the problem, by examining point and the mark only after reading
the keyboard input:

Chapter 21: Command Loop 289

(interactive
(let ((string (read-string "Foo: " nil ’my-history)))
(1ist (region-beginning) (region-end) string)))
e It may be a string; then its contents should consist of a code character followed by a
prompt (which some code characters use and some ignore). The prompt ends either
with the end of the string or with a newline. Here is a simple example:

(interactive "bFrobnicate buffer: ")

The code letter ‘b’ says to read the name of an existing buffer, with completion. The
buffer name is the sole argument passed to the command. The rest of the string is a
prompt.
If there is a newline character in the string, it terminates the prompt. If the string
does not end there, then the rest of the string should contain another code character
and prompt, specifying another argument. You can specify any number of arguments
in this way.
The prompt string can use ‘%’ to include previous argument values (starting with the
first argument) in the prompt. This is done using format (see Section 4.7 [Formatting
Strings], page 56). For example, here is how you could read the name of an existing
buffer followed by a new name to give to that buffer:

(interactive "bBuffer to rename: \nsRename buffer %s to: ")
If the first character in the string is ‘*’, then an error is signaled if the buffer is read-only.

If the first character in the string is ‘@’, and if the key sequence used to invoke the
command includes any mouse events, then the window associated with the first of
those events is selected before the command is run.

You can use ‘*’ and ‘@ together; the order does not matter. Actual reading of arguments
is controlled by the rest of the prompt string (starting with the first character that is
not ‘*’ or ‘@’).

interactive-form function Function
This function returns the interactive form of function. If function is a command (see
Section 21.3 [Interactive Call], page 292), the value is a list of the form (interactive
spec), where spec is the descriptor specification used by the command’s interactive
form to compute the function’s arguments (see Section 21.2.1 [Using Interactive],
page 288). If function is not a command, interactive-form returns nil.

21.2.2 Code Characters for interactive

The code character descriptions below contain a number of key words, defined here as
follows:

Completion
Provide completion. (TAB), SPC), and perform name completion because
the argument is read using completing-read (see Section 20.5 [Completion],
page 271). 7 displays a list of possible completions.

Existing Require the name of an existing object. An invalid name is not accepted; the
commands to exit the minibuffer do not exit if the current input is not valid.

290

Default

NoI/O

Prompt

Special

GNU Emacs Lisp Reference Manual

A default value of some sort is used if the user enters no text in the minibuffer.
The default depends on the code character.

This code letter computes an argument without reading any input. Therefore,
it does not use a prompt string, and any prompt string you supply is ignored.
Even though the code letter doesn’t use a prompt string, you must follow it
with a newline if it is not the last code character in the string.

A prompt immediately follows the code character. The prompt ends either with
the end of the string or with a newline.

This code character is meaningful only at the beginning of the interactive string,
and it does not look for a prompt or a newline. It is a single, isolated character.

Here are the code character descriptions for use with interactive:

Signal an error if the current buffer is read-only. Special.

Select the window mentioned in the first mouse event in the key sequence that
invoked this command. Special.

A function name (i.e., a symbol satisfying fboundp). Existing, Completion,
Prompt.

The name of an existing buffer. By default, uses the name of the current buffer
(see Chapter 27 [Buffers|, page 439). Existing, Completion, Default, Prompt.

A buffer name. The buffer need not exist. By default, uses the name of a re-
cently used buffer other than the current buffer. Completion, Default, Prompt.

A character. The cursor does not move into the echo area. Prompt.

A command name (i.e., a symbol satisfying commandp). Existing, Completion,
Prompt.

The position of point, as an integer (see Section 30.1 [Point]|, page 509). No
I/0.

A directory name. The default is the current default directory of the current
buffer, default-directory (see Section 40.3 [System Environment], page 728).
Existing, Completion, Default, Prompt.

The first or next mouse event in the key sequence that invoked the command.
More precisely, ‘e’ gets events that are lists, so you can look at the data in the
lists. See Section 21.6 [Input Events], page 297. No I/0.

You can use ‘e’ more than once in a single command’s interactive specification.
If the key sequence that invoked the command has n events that are lists, the
nth ‘e’ provides the nth such event. Events that are not lists, such as function
keys and AscII characters, do not count where ‘e’ is concerned.

A file name of an existing file (see Section 25.8 [File Names], page 414). The de-
fault directory is default-directory. Existing, Completion, Default, Prompt.

A file name. The file need not exist. Completion, Default, Prompt.

Chapter 21: Command Loop 291

An irrelevant argument. This code always supplies nil as the argument’s value.
No I/0.

A key sequence (see Section 22.1 [Keymap Terminology], page 325). This keeps
reading events until a command (or undefined command) is found in the current
key maps. The key sequence argument is represented as a string or vector. The
cursor does not move into the echo area. Prompt.

This kind of input is used by commands such as describe-key and global-
set-key.

A key sequence, whose definition you intend to change. This works like ‘k’,
except that it suppresses, for the last input event in the key sequence, the
conversions that are normally used (when necessary) to convert an undefined
key into a defined one.

The position of the mark, as an integer. No I/O.

Arbitrary text, read in the minibuffer using the current buffer’s input method,
and returned as a string (see section “Input Methods” in The GNU Emacs
Manual). Prompt.

A number read with the minibuffer. If the input is not a number, the user is
asked to try again. The prefix argument, if any, is not used. Prompt.

The numeric prefix argument; but if there is no prefix argument, read a number
as with n. Requires a number. See Section 21.11 [Prefix Command Arguments],
page 317. Prompt.

The numeric prefix argument. (Note that this ‘p’ is lower case.) No I/O.
The raw prefix argument. (Note that this ‘P’ is upper case.) No I/0O.

Point and the mark, as two numeric arguments, smallest first. This is the only
code letter that specifies two successive arguments rather than one. No I/O.

Arbitrary text, read in the minibuffer and returned as a string (see Section 20.2
[Text from Minibuffer|, page 266). Terminate the input with either C-j or RET).
(C-q may be used to include either of these characters in the input.) Prompt.

An interned symbol whose name is read in the minibuffer. Any whitespace char-
acter terminates the input. (Use C-q to include whitespace in the string.) Other
characters that normally terminate a symbol (e.g., parentheses and brackets)
do not do so here. Prompt.

A variable declared to be a user option (i.e., satisfying the predicate user-
variable-p). See Section 20.5.4 [High-Level Completion], page 276. Existing,
Completion, Prompt.

A Lisp object, specified with its read syntax, terminated with a C-j or RET).
The object is not evaluated. See Section 20.3 [Object from Minibuffer],
page 268. Prompt.

A Lisp form is read as with x, but then evaluated so that its value becomes the
argument for the command. Prompt.

292 GNU Emacs Lisp Reference Manual

z A coding system name (a symbol). If the user enters null input, the argu-
ment value is nil. See Section 33.10 [Coding Systems|, page 590. Completion,
Existing, Prompt.

VA A coding system name (a symbol)—but only if this command has a prefix
argument. With no prefix argument, ‘Z’ provides nil as the argument value.
Completion, Existing, Prompt.

21.2.3 Examples of Using interactive

Here are some examples of interactive:

(defun fool () ; fool takes no arguments,
(interactive) ; just moves forward two words.
(forward-word 2))

= fool

(defun foo2 (n) ; foo2 takes one argument,
(interactive "p") ; which is the numeric prefix.
(forward-word (* 2 n)))
= foo2

(defun foo3 (n) ; foo3 takes one argument,
(interactive "nCount:") ; which is read with the Minibuffer.
(forward-word (* 2 n)))
= foo3

(defun three-b (bl b2 b3)

"Select three existing buffers.

Put them into three windows, selecting the last one."
(interactive "bBufferl:\nbBuffer2:\nbBuffer3:")
(delete-other-windows)

(split-window (selected-window) 8)
(switch-to-buffer bil)
(other-window 1)

(split-window (selected-window) 8)
(switch-to-buffer b2)
(other-window 1)

(switch-to-buffer b3))

= three-b

(three-b "*xscratch*" "declarations.texi" "*mailx")

= nil

21.3 Interactive Call

After the command loop has translated a key sequence into a command it invokes that
command using the function command-execute. If the command is a function, command-
execute calls call-interactively, which reads the arguments and calls the command.
You can also call these functions yourself.

Chapter 21: Command Loop 293

commandp object Function
Returns t if object is suitable for calling interactively; that is, if object is a command.
Otherwise, returns nil.

The interactively callable objects include strings and vectors (treated as keyboard
macros), lambda expressions that contain a top-level call to interactive, byte-code
function objects made from such lambda expressions, autoload objects that are de-
clared as interactive (non-nil fourth argument to autoload), and some of the prim-
itive functions.

A symbol satisfies commandp if its function definition satisfies commandp.

Keys and keymaps are not commands. Rather, they are used to look up commands
(see Chapter 22 [Keymaps], page 325).

See documentation in Section 24.2 [Accessing Documentation], page 388, for a real-
istic example of using commandp.

call-interactively command &optional record-flag keys Function
This function calls the interactively callable function command, reading arguments
according to its interactive calling specifications. An error is signaled if command is
not a function or if it cannot be called interactively (i.e., is not a command). Note
that keyboard macros (strings and vectors) are not accepted, even though they are
considered commands, because they are not functions.

If record-flag is non-nil, then this command and its arguments are unconditionally
added to the list command-history. Otherwise, the command is added only if it uses
the minibuffer to read an argument. See Section 21.14 [Command History]|, page 321.

The argument keys, if given, specifies the sequence of events to supply if the command
inquires which events were used to invoke it.

command-execute command &optional record-flag keys special Function
This function executes command. The argument command must satisfy the commandp
predicate; i.e., it must be an interactively callable function or a keyboard macro.

A string or vector as command is executed with execute-kbd-macro. A function is
passed to call-interactively, along with the optional record-flag.

A symbol is handled by using its function definition in its place. A symbol with an
autoload definition counts as a command if it was declared to stand for an interac-
tively callable function. Such a definition is handled by loading the specified library
and then rechecking the definition of the symbol.

The argument keys, if given, specifies the sequence of events to supply if the command
inquires which events were used to invoke it.

The argument special, if given, means to ignore the prefix argument and not clear it.
This is used for executing special events (see Section 21.8 [Special Events], page 314).

execute-extended-command prefix-argument Command
This function reads a command name from the minibuffer using completing-read
(see Section 20.5 [Completion], page 271). Then it uses command-execute to call the
specified command. Whatever that command returns becomes the value of execute-
extended-command.

294 GNU Emacs Lisp Reference Manual

If the command asks for a prefix argument, it receives the value prefix-argument. If
execute-extended-command is called interactively, the current raw prefix argument
is used for prefix-argument, and thus passed on to whatever command is run.

execute-extended-command is the normal definition of M-x, so it uses the string
‘M-x ” as a prompt. (It would be better to take the prompt from the events used to
invoke execute-extended-command, but that is painful to implement.) A description
of the value of the prefix argument, if any, also becomes part of the prompt.

(execute-extended-command 1)

—————————— Buffer: Minibuffer —---——-—--—-

1 M-x forward-word RET

—————————— Buffer: Minibuffer - ——————-—-

interactive-p Function
This function returns t if the containing function (the one whose code includes the call
to interactive-p) was called interactively, with the function call-interactively.
(It makes no difference whether call-interactively was called from Lisp or di-
rectly from the editor command loop.) If the containing function was called by Lisp
evaluation (or with apply or funcall), then it was not called interactively.

The most common use of interactive-p is for deciding whether to print an informative
message. As a special exception, interactive-p returns nil whenever a keyboard macro is
being run. This is to suppress the informative messages and speed execution of the macro.

For example:

(defun foo ()
(interactive)
(when (interactive-p)
(message "foo0")))
= foo

(defun bar ()
(interactive)
(setq foobar (list (foo) (interactive-p))))
= bar

;35 Type M-x foo.
- foo
;3 Type M-x bar.
;35 This does not print anything.
foobar
= (nil t)

The other way to do this sort of job is to make the command take an argument print-
message which should be non-nil in an interactive call, and use the interactive spec to
make sure it is non-nil. Here’s how:

(defun foo (&optional print-message)
(interactive "p")

(when print-message
(message "fo00")))

Chapter 21: Command Loop 295

The numeric prefix argument, provided by ‘p’, is never nil.

21.4 Information from the Command Loop

The editor command loop sets several Lisp variables to keep status records for itself and
for commands that are run.

last-command Variable
This variable records the name of the previous command executed by the command
loop (the one before the current command). Normally the value is a symbol with a
function definition, but this is not guaranteed.

The value is copied from this-command when a command returns to the command
loop, except when the command has specified a prefix argument for the following
command.

This variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Displays], page 484.

real-last-command Variable
This variable is set up by Emacs just like last-command, but never altered by Lisp
programs.

this-command Variable

This variable records the name of the command now being executed by the editor
command loop. Like last-command, it is normally a symbol with a function definition.

The command loop sets this variable just before running a command, and copies its
value into last-command when the command finishes (unless the command specified
a prefix argument for the following command).

Some commands set this variable during their execution, as a flag for whatever com-
mand runs next. In particular, the functions for killing text set this-command to
kill-region so that any kill commands immediately following will know to append
the killed text to the previous kill.

If you do not want a particular command to be recognized as the previous command in
the case where it got an error, you must code that command to prevent this. One way is
to set this-command to t at the beginning of the command, and set this-command back to
its proper value at the end, like this:

(defun foo (args...)
(interactive ...)
(let ((old-this-command this-command))
(setq this-command t)
.. .do the work. . .
(setq this-command old-this-command)))

We do not bind this-command with let because that would restore the old value in case
of error—a feature of let which in this case does precisely what we want to avoid.

296 GNU Emacs Lisp Reference Manual

this-command-keys Function
This function returns a string or vector containing the key sequence that invoked the
present command, plus any previous commands that generated the prefix argument
for this command. The value is a string if all those events were characters. See
Section 21.6 [Input Events], page 297.

(this-command-keys)
;3 Now use C-u C-x C-e to evaluate that.
= "~U"X"E"

this-command-keys-vector Function
Like this-command-keys, except that it always returns the events in a vector, so
you don’t need to deal with the complexities of storing input events in a string (see
Section 21.6.14 [Strings of Events], page 308).

clear-this-command-keys Function
This function empties out the table of events for this-command-keys to return, and
also empties the records that the function recent-keys (see Section 40.8.3 [Recording
Input], page 742) will subsequently return. This is useful after reading a password,
to prevent the password from echoing inadvertently as part of the next command in
certain cases.

last-nonmenu-event Variable
This variable holds the last input event read as part of a key sequence, not counting
events resulting from mouse menus.

One use of this variable is for telling x-popup-menu where to pop up a menu. It is
also used internally by y-or-n-p (see Section 20.6 [Yes-or-No Queries], page 280).

last-command-event Variable

last-command-char Variable
This variable is set to the last input event that was read by the command loop as
part of a command. The principal use of this variable is in self-insert-command,
which uses it to decide which character to insert.

last-command-event
;3 Now use C-u C-x C-e to evaluate that.
= 5
The value is 5 because that is the ASCII code for C-e.

The alias last-command-char exists for compatibility with Emacs version 18.

last-event-frame Variable
This variable records which frame the last input event was directed to. Usually this
is the frame that was selected when the event was generated, but if that frame has
redirected input focus to another frame, the value is the frame to which the event was
redirected. See Section 29.9 [Input Focus|, page 495.

Chapter 21: Command Loop 297

21.5 Adjusting Point After Commands

It is not easy to display a value of point in the middle of a sequence of text that has
the display or composition property. So after a command finishes and returns to the
command loop, if point is within such a sequence, the command loop normally moves point
to the edge of the sequence.

A command can inhibit this feature by setting the variable disable-point-adjustment:

disable-point-adjustment Variable
If this variable is non-nil when a command returns to the command loop, then the
command loop does not check for text properties such as display and composition,
and does not move point out of sequences that have these properties.

The command loop sets this variable to nil before each command, so if a command
sets it, the effect applies only to that command.

global-disable-point-adjustment Variable
If you set this variable to a non-nil value, the feature of moving point out of these
sequences is completely turned off.

21.6 Input Events

The Emacs command loop reads a sequence of input events that represent keyboard or
mouse activity. The events for keyboard activity are characters or symbols; mouse events
are always lists. This section describes the representation and meaning of input events in
detail.

eventp object Function
This function returns non-nil if object is an input event or event type.

Note that any symbol might be used as an event or an event type. eventp cannot
distinguish whether a symbol is intended by Lisp code to be used as an event. Instead,
it distinguishes whether the symbol has actually been used in an event that has been
read as input in the current Emacs session. If a symbol has not yet been so used,
eventp returns nil.

21.6.1 Keyboard Events

There are two kinds of input you can get from the keyboard: ordinary keys, and function
keys. Ordinary keys correspond to characters; the events they generate are represented in
Lisp as characters. The event type of a character event is the character itself (an integer);
see Section 21.6.12 [Classifying Events], page 305.

An input character event consists of a basic code between 0 and 524287, plus any or all
of these modifier bits:

meta The 227 bit in the character code indicates a character typed with the meta key
held down.

298 GNU Emacs Lisp Reference Manual

control The 226 bit in the character code indicates a non-ASCII control character.

ASCII control characters such as C-a have special basic codes of their own, so
Emacs needs no special bit to indicate them. Thus, the code for C-a is just 1.

But if you type a control combination not in ASCII, such as 7 with the control
key, the numeric value you get is the code for % plus 22° (assuming the terminal
supports non-AsCII control characters).

shift The 2% bit in the character code indicates an ASCII control character typed
with the shift key held down.

For letters, the basic code itself indicates upper versus lower case; for digits and
punctuation, the shift key selects an entirely different character with a different
basic code. In order to keep within the ASCII character set whenever possible,
Emacs avoids using the 2%° bit for those characters.

However, AscII provides no way to distinguish C-A from C-a, so Emacs uses the
2% bit in C-A and not in C-a.

hyper The 2%* bit in the character code indicates a character typed with the hyper
key held down.

super The 2% bit in the character code indicates a character typed with the super
key held down.

alt The 222 bit in the character code indicates a character typed with the alt key

held down. (On some terminals, the key labeled is actually the meta key.)

It is best to avoid mentioning specific bit numbers in your program. To test the modifier
bits of a character, use the function event-modifiers (see Section 21.6.12 [Classifying
Events], page 305). When making key bindings, you can use the read syntax for characters
with modifier bits (‘\C-’, ‘\M-’, and so on). For making key bindings with define-key,
you can use lists such as (control hyper 7x) to specify the characters (see Section 22.9
[Changing Key Bindings|, page 337). The function event-convert-list converts such a
list into an event type (see Section 21.6.12 [Classifying Events], page 305).

21.6.2 Function Keys

Most keyboards also have function keys—keys that have names or symbols that are not
characters. Function keys are represented in Emacs Lisp as symbols; the symbol’s name is
the function key’s label, in lower case. For example, pressing a key labeled places the
symbol £1 in the input stream.

The event type of a function key event is the event symbol itself. See Section 21.6.12
[Classifying Events], page 305.

Here are a few special cases in the symbol-naming convention for function keys:

backspace, tab, newline, return, delete
These keys correspond to common ASCII control characters that have special
keys on most keyboards.

In AscrIr, C-i and are the same character. If the terminal can distinguish

between them, Emacs conveys the distinction to Lisp programs by representing
the former as the integer 9, and the latter as the symbol tab.

Chapter 21: Command Loop 299

Most of the time, it’s not useful to distinguish the two. So normally function-
key-map (see Section 40.8.2 [Translating Input], page 739) is set up to map tab
into 9. Thus, a key binding for character code 9 (the character C-i) also applies
to tab. Likewise for the other symbols in this group. The function read-char
likewise converts these events into characters.

In Ascii, is really C-h. But backspace converts into the character code 127
((OEL)), not into code 8 ((BS)). This is what most users prefer.

left, up, right, down
Cursor arrow keys

kp-add, kp—decimal, kp-divide, ...
Keypad keys (to the right of the regular keyboard).

kp-0, kp-1, ...
Keypad keys with digits.

kp-f1, kp-f2, kp-£3, kp-f4
Keypad PF keys.

kp-home, kp-left, kp—up, kp-right, kp—down
Keypad arrow keys. Emacs normally translates these into the corresponding
non-keypad keys home, left, ...

kp-prior, kp—next, kp-end, kp-begin, kp-insert, kp—delete
Additional keypad duplicates of keys ordinarily found elsewhere. Emacs nor-
mally translates these into the like-named non-keypad keys.

You can use the modifier keys (ALT), (CTRL), (HYPER), (META), (SHIFT), and with
function keys. The way to represent them is with prefixes in the symbol name:

‘A=Y The alt modifier.

‘c-’ The control modifier.
‘H-’ The hyper modifier.
‘M-’ The meta modifier.
‘5=’ The shift modifier.
‘g’ The super modifier.

Thus, the symbol for the key with held down is M-£3. When you use more
than one prefix, we recommend you write them in alphabetical order; but the order does
not matter in arguments to the key-binding lookup and modification functions.

21.6.3 Mouse Events

Emacs supports four kinds of mouse events: click events, drag events, button-down
events, and motion events. All mouse events are represented as lists. The CAR of the list
is the event type; this says which mouse button was involved, and which modifier keys
were used with it. The event type can also distinguish double or triple button presses (see
Section 21.6.7 [Repeat Events|, page 302). The rest of the list elements give position and
time information.

300 GNU Emacs Lisp Reference Manual

For key lookup, only the event type matters: two events of the same type necessarily
run the same command. The command can access the full values of these events using the
‘e’ interactive code. See Section 21.2.2 [Interactive Codes|, page 289.

A key sequence that starts with a mouse event is read using the keymaps of the buffer
in the window that the mouse was in, not the current buffer. This does not imply that
clicking in a window selects that window or its buffer—that is entirely under the control of
the command binding of the key sequence.

21.6.4 Click Events

When the user presses a mouse button and releases it at the same location, that generates
a click event. Mouse click events have this form:

(event-type
(window buffer-pos (x . y) timestamp)
click-count)

Here is what the elements normally mean:

event-type This is a symbol that indicates which mouse button was used. It is one of the
symbols mouse-1, mouse-2, ..., where the buttons are numbered left to right.

You can also use prefixes ‘A-’, ‘C-’, ‘H-’, ‘M-’, ‘S-’ and ‘s-’ for modifiers alt,
control, hyper, meta, shift and super, just as you would with function keys.

This symbol also serves as the event type of the event. Key bindings describe
events by their types; thus, if there is a key binding for mouse-1, that binding
would apply to all events whose event-type is mouse-1.

window This is the window in which the click occurred.

X, y These are the pixel-denominated coordinates of the click, relative to the top
left corner of window, which is (0 . 0).

buffer-pos This is the buffer position of the character clicked on.

timestamp
This is the time at which the event occurred, in milliseconds. (Since this value
wraps around the entire range of Emacs Lisp integers in about five hours, it is
useful only for relating the times of nearby events.)

click-count
This is the number of rapid repeated presses so far of the same mouse button.
See Section 21.6.7 [Repeat Events], page 302.

The meanings of buffer-pos, x and y are somewhat different when the event location is
in a special part of the screen, such as the mode line or a scroll bar.

If the location is in a scroll bar, then buffer-pos is the symbol vertical-scroll-bar or
horizontal-scroll-bar, and the pair (x . y) is replaced with a pair (portion . whole),
where portion is the distance of the click from the top or left end of the scroll bar, and
whole is the length of the entire scroll bar.

If the position is on a mode line or the vertical line separating window from its neighbor
to the right, then buffer-pos is the symbol mode-line, header-line, or vertical-line.

Chapter 21: Command Loop 301

For the mode line, y does not have meaningful data. For the vertical line, x does not have
meaningful data.

In one special case, buffer-pos is a list containing a symbol (one of the symbols listed
above) instead of just the symbol. This happens after the imaginary prefix keys for the event
are inserted into the input stream. See Section 21.7.1 [Key Sequence Input], page 309.

21.6.5 Drag Events

With Emacs, you can have a drag event without even changing your clothes. A drag
event happens every time the user presses a mouse button and then moves the mouse to a
different character position before releasing the button. Like all mouse events, drag events
are represented in Lisp as lists. The lists record both the starting mouse position and the
final position, like this:

(event-type
(windowl buffer-posl (x1 . yl) timestampl)
(window?2 buffer-pos2 (x2 . y2) timestamp2)
click-count)

For a drag event, the name of the symbol event-type contains the prefix ‘drag-’. For
example, dragging the mouse with button 2 held down generates a drag-mouse-2 event.
The second and third elements of the event give the starting and ending position of the drag.
Aside from that, the data have the same meanings as in a click event (see Section 21.6.4
[Click Events|, page 300). You can access the second element of any mouse event in the
same way, with no need to distinguish drag events from others.

The ‘drag-’ prefix follows the modifier key prefixes such as ‘C-" and ‘M-’.

If read-key-sequence receives a drag event that has no key binding, and the corre-
sponding click event does have a binding, it changes the drag event into a click event at the
drag’s starting position. This means that you don’t have to distinguish between click and
drag events unless you want to.

21.6.6 Button-Down Events

Click and drag events happen when the user releases a mouse button. They cannot
happen earlier, because there is no way to distinguish a click from a drag until the button
is released.

If you want to take action as soon as a button is pressed, you need to handle button-down
events.! These occur as soon as a button is pressed. They are represented by lists that
look exactly like click events (see Section 21.6.4 [Click Events]|, page 300), except that the
event-type symbol name contains the prefix ‘down-’. The ‘down-’ prefix follows modifier
key prefixes such as ‘C-’ and ‘M-’.

The function read-key-sequence ignores any button-down events that don’t have com-
mand bindings; therefore, the Emacs command loop ignores them too. This means that you
need not worry about defining button-down events unless you want them to do something.
The usual reason to define a button-down event is so that you can track mouse motion (by
reading motion events) until the button is released. See Section 21.6.8 [Motion Events],
page 303.

! Button-down is the conservative antithesis of drag.

302 GNU Emacs Lisp Reference Manual

21.6.7 Repeat Events

If you press the same mouse button more than once in quick succession without moving
the mouse, Emacs generates special repeat mouse events for the second and subsequent
presses.

The most common repeat events are double-click events. Emacs generates a double-click
event when you click a button twice; the event happens when you release the button (as is
normal for all click events).

The event type of a double-click event contains the prefix ‘double-’. Thus, a double
click on the second mouse button with held down comes to the Lisp program as M-
double-mouse-2. If a double-click event has no binding, the binding of the corresponding
ordinary click event is used to execute it. Thus, you need not pay attention to the double
click feature unless you really want to.

When the user performs a double click, Emacs generates first an ordinary click event, and
then a double-click event. Therefore, you must design the command binding of the double
click event to assume that the single-click command has already run. It must produce the
desired results of a double click, starting from the results of a single click.

This is convenient, if the meaning of a double click somehow “builds on” the meaning
of a single click—which is recommended user interface design practice for double clicks.

If you click a button, then press it down again and start moving the mouse with the
button held down, then you get a double-drag event when you ultimately release the button.
Its event type contains ‘double-drag’ instead of just ‘drag’. If a double-drag event has no
binding, Emacs looks for an alternate binding as if the event were an ordinary drag.

Before the double-click or double-drag event, Emacs generates a double-down event when
the user presses the button down for the second time. Its event type contains ‘double-down’
instead of just ‘down’. If a double-down event has no binding, Emacs looks for an alternate
binding as if the event were an ordinary button-down event. If it finds no binding that way
either, the double-down event is ignored.

To summarize, when you click a button and then press it again right away, Emacs
generates a down event and a click event for the first click, a double-down event when you
press the button again, and finally either a double-click or a double-drag event.

If you click a button twice and then press it again, all in quick succession, Emacs gener-
ates a triple-down event, followed by either a triple-click or a triple-drag. The event types
of these events contain ‘triple’ instead of ‘double’. If any triple event has no binding,
Emacs uses the binding that it would use for the corresponding double event.

If you click a button three or more times and then press it again, the events for the
presses beyond the third are all triple events. Emacs does not have separate event types
for quadruple, quintuple, etc. events. However, you can look at the event list to find out
precisely how many times the button was pressed.

event-click-count event Function
This function returns the number of consecutive button presses that led up to event.
If event is a double-down, double-click or double-drag event, the value is 2. If event
is a triple event, the value is 3 or greater. If event is an ordinary mouse event (not a
repeat event), the value is 1.

Chapter 21: Command Loop 303

double-click-fuzz Variable
To generate repeat events, successive mouse button presses must be at approximately
the same screen position. The value of double-click-fuzz specifies the maximum
number of pixels the mouse may be moved between two successive clicks to make a

double-click.

double-click-time Variable
To generate repeat events, the number of milliseconds between successive button
presses must be less than the value of double-click-time. Setting double-click-
time to nil disables multi-click detection entirely. Setting it to t removes the time
limit; Emacs then detects multi-clicks by position only.

21.6.8 Motion Events

Emacs sometimes generates mouse motion events to describe motion of the mouse with-
out any button activity. Mouse motion events are represented by lists that look like this:

(mouse-movement (window buffer-pos (x . y) timestamp))

The second element of the list describes the current position of the mouse, just as in a
click event (see Section 21.6.4 [Click Events], page 300).

The special form track-mouse enables generation of motion events within its body.
Outside of track-mouse forms, Emacs does not generate events for mere motion of the
mouse, and these events do not appear. See Section 29.13 [Mouse Tracking], page 498.

21.6.9 Focus Events

Window systems provide general ways for the user to control which window gets keyboard
input. This choice of window is called the focus. When the user does something to switch
between Emacs frames, that generates a focus event. The normal definition of a focus event,
in the global keymap, is to select a new frame within Emacs, as the user would expect. See
Section 29.9 [Input Focus|, page 495.

Focus events are represented in Lisp as lists that look like this:
(switch-frame new-frame)
where new-frame is the frame switched to.

Most X window managers are set up so that just moving the mouse into a window is
enough to set the focus there. Emacs appears to do this, because it changes the cursor to
solid in the new frame. However, there is no need for the Lisp program to know about the
focus change until some other kind of input arrives. So Emacs generates a focus event only
when the user actually types a keyboard key or presses a mouse button in the new frame;
just moving the mouse between frames does not generate a focus event.

A focus event in the middle of a key sequence would garble the sequence. So Emacs
never generates a focus event in the middle of a key sequence. If the user changes focus in
the middle of a key sequence—that is, after a prefix key—then Emacs reorders the events
so that the focus event comes either before or after the multi-event key sequence, and not
within it.

304 GNU Emacs Lisp Reference Manual

21.6.10 Miscellaneous Window System Events

A few other event types represent occurrences within the window system.

(delete-frame (frame))
This kind of event indicates that the user gave the window manager a command
to delete a particular window, which happens to be an Emacs frame.

The standard definition of the delete-frame event is to delete frame.

(iconify-frame (frame))
This kind of event indicates that the user iconified frame using the window
manager. Its standard definition is ignore; since the frame has already been
iconified, Emacs has no work to do. The purpose of this event type is so that
you can keep track of such events if you want to.

(make-frame-visible (frame))
This kind of event indicates that the user deiconified frame using the window
manager. Its standard definition is ignore; since the frame has already been
made visible, Emacs has no work to do.

(mouse-wheel position delta)
This kind of event is generated by moving a wheel on a mouse (such as the MS
Intellimouse). Its effect is typically a kind of scroll or zoom.

The element delta describes the amount and direction of the wheel rotation.
Its absolute value is the number of increments by which the wheel was rotated.
A negative delta indicates that the wheel was rotated backwards, towards the
user, and a positive delta indicates that the wheel was rotated forward, away
from the user.

The element position is a list describing the position of the event, in the same
format as used in a mouse-click event.

This kind of event is generated only on some kinds of systems.

(drag-n-drop position files)
This kind of event is generated when a group of files is selected in an application
outside of Emacs, and then dragged and dropped onto an Emacs frame.

The element position is a list describing the position of the event, in the same
format as used in a mouse-click event, and files is the list of file names that
were dragged and dropped. The usual way to handle this event is by visiting
these files.

This kind of event is generated, at present, only on some kinds of systems.

If one of these events arrives in the middle of a key sequence—that is, after a prefix
key—then Emacs reorders the events so that this event comes either before or after the
multi-event key sequence, not within it.

21.6.11 Event Examples

If the user presses and releases the left mouse button over the same location, that
generates a sequence of events like this:

Chapter 21: Command Loop 305

(down-mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864320))
(mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864180))

While holding the control key down, the user might hold down the second mouse button,
and drag the mouse from one line to the next. That produces two events, as shown here:

(C-down-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219))
(C-drag-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219)
(#<window 18 on NEWS> 3510 (0 . 28) -729648))

While holding down the meta and shift keys, the user might press the second mouse
button on the window’s mode line, and then drag the mouse into another window. That
produces a pair of events like these:

(M-S-down-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844))

(M-S-drag-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844)
(#<window 20 on carlton-sanskrit.tex> 161 (33 . 3)
-453816))

21.6.12 Classifying Events

Every event has an event type, which classifies the event for key binding purposes. For a
keyboard event, the event type equals the event value; thus, the event type for a character
is the character, and the event type for a function key symbol is the symbol itself. For
events that are lists, the event type is the symbol in the CAR of the list. Thus, the event
type is always a symbol or a character.

Two events of the same type are equivalent where key bindings are concerned; thus, they
always run the same command. That does not necessarily mean they do the same things,
however, as some commands look at the whole event to decide what to do. For example,
some commands use the location of a mouse event to decide where in the buffer to act.

Sometimes broader classifications of events are useful. For example, you might want
to ask whether an event involved the key, regardless of which other key or mouse
button was used.

The functions event-modifiers and event-basic-type are provided to get such infor-
mation conveniently.

event-modifiers event Function
This function returns a list of the modifiers that event has. The modifiers are symbols;
they include shift, control, meta, alt, hyper and super. In addition, the modifiers
list of a mouse event symbol always contains one of click, drag, and down.

The argument event may be an entire event object, or just an event type.
Here are some examples:

(event-modifiers ?a)

= nil
(event-modifiers 7\C-a)

= (control)
(event-modifiers 7\C-%)

= (control)
(event-modifiers ?\C-\S-a)

306 GNU Emacs Lisp Reference Manual

= (control shift)
(event-modifiers ’f5)

= nil
(event-modifiers ’s-f5)

= (super)
(event-modifiers ’M-S-f5)

= (meta shift)
(event-modifiers ’mouse-1)

= (click)
(event-modifiers ’down-mouse-1)

= (down)

The modifiers list for a click event explicitly contains click, but the event symbol
name itself does not contain ‘click’.

event-basic-type event Function
This function returns the key or mouse button that event describes, with all modifiers
removed. For example:

(event-basic-type 7a)

= 97
(event-basic-type 7A)

= 97
(event-basic-type ?\C-a)

= 97
(event-basic-type 7\C-\S-a)

= 97
(event-basic-type ’£5)

= fb
(event-basic-type ’s-£f5)

= fb
(event-basic-type ’M-S-£5)

= 5

(event-basic-type ’down-mouse-1)
= mouse-1

mouse-movement-p object Function
This function returns non-nil if object is a mouse movement event.

event-convert-list list Function
This function converts a list of modifier names and a basic event type to an event
type which specifies all of them. For example,

(event-convert-list ’(control 7a))
= 1

(event-convert-list ’(control meta ?7a))
= =134217727

(event-convert-list ’(control super f1))
= C-s-f1

Chapter 21: Command Loop 307

21.6.13 Accessing Events

This section describes convenient functions for accessing the data in a mouse button or
motion event.

These two functions return the starting or ending position of a mouse-button event, as
a list of this form:

(window buffer-position (x . y) timestamp)

event-start event Function
This returns the starting position of event.

If event is a click or button-down event, this returns the location of the event. If
event is a drag event, this returns the drag’s starting position.

event-end event Function
This returns the ending position of event.

If event is a drag event, this returns the position where the user released the mouse
button. If event is a click or button-down event, the value is actually the starting
position, which is the only position such events have.

These five functions take a position list as described above, and return various parts of

it.

posn-window position Function
Return the window that position is in.

posn-point position Function
Return the buffer position in position. This is an integer.

posn-x-y position Function
Return the pixel-based x and y coordinates in position, as a cons cell (x . y).

posn-col-row position Function
Return the row and column (in units of characters) of position, as a cons cell (col .
row). These are computed from the x and y values actually found in position.

posn-timestamp position Function
Return the timestamp in position.

These functions are useful for decoding scroll bar events.
scroll-bar-event-ratio event Function

This function returns the fractional vertical position of a scroll bar event within the
scroll bar. The value is a cons cell (portion . whole) containing two integers whose
ratio is the fractional position.

308 GNU Emacs Lisp Reference Manual

scroll-bar-scale ratio total Function
This function multiplies (in effect) ratio by total, rounding the result to an integer.
The argument ratio is not a number, but rather a pair (num . denom)—typically a
value returned by scroll-bar-event-ratio.

This function is handy for scaling a position on a scroll bar into a buffer position.
Here’s how to do that:
(+ (point-min)
(scroll-bar-scale
(posn-x-y (event-start event))
(- (point-max) (point-min))))

Recall that scroll bar events have two integers forming a ratio, in place of a pair of x
and y coordinates.

21.6.14 Putting Keyboard Events in Strings

In most of the places where strings are used, we conceptualize the string as containing
text characters—the same kind of characters found in buffers or files. Occasionally Lisp
programs use strings that conceptually contain keyboard characters; for example, they may
be key sequences or keyboard macro definitions. However, storing keyboard characters in
a string is a complex matter, for reasons of historical compatibility, and it is not always
possible.

We recommend that new programs avoid dealing with these complexities by not storing
keyboard events in strings. Here is how to do that:

e Use vectors instead of strings for key sequences, when you plan to use them for any-
thing other than as arguments to lookup-key and define-key. For example, you can
use read-key-sequence-vector instead of read-key-sequence, and this-command-
keys-vector instead of this-command-keys.

e Use vectors to write key sequence constants containing meta characters, even when
passing them directly to define-key.

e When you have to look at the contents of a key sequence that might be a string,
use listify-key-sequence (see Section 21.7.5 [Event Input Misc], page 313) first, to
convert it to a list.

The complexities stem from the modifier bits that keyboard input characters can include.
Aside from the Meta modifier, none of these modifier bits can be included in a string, and
the Meta modifier is allowed only in special cases.

The earliest GNU Emacs versions represented meta characters as codes in the range of
128 to 255. At that time, the basic character codes ranged from 0 to 127, so all keyboard
character codes did fit in a string. Many Lisp programs used ‘\M-’ in string constants to
stand for meta characters, especially in arguments to define-key and similar functions,
and key sequences and sequences of events were always represented as strings.

When we added support for larger basic character codes beyond 127, and additional
modifier bits, we had to change the representation of meta characters. Now the flag that
represents the Meta modifier in a character is 227 and such numbers cannot be included in
a string.

Chapter 21: Command Loop 309

To support programs with ‘\M-’ in string constants, there are special rules for including
certain meta characters in a string. Here are the rules for interpreting a string as a sequence
of input characters:

e If the keyboard character value is in the range of 0 to 127, it can go in the string
unchanged.

e The meta variants of those characters, with codes in the range of 227 to 227 + 127, can
also go in the string, but you must change their numeric values. You must set the 27
bit instead of the 227 bit, resulting in a value between 128 and 255. Only a unibyte
string can include these codes.

e Non-AscII characters above 256 can be included in a multibyte string.

e Other keyboard character events cannot fit in a string. This includes keyboard events
in the range of 128 to 255.

Functions such as read-key-sequence that construct strings of keyboard input charac-
ters follow these rules: they construct vectors instead of strings, when the events won’t fit
in a string.

When you use the read syntax ‘\M-’ in a string, it produces a code in the range of 128
to 255—the same code that you get if you modify the corresponding keyboard event to put
it in the string. Thus, meta events in strings work consistently regardless of how they get
into the strings.

However, most programs would do well to avoid these issues by following the recommen-
dations at the beginning of this section.

21.7 Reading Input

The editor command loop reads key sequences using the function read-key-sequence,
which uses read-event. These and other functions for event input are also available for
use in Lisp programs. See also momentary-string-display in Section 38.8 [Temporary
Displays], page 669, and sit-for in Section 21.9 [Waiting], page 315. See Section 40.8
[Terminal Input], page 738, for functions and variables for controlling terminal input modes
and debugging terminal input. See Section 40.8.2 [Translating Input], page 739, for features
you can use for translating or modifying input events while reading them.

For higher-level input facilities, see Chapter 20 [Minibuffers|, page 265.

21.7.1 Key Sequence Input

The command loop reads input a key sequence at a time, by calling read-key-sequence.
Lisp programs can also call this function; for example, describe-key uses it to read the
key to describe.

read-key-sequence prompt Function
This function reads a key sequence and returns it as a string or vector. It keeps
reading events until it has accumulated a complete key sequence; that is, enough to
specify a non-prefix command using the currently active keymaps.

If the events are all characters and all can fit in a string, then read-key-sequence
returns a string (see Section 21.6.14 [Strings of Events], page 308). Otherwise, it

310 GNU Emacs Lisp Reference Manual

returns a vector, since a vector can hold all kinds of events—characters, symbols, and
lists. The elements of the string or vector are the events in the key sequence.

The argument prompt is either a string to be displayed in the echo area as a prompt,
or nil, meaning not to display a prompt.

In the example below, the prompt ‘?’ is displayed in the echo area, and the user types
C-x C-£.

(read-key-sequence "7")

—————————— Echo Area --—----——--

7C-x C-f

—————————— Echo Area ----—————--
:> ll’\X"FH

The function read-key-sequence suppresses quitting: C-g typed while reading with
this function works like any other character, and does not set quit-flag. See Sec-
tion 21.10 [Quitting], page 316.

read-key-sequence-vector prompt Function
This is like read-key-sequence except that it always returns the key sequence as a
vector, never as a string. See Section 21.6.14 [Strings of Events], page 308.

If an input character is an upper-case letter and has no key binding, but its lower-case
equivalent has one, then read-key-sequence converts the character to lower case. Note
that lookup-key does not perform case conversion in this way.

The function read-key-sequence also transforms some mouse events. It converts un-
bound drag events into click events, and discards unbound button-down events entirely. It
also reshuffles focus events and miscellaneous window events so that they never appear in
a key sequence with any other events.

When mouse events occur in special parts of a window, such as a mode line or a scroll bar,
the event type shows nothing special—it is the same symbol that would normally represent
that combination of mouse button and modifier keys. The information about the window
part is kept elsewhere in the event—in the coordinates. But read-key-sequence translates
this information into imaginary “prefix keys”, all of which are symbols: header-line,
horizontal-scroll-bar, menu-bar, mode-line, vertical-line, and vertical-scroll-
bar. You can define meanings for mouse clicks in special window parts by defining key
sequences using these imaginary prefix keys.

For example, if you call read-key-sequence and then click the mouse on the window’s
mode line, you get two events, like this:

(read-key-sequence "Click on the mode line: ")
= [mode-line
(mouse-1
(#<window 6 on NEWS> mode-line
(40 . 63) 5959987))]

Chapter 21: Command Loop 311

num-input-keys Variable
This variable’s value is the number of key sequences processed so far in this Emacs
session. This includes key sequences read from the terminal and key sequences read
from keyboard macros being executed.

num-nonmacro-input-events Variable
This variable holds the total number of input events received so far from the
terminal—not counting those generated by keyboard macros.

21.7.2 Reading One Event

The lowest level functions for command input are those that read a single event.

read-event &optional prompt inherit-input-method Function
This function reads and returns the next event of command input, waiting if necessary
until an event is available. Events can come directly from the user or from a keyboard
macro.

If the optional argument prompt is non-nil, it should be a string to display in the echo
area as a prompt. Otherwise, read-event does not display any message to indicate
it is waiting for input; instead, it prompts by echoing: it displays descriptions of the
events that led to or were read by the current command. See Section 38.4 [The Echo
Areal, page 663.

If inherit-input-method is non-nil, then the current input method (if any) is employed
to make it possible to enter a non-AscII character. Otherwise, input method handling
is disabled for reading this event.

If cursor-in-echo-area is non-nil, then read-event moves the cursor temporarily
to the echo area, to the end of any message displayed there. Otherwise read-event
does not move the cursor.

If read-event gets an event that is defined as a help character, in some cases read-
event processes the event directly without returning. See Section 24.5 [Help Func-
tions], page 393. Certain other events, called special events, are also processed directly
within read-event (see Section 21.8 [Special Events], page 314).

Here is what happens if you call read-event and then press the right-arrow function

key:
(read-event)
= right
read-char &optional prompt inherit-input-method Function

This function reads and returns a character of command input. If the user generates
an event which is not a character (i.e. a mouse click or function key event), read-char
signals an error. The arguments work as in read-event.

In the first example, the user types the character 1 (Ascil code 49). The second
example shows a keyboard macro definition that calls read-char from the minibuffer
using eval-expression. read-char reads the keyboard macro’s very next character,
which is 1. Then eval-expression displays its return value in the echo area.

312 GNU Emacs Lisp Reference Manual

(read-char)
= 49

;5 We assume here you use M-: to evaluate this.
(symbol-function ’foo)

= "~ [:(read-char) "M1"
(execute-kbd-macro ’foo)

- 49

= nil

read-char-exclusive &optional prompt inherit-input-method Function
This function reads and returns a character of command input. If the user generates
an event which is not a character, read-char-exclusive ignores it and reads another
event, until it gets a character. The arguments work as in read-event.

21.7.3 Invoking the Input Method

The event-reading functions invoke the current input method, if any (see Section 33.11
[Input Methods], page 599). If the value of input-method-function is non-nil, it should be
a function; when read-event reads a printing character (including SPC)) with no modifier
bits, it calls that function, passing the character as an argument.

input-method-function Variable
If this is non-nil, its value specifies the current input method function.

Note: Don’t bind this variable with let. It is often buffer-local, and if you bind it
around reading input (which is exactly when you would bind it), switching buffers

asynchronously while Emacs is waiting will cause the value to be restored in the wrong
buffer.

The input method function should return a list of events which should be used as input.
(If the list is nil, that means there is no input, so read-event waits for another event.)
These events are processed before the events in unread-command-events (see Section 21.7.5
[Event Input Misc|, page 313). Events returned by the input method function are not passed
to the input method function again, even if they are printing characters with no modifier
bits.

If the input method function calls read-event or read-key-sequence, it should bind
input-method-function to nil first, to prevent recursion.

The input method function is not called when reading the second and subsequent events
of a key sequence. Thus, these characters are not subject to input method processing. The
input method function should test the values of overriding-local-map and overriding-
terminal-local-map; if either of these variables is non-nil, the input method should put
its argument into a list and return that list with no further processing.

21.7.4 Quoted Character Input

You can use the function read-quoted-char to ask the user to specify a character, and
allow the user to specify a control or meta character conveniently, either literally or as an
octal character code. The command quoted-insert uses this function.

Chapter 21: Command Loop 313

read-quoted-char &optional prompt Function
This function is like read-char, except that if the first character read is an octal digit
(0-7), it reads any number of octal digits (but stopping if a non-octal digit is found),
and returns the character represented by that numeric character code.

Quitting is suppressed when the first character is read, so that the user can enter a
C-g. See Section 21.10 [Quitting], page 316.

If prompt is supplied, it specifies a string for prompting the user. The prompt string
is always displayed in the echo area, followed by a single ‘-’.

In the following example, the user types in the octal number 177 (which is 127 in
decimal).

(read-quoted-char "What character")

—————————— Echo Area —-----——---
What character-177
—————————— Echo Area ---—-————--

= 127

21.7.5 Miscellaneous Event Input Features

This section describes how to “peek ahead” at events without using them up, how to
check for pending input, and how to discard pending input. See also the function read-
passwd (see Section 20.8 [Reading a Password], page 283).

unread-command-events Variable
This variable holds a list of events waiting to be read as command input. The events
are used in the order they appear in the list, and removed one by one as they are
used.

The variable is needed because in some cases a function reads an event and then
decides not to use it. Storing the event in this variable causes it to be processed
normally, by the command loop or by the functions to read command input.

For example, the function that implements numeric prefix arguments reads any num-
ber of digits. When it finds a non-digit event, it must unread the event so that it
can be read normally by the command loop. Likewise, incremental search uses this
feature to unread events with no special meaning in a search, because these events
should exit the search and then execute normally.

The reliable and easy way to extract events from a key sequence so as to put them
in unread-command-events is to use listify-key-sequence (see Section 21.6.14
[Strings of Events], page 308).

Normally you add events to the front of this list, so that the events most recently
unread will be reread first.

listify-key-sequence key Function
This function converts the string or vector key to a list of individual events, which
you can put in unread-command-events.

314 GNU Emacs Lisp Reference Manual

unread-command-char Variable
This variable holds a character to be read as command input. A value of -1 means
“empty”.

This variable is mostly obsolete now that you can use unread-command-events in-
stead; it exists only to support programs written for Emacs versions 18 and earlier.

input-pending-p Function
This function determines whether any command input is currently available to be
read. It returns immediately, with value t if there is available input, nil otherwise.
On rare occasions it may return t when no input is available.

last-input-event Variable
last-input-char Variable
This variable records the last terminal input event read, whether as part of a command
or explicitly by a Lisp program.
In the example below, the Lisp program reads the character 1, ASCII code 49. It
becomes the value of last-input-event, while C-e (we assume C-x C-e command is
used to evaluate this expression) remains the value of last-command-event.
(progn (print (read-char))
(print last-command-event)
last-input-event)
4 49
4 5
= 49

The alias last-input-char exists for compatibility with Emacs version 18.

discard-input Function
This function discards the contents of the terminal input buffer and cancels any
keyboard macro that might be in the process of definition. It returns nil.

In the following example, the user may type a number of characters right after starting
the evaluation of the form. After the sleep-for finishes sleeping, discard-input
discards any characters typed during the sleep.
(progn (sleep-for 2)
(discard-input))
= nil

21.8 Special Events

Special events are handled at a very low level—as soon as they are read. The read-event
function processes these events itself, and never returns them.

Events that are handled in this way do not echo, they are never grouped into key se-
quences, and they never appear in the value of last-command-event or (this-command-
keys). They do not discard a numeric argument, they cannot be unread with unread-
command-events, they may not appear in a keyboard macro, and they are not recorded in
a keyboard macro while you are defining one.

Chapter 21: Command Loop 315

These events do, however, appear in last-input-event immediately after they are read,
and this is the way for the event’s definition to find the actual event.

The events types iconify-frame, make-frame-visible and delete-frame are nor-
mally handled in this way. The keymap which defines how to handle special events—and
which events are special—is in the variable special-event-map (see Section 22.6 [Active
Keymaps], page 330).

21.9 Waiting for Elapsed Time or Input

The wait functions are designed to wait for a certain amount of time to pass or until
there is input. For example, you may wish to pause in the middle of a computation to allow
the user time to view the display. sit-for pauses and updates the screen, and returns
immediately if input comes in, while sleep-for pauses without updating the screen.

sit-for seconds &optional millisec nodisp Function
This function performs redisplay (provided there is no pending input from the user),
then waits seconds seconds, or until input is available. The value is t if sit-for
waited the full time with no input arriving (see input-pending-p in Section 21.7.5
[Event Input Misc|, page 313). Otherwise, the value is nil.

The argument seconds need not be an integer. If it is a floating point number, sit-
for waits for a fractional number of seconds. Some systems support only a whole
number of seconds; on these systems, seconds is rounded down.

The optional argument millisec specifies an additional waiting period measured in
milliseconds. This adds to the period specified by seconds. If the system doesn’t
support waiting fractions of a second, you get an error if you specify nonzero millisec.
The expression (sit-for 0) is a convenient way to request a redisplay, without any
delay. See Section 38.2 [Forcing Redisplay], page 661.

If nodisp is non-nil, then sit-for does not redisplay, but it still returns as soon as
input is available (or when the timeout elapses).

Iconifying or deiconifying a frame makes sit-for return, because that generates an
event. See Section 21.6.10 [Misc Events], page 304.

The usual purpose of sit-for is to give the user time to read text that you display.

sleep-for seconds &optional millisec Function
This function simply pauses for seconds seconds without updating the display. It
pays no attention to available input. It returns nil.

The argument seconds need not be an integer. If it is a floating point number, sleep-
for waits for a fractional number of seconds. Some systems support only a whole
number of seconds; on these systems, seconds is rounded down.

The optional argument millisec specifies an additional waiting period measured in
milliseconds. This adds to the period specified by seconds. If the system doesn’t
support waiting fractions of a second, you get an error if you specify nonzero millisec.

Use sleep-for when you wish to guarantee a delay.

See Section 40.5 [Time of Day|, page 732, for functions to get the current time.

316 GNU Emacs Lisp Reference Manual

21.10 Quitting

Typing C-g while a Lisp function is running causes Emacs to quit whatever it is doing.
This means that control returns to the innermost active command loop.

Typing C-g while the command loop is waiting for keyboard input does not cause a quit;
it acts as an ordinary input character. In the simplest case, you cannot tell the difference,
because C-g normally runs the command keyboard-quit, whose effect is to quit. However,
when C-g follows a prefix key, they combine to form an undefined key. The effect is to
cancel the prefix key as well as any prefix argument.

In the minibuffer, C-g has a different definition: it aborts out of the minibuffer. This
means, in effect, that it exits the minibuffer and then quits. (Simply quitting would return
to the command loop within the minibuffer.) The reason why C-g does not quit directly
when the command reader is reading input is so that its meaning can be redefined in the
minibuffer in this way. C-g following a prefix key is not redefined in the minibuffer, and it
has its normal effect of canceling the prefix key and prefix argument. This too would not
be possible if C-g always quit directly.

When C-g does directly quit, it does so by setting the variable quit-flag to t. Emacs
checks this variable at appropriate times and quits if it is not nil. Setting quit-flag
non-nil in any way thus causes a quit.

At the level of C code, quitting cannot happen just anywhere; only at the special places
that check quit-flag. The reason for this is that quitting at other places might leave
an inconsistency in Emacs’s internal state. Because quitting is delayed until a safe place,
quitting cannot make Emacs crash.

Certain functions such as read-key-sequence or read-quoted-char prevent quitting
entirely even though they wait for input. Instead of quitting, C-g serves as the requested
input. In the case of read-key-sequence, this serves to bring about the special behavior
of C-g in the command loop. In the case of read-quoted-char, this is so that C-q can be
used to quote a C-g.

You can prevent quitting for a portion of a Lisp function by binding the variable
inhibit-quit to a non-nil value. Then, although C-g still sets quit-flag to t as usual,
the usual result of this—a quit—is prevented. Eventually, inhibit-quit will become nil
again, such as when its binding is unwound at the end of a let form. At that time, if
quit-flag is still non-nil, the requested quit happens immediately. This behavior is ideal
when you wish to make sure that quitting does not happen within a “critical section” of
the program.

In some functions (such as read-quoted-char), C-g is handled in a special way that
does not involve quitting. This is done by reading the input with inhibit-quit bound to
t, and setting quit-flag to nil before inhibit-quit becomes nil again. This excerpt
from the definition of read-quoted-char shows how this is done; it also shows that normal
quitting is permitted after the first character of input.

(defun read-quoted-char (&optional prompt)
"...documentation. . ."
(let ((message-log-max nil) done (first t) (code 0) char)
(while (not done)
(let ((inhibit-quit first)
)

Chapter 21: Command Loop 317

(and prompt (message "%s-" prompt))
(setq char (read-event))
(if inhibit-quit (setq quit-flag nil)))
.. .set the variable code. . .)
code))

quit-flag Variable
If this variable is non-nil, then Emacs quits immediately, unless inhibit-quit is
non-nil. Typing C-g ordinarily sets quit-flag non-nil, regardless of inhibit-quit.

inhibit-quit Variable
This variable determines whether Emacs should quit when quit-flag is set to a value
other than nil. If inhibit-quit is non-nil, then quit-flag has no special effect.

keyboard-quit Command
This function signals the quit condition with (signal ’quit nil). This is the same
thing that quitting does. (See signal in Section 10.5.3 [Errors|, page 125.)

You can specify a character other than C-g to use for quitting. See the function set-
input-mode in Section 40.8 [Terminal Input], page 738.

21.11 Prefix Command Arguments

Most Emacs commands can use a prefix argument, a number specified before the com-
mand itself. (Don’t confuse prefix arguments with prefix keys.) The prefix argument is at
all times represented by a value, which may be nil, meaning there is currently no prefix
argument. Each command may use the prefix argument or ignore it.

There are two representations of the prefix argument: raw and numeric. The editor
command loop uses the raw representation internally, and so do the Lisp variables that
store the information, but commands can request either representation.

Here are the possible values of a raw prefix argument:

e nil, meaning there is no prefix argument. Its numeric value is 1, but numerous com-
mands make a distinction between nil and the integer 1.

e An integer, which stands for itself.

e A list of one element, which is an integer. This form of prefix argument results from
one or a succession of C-u’s with no digits. The numeric value is the integer in the list,
but some commands make a distinction between such a list and an integer alone.

e The symbol -. This indicates that M-- or C-u - was typed, without following digits.
The equivalent numeric value is —1, but some commands make a distinction between
the integer —1 and the symbol -.

We illustrate these possibilities by calling the following function with various prefixes:

(defun display-prefix (arg)
"Display the value of the raw prefix arg."
(interactive "P")
(message "%s" arg))

Here are the results of calling display-prefix with various raw prefix arguments:

318 GNU Emacs Lisp Reference Manual

M-x display-prefix - nil
C-u M-x display-prefix - (4)
C-u C-u M-x display-prefix - (16)

C-u 3 M-x display-prefix - 3

M-3 M-x display-prefix - 3 ; (Same as C-u 3.)
C-u - M-x display-prefix - -
M-- M-x display-prefix - - ; (Same as C-u -.)

C-u - 7 M-x display-prefix - -7

M-- 7 M-x display-prefix - -7 ; (Same as C-u -7.)

Emacs uses two variables to store the prefix argument: prefix-arg and current-
prefix-arg. Commands such as universal-argument that set up prefix arguments for
other commands store them in prefix-arg. In contrast, current-prefix-arg conveys the
prefix argument to the current command, so setting it has no effect on the prefix arguments
for future commands.

Normally, commands specify which representation to use for the prefix argument, either
numeric or raw, in the interactive declaration. (See Section 21.2.1 [Using Interactive],
page 288.) Alternatively, functions may look at the value of the prefix argument directly in
the variable current-prefix-arg, but this is less clean.

prefix-numeric-value arg Function
This function returns the numeric meaning of a valid raw prefix argument value,
arg. The argument may be a symbol, a number, or a list. If it is nil, the value 1 is
returned; if it is -, the value —1 is returned; if it is a number, that number is returned;
if it is a list, the CAR of that list (which should be a number) is returned.

current-prefix-arg Variable
This variable holds the raw prefix argument for the current command. Commands
may examine it directly, but the usual method for accessing it is with (interactive
IIP n) .

prefix-arg Variable
The value of this variable is the raw prefix argument for the next editing command.
Commands such as universal-argument that specify prefix arguments for the fol-
lowing command work by setting this variable.

last-prefix-arg Variable
The raw prefix argument value used by the previous command.

The following commands exist to set up prefix arguments for the following command.
Do not call them for any other reason.

Chapter 21: Command Loop 319

universal-argument Command
This command reads input and specifies a prefix argument for the following command.
Don’t call this command yourself unless you know what you are doing.

digit-argument arg Command
This command adds to the prefix argument for the following command. The argument
arg is the raw prefix argument as it was before this command; it is used to compute
the updated prefix argument. Don’t call this command yourself unless you know what
you are doing.

negative-argument arg Command
This command adds to the numeric argument for the next command. The argument
arg is the raw prefix argument as it was before this command; its value is negated
to form the new prefix argument. Don’t call this command yourself unless you know
what you are doing.

21.12 Recursive Editing

The Emacs command loop is entered automatically when Emacs starts up. This top-level
invocation of the command loop never exits; it keeps running as long as Emacs does. Lisp
programs can also invoke the command loop. Since this makes more than one activation of
the command loop, we call it recursive editing. A recursive editing level has the effect of
suspending whatever command invoked it and permitting the user to do arbitrary editing
before resuming that command.

The commands available during recursive editing are the same ones available in the
top-level editing loop and defined in the keymaps. Only a few special commands exit
the recursive editing level; the others return to the recursive editing level when they finish.
(The special commands for exiting are always available, but they do nothing when recursive
editing is not in progress.)

All command loops, including recursive ones, set up all-purpose error handlers so that
an error in a command run from the command loop will not exit the loop.

Minibuffer input is a special kind of recursive editing. It has a few special wrinkles, such
as enabling display of the minibuffer and the minibuffer window, but fewer than you might
suppose. Certain keys behave differently in the minibuffer, but that is only because of the
minibuffer’s local map; if you switch windows, you get the usual Emacs commands.

To invoke a recursive editing level, call the function recursive-edit. This function
contains the command loop; it also contains a call to catch with tag exit, which makes it
possible to exit the recursive editing level by throwing to exit (see Section 10.5.1 [Catch
and Throw], page 123). If you throw a value other than t, then recursive-edit returns
normally to the function that called it. The command C-M-c (exit-recursive-edit) does
this. Throwing a t value causes recursive-edit to quit, so that control returns to the
command loop one level up. This is called aborting, and is done by C-] (abort-recursive-
edit).

Most applications should not use recursive editing, except as part of using the minibuffer.
Usually it is more convenient for the user if you change the major mode of the current

320 GNU Emacs Lisp Reference Manual

buffer temporarily to a special major mode, which should have a command to go back to
the previous mode. (The e command in Rmail uses this technique.) Or, if you wish to give
the user different text to edit “recursively”, create and select a new buffer in a special mode.
In this mode, define a command to complete the processing and go back to the previous
buffer. (The m command in Rmail does this.)

Recursive edits are useful in debugging. You can insert a call to debug into a function
definition as a sort of breakpoint, so that you can look around when the function gets there.
debug invokes a recursive edit but also provides the other features of the debugger.

Recursive editing levels are also used when you type C-r in query-replace or use C-x
g (kbd-macro-query).

recursive-edit Function
This function invokes the editor command loop. It is called automatically by the ini-
tialization of Emacs, to let the user begin editing. When called from a Lisp program,
it enters a recursive editing level.

In the following example, the function simple-rec first advances point one word,
then enters a recursive edit, printing out a message in the echo area. The user can
then do any editing desired, and then type C-M-c to exit and continue executing
simple-rec.
(defun simple-rec ()
(forward-word 1)
(message "Recursive edit in progress")
(recursive-edit)
(forward-word 1))
= simple-rec
(simple-rec)
= nil

exit-recursive-edit Command
This function exits from the innermost recursive edit (including minibuffer input).
Its definition is effectively (throw ’exit nil).

abort-recursive-edit Command
This function aborts the command that requested the innermost recursive edit (includ-
ing minibuffer input), by signaling quit after exiting the recursive edit. Its definition
is effectively (throw ’exit t). See Section 21.10 [Quitting], page 316.

top-level Command
This function exits all recursive editing levels; it does not return a value, as it jumps
completely out of any computation directly back to the main command loop.

recursion-depth Function
This function returns the current depth of recursive edits. When no recursive edit is
active, it returns 0.

Chapter 21: Command Loop 321

21.13 Disabling Commands

Disabling a command marks the command as requiring user confirmation before it can
be executed. Disabling is used for commands which might be confusing to beginning users,
to prevent them from using the commands by accident.

The low-level mechanism for disabling a command is to put a non-nil disabled property
on the Lisp symbol for the command. These properties are normally set up by the user’s
init file (see Section 40.1.2 [Init File], page 722) with Lisp expressions such as this:

(put ’upcase-region ’disabled t)
For a few commands, these properties are present by default (you can remove them in your
init file if you wish).
If the value of the disabled property is a string, the message saying the command is
disabled includes that string. For example:

(put ’delete-region ’disabled
"Text deleted this way cannot be yanked back!\n")

See section “Disabling” in The GNU Emacs Manual, for the details on what happens
when a disabled command is invoked interactively. Disabling a command has no effect on
calling it as a function from Lisp programs.

enable-command command Command
Allow command to be executed without special confirmation from now on, and (if
the user confirms) alter the user’s init file (see Section 40.1.2 [Init File], page 722) so
that this will apply to future sessions.

disable-command command Command
Require special confirmation to execute command from now on, and (if the user
confirms) alter the user’s init file so that this will apply to future sessions.

disabled-command-hook Variable
When the user invokes a disabled command interactively, this normal hook is run
instead of the disabled command. The hook functions can use this-command-keys
to determine what the user typed to run the command, and thus find the command
itself. See Section 23.6 [Hooks|, page 383.

By default, disabled-command-hook contains a function that asks the user whether
to proceed.

21.14 Command History

The command loop keeps a history of the complex commands that have been executed,
to make it convenient to repeat these commands. A complex command is one for which the
interactive argument reading uses the minibuffer. This includes any M-x command, any M-:
command, and any command whose interactive specification reads an argument from the
minibuffer. Explicit use of the minibuffer during the execution of the command itself does
not cause the command to be considered complex.

322 GNU Emacs Lisp Reference Manual

command-history Variable
This variable’s value is a list of recent complex commands, each represented as a form
to evaluate. It continues to accumulate all complex commands for the duration of
the editing session, but when it reaches the maximum size (specified by the variable
history-length), the oldest elements are deleted as new ones are added.

command-history

= ((switch-to-buffer "chistory.texi")
(describe-key "“X"[")
(visit-tags-table ""/emacs/src/")
(find-tag "repeat-complex-command"))

This history list is actually a special case of minibuffer history (see Section 20.4 [Mini-
buffer History], page 270), with one special twist: the elements are expressions rather than
strings.

There are a number of commands devoted to the editing and recall of previous com-
mands. The commands repeat-complex-command, and list-command-history are de-
scribed in the user manual (see section “Repetition” in The GNU Emacs Manual). Within
the minibuffer, the usual minibuffer history commands are available.

21.15 Keyboard Macros

A keyboard macro is a canned sequence of input events that can be considered a com-
mand and made the definition of a key. The Lisp representation of a keyboard macro is a
string or vector containing the events. Don’t confuse keyboard macros with Lisp macros
(see Chapter 13 [Macros|, page 171).

execute-kbd-macro kbdmacro &optional count Function
This function executes kbdmacro as a sequence of events. If kbdmacro is a string or
vector, then the events in it are executed exactly as if they had been input by the
user. The sequence is not expected to be a single key sequence; normally a keyboard
macro definition consists of several key sequences concatenated.

If kbdmacro is a symbol, then its function definition is used in place of kbdmacro. If
that is another symbol, this process repeats. Eventually the result should be a string
or vector. If the result is not a symbol, string, or vector, an error is signaled.

The argument count is a repeat count; kbdmacro is executed that many times. If
count is omitted or nil, kbdmacro is executed once. If it is 0, kbdmacro is executed
over and over until it encounters an error or a failing search.

See Section 21.7.2 [Reading One Event], page 311, for an example of using execute-
kbd-macro.

executing-macro Variable
This variable contains the string or vector that defines the keyboard macro that is
currently executing. It is nil if no macro is currently executing. A command can
test this variable so as to behave differently when run from an executing macro. Do
not set this variable yourself.

Chapter 21: Command Loop 323

defining-kbd-macro Variable
This variable indicates whether a keyboard macro is being defined. A command can
test this variable so as to behave differently while a macro is being defined. The
commands start-kbd-macro and end-kbd-macro set this variable—do not set it
yourself.

The variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Displays], page 484.

last-kbd-macro Variable
This variable is the definition of the most recently defined keyboard macro. Its value
is a string or vector, or nil.

The variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Displays|, page 484.

kbd-macro-termination-hook Variable
This normal hook (see Appendix I [Standard Hooks], page 809) is run when a keyboard
macro terminates, regardless of what caused it to terminate (reaching the macro end
or an error which ended the macro prematurely).

324 GNU Emacs Lisp Reference Manual

Chapter 22: Keymaps 325

22 Keymaps

The bindings between input events and commands are recorded in data structures called
keymaps. Each binding in a keymap associates (or binds) an individual event type either
to another keymap or to a command. When an event type is bound to a keymap, that
keymap is used to look up the next input event; this continues until a command is found.
The whole process is called key lookup.

22.1 Keymap Terminology

A keymap is a table mapping event types to definitions (which can be any Lisp objects,
though only certain types are meaningful for execution by the command loop). Given an
event (or an event type) and a keymap, Emacs can get the event’s definition. Events include
characters, function keys, and mouse actions (see Section 21.6 [Input Events|, page 297).

A sequence of input events that form a unit is called a key sequence, or key for short.
A sequence of one event is always a key sequence, and so are some multi-event sequences.

A keymap determines a binding or definition for any key sequence. If the key sequence
is a single event, its binding is the definition of the event in the keymap. The binding of
a key sequence of more than one event is found by an iterative process: the binding of the
first event is found, and must be a keymap; then the second event’s binding is found in that
keymap, and so on until all the events in the key sequence are used up.

If the binding of a key sequence is a keymap, we call the key sequence a prefix key.
Otherwise, we call it a complete key (because no more events can be added to it). If the
binding is nil, we call the key undefined. Examples of prefix keys are C-c, C-x, and C-x
4. Examples of defined complete keys are X, (RET), and C-x 4 C-f. Examples of undefined
complete keys are C-x C-g, and C-c 3. See Section 22.5 [Prefix Keys|, page 329, for more
details.

The rule for finding the binding of a key sequence assumes that the intermediate bindings
(found for the events before the last) are all keymaps; if this is not so, the sequence of events
does not form a unit—it is not really one key sequence. In other words, removing one or
more events from the end of any valid key sequence must always yield a prefix key. For
example, C-f C-n is not a key sequence; C-f is not a prefix key, so a longer sequence starting
with C-f cannot be a key sequence.

The set of possible multi-event key sequences depends on the bindings for prefix keys;
therefore, it can be different for different keymaps, and can change when bindings are
changed. However, a one-event sequence is always a key sequence, because it does not
depend on any prefix keys for its well-formedness.

At any time, several primary keymaps are active—that is, in use for finding key bindings.
These are the global map, which is shared by all buffers; the local keymap, which is usually
associated with a specific major mode; and zero or more minor mode keymaps, which belong
to currently enabled minor modes. (Not all minor modes have keymaps.) The local keymap
bindings shadow (i.e., take precedence over) the corresponding global bindings. The minor
mode keymaps shadow both local and global keymaps. See Section 22.6 [Active Keymaps],
page 330, for details.

326 GNU Emacs Lisp Reference Manual

22.2 Format of Keymaps

A keymap is a list whose CAR is the symbol keymap. The remaining elements of the
list define the key bindings of the keymap. Use the function keymapp (see below) to test
whether an object is a keymap.

Several kinds of elements may appear in a keymap, after the symbol keymap that begins
it:

(type . binding)
This specifies one binding, for events of type type. Each ordinary binding
applies to events of a particular event type, which is always a character or a
symbol. See Section 21.6.12 [Classifying Events], page 305.

(t . binding)
This specifies a default key binding; any event not bound by other elements of
the keymap is given binding as its binding. Default bindings allow a keymap to
bind all possible event types without having to enumerate all of them. A keymap
that has a default binding completely masks any lower-precedence keymap.

vector If an element of a keymap is a vector, the vector counts as bindings for all the
ASCII characters, codes 0 through 127; vector element n is the binding for the
character with code n. This is a compact way to record lots of bindings. A
keymap with such a vector is called a full keymap. Other keymaps are called
sparse keymaps.

When a keymap contains a vector, it always defines a binding for each Asci1
character, even if the vector contains nil for that character. Such a binding
of nil overrides any default key binding in the keymap, for AsciI characters.
However, default bindings are still meaningful for events other than ASCII char-
acters. A binding of nil does not override lower-precedence keymaps; thus, if
the local map gives a binding of nil, Emacs uses the binding from the global
map.

string Aside from bindings, a keymap can also have a string as an element. This is

called the overall prompt string and makes it possible to use the keymap as a
menu. See Section 22.12.1 [Defining Menus|, page 343.

Keymaps do not directly record bindings for the meta characters. Instead, meta char-
acters are regarded for purposes of key lookup as sequences of two characters, the first of
which is (or whatever is currently the value of meta-prefix-char). Thus, the key
M-a is internally represented as a, and its global binding is found at the slot for a in
esc-map (see Section 22.5 [Prefix Keys|, page 329).

This conversion applies only to characters, not to function keys or other input events;
thus, M-{nd) has nothing to do with {end).

Here as an example is the local keymap for Lisp mode, a sparse keymap. It defines
bindings for and (TAB), plus C-c C-1, M-C-q, and M-C-x.

lisp-mode-map
=
(keymap
HH
(9 . lisp-indent-line)

Chapter 22: Keymaps 327

;3 (DEL
(127 . backward-delete-char-untabify)
(3 keymap
;; C-c C-1
(12 . run-lisp))
(27 keymap
;35 M-C-q, treated as C-q
(17 . indent-sexp)
;3 M-C-x, treated as C-x
(24 . lisp-send-defun)))

keymapp object Function
This function returns t if object is a keymap, nil otherwise. More precisely, this
function tests for a list whose CAR is keymap.
(keymapp ’ (keymap))
=t

(keymapp (current-global-map))
=t

22.3 Creating Keymaps

Here we describe the functions for creating keymaps.

make-keymap &optional prompt Function
This function creates and returns a new full keymap. That keymap contains a char-
table (see Section 6.6 [Char-Tables|, page 89) with 384 slots: the first 128 slots are for
defining all the ASCII characters, the next 128 slots are for 8-bit European characters,
and each one of the final 128 slots is for one character set of non-ASCIl characters
supported by Emacs. The new keymap initially binds all these characters to nil, and
does not bind any other kind of event.
(make-keymap)
= (keymap [nil nil nil ... nil nil])
If you specify prompt, that becomes the overall prompt string for the keymap. The

prompt string should be provided for menu keymaps (see Section 22.12.1 [Defining
Menus|, page 343).

make-sparse-keymap &optional prompt Function
This function creates and returns a new sparse keymap with no entries. The new
keymap does not contain a char-table, unlike make-keymap, and does not bind any
events. The argument prompt specifies a prompt string, as in make-keymap.
(make-sparse-keymap)
= (keymap)

copy-keymap keymap Function
This function returns a copy of keymap. Any keymaps that appear directly as bindings
in keymap are also copied recursively, and so on to any number of levels. However,

328 GNU Emacs Lisp Reference Manual

recursive copying does not take place when the definition of a character is a symbol
whose function definition is a keymap; the same symbol appears in the new copy.

(setq map (copy-keymap (current-local-map)))
= (keymap
;3 (This implements meta characters.)
(27 keymap
(83 . center-paragraph)
(115 . center-line))
(9 . tab-to-tab-stop))

(eq map (current-local-map))
= nil

(equal map (current-local-map))
=t

22.4 Inheritance and Keymaps

A keymap can inherit the bindings of another keymap, which we call the parent keymap.
Such a keymap looks like this:

(keymap bindings... . parent-keymap)

The effect is that this keymap inherits all the bindings of parent-keymap, whatever they
may be at the time a key is looked up, but can add to them or override them with bindings.

If you change the bindings in parent-keymap using define-key or other key-binding
functions, these changes are visible in the inheriting keymap unless shadowed by bindings.
The converse is not true: if you use define-key to change the inheriting keymap, that
affects bindings, but has no effect on parent-keymap.

The proper way to construct a keymap with a parent is to use set-keymap-parent; if
you have code that directly constructs a keymap with a parent, please convert the program
to use set-keymap-parent instead.

keymap-parent keymap Function
This returns the parent keymap of keymap. If keymap has no parent, keymap-parent
returns nil.

set-keymap-parent keymap parent Function
This sets the parent keymap of keymap to parent, and returns parent. If parent is
nil, this function gives keymap no parent at all.

If keymap has submaps (bindings for prefix keys), they too receive new parent
keymaps that reflect what parent specifies for those prefix keys.

Here is an example showing how to make a keymap that inherits from text-mode-map:

(let ((map (make-sparse-keymap)))
(set-keymap-parent map text-mode-map)
map)

Chapter 22: Keymaps 329

22.5 Prefix Keys

A prefix key is a key sequence whose binding is a keymap. The keymap defines what to
do with key sequences that extend the prefix key. For example, C-x is a prefix key, and it
uses a keymap that is also stored in the variable ctl-x-map. This keymap defines bindings
for key sequences starting with C-x.

Some of the standard Emacs prefix keys use keymaps that are also found in Lisp variables:

e esc-map is the global keymap for the prefix key. Thus, the global definitions of

all meta characters are actually found here. This map is also the function definition of
ESC-prefix.

e help-map is the global keymap for the C-h prefix key.

e mode-specific-map is the global keymap for the prefix key C-c. This map is actually
global, not mode-specific, but its name provides useful information about C-c in the
output of C-h b (display-bindings), since the main use of this prefix key is for mode-
specific bindings.

e ctl-x-map is the global keymap used for the C-x prefix key. This map is found via the
function cell of the symbol Control-X-prefix.

e mule-keymap is the global keymap used for the C-x prefix key.

e ctl-x-4-map is the global keymap used for the C-x 4 prefix key.

e ctl-x-5-map is the global keymap used for the C-x 5 prefix key.

e 2C-mode-map is the global keymap used for the C-x 6 prefix key.

e vc-prefix-map is the global keymap used for the C-x v prefix key.

e facemenu-keymap is the global keymap used for the M-g prefix key.

e The other Emacs prefix keys are C-x @, C-x a i, C-x and (ESC). They use
keymaps that have no special names.

The keymap binding of a prefix key is used for looking up the event that follows the
prefix key. (It may instead be a symbol whose function definition is a keymap. The effect is
the same, but the symbol serves as a name for the prefix key.) Thus, the binding of C-x is
the symbol Control-X-prefix, whose function cell holds the keymap for C-x commands.
(The same keymap is also the value of ctl-x-map.)

Prefix key definitions can appear in any active keymap. The definitions of C-c, C-x, C-h
and as prefix keys appear in the global map, so these prefix keys are always available.
Major and minor modes can redefine a key as a prefix by putting a prefix key definition for
it in the local map or the minor mode’s map. See Section 22.6 [Active Keymaps], page 330.

If a key is defined as a prefix in more than one active map, then its various definitions
are in effect merged: the commands defined in the minor mode keymaps come first, followed
by those in the local map’s prefix definition, and then by those from the global map.

In the following example, we make C-p a prefix key in the local keymap, in such a way
that C-p is identical to C-x. Then the binding for C-p C-f is the function find-file, just
like C-x C-f. The key sequence C-p 6 is not found in any active keymap.

(use-local-map (make-sparse-keymap))
= nil

(local-set-key "\C-p" ctl-x-map)
= nil

330 GNU Emacs Lisp Reference Manual

(key-binding "\C-p\C-f")
= find-file
(key-binding "\C-p6")
= nil

define-prefix-command symbol &optional mapvar prompt Function
This function prepares symbol for use as a prefix key’s binding: it creates a sparse
keymap and stores it as symbol’s function definition. Subsequently binding a key
sequence to symbol will make that key sequence into a prefix key. The return value
is symbol.

This function also sets symbol as a variable, with the keymap as its value. But if
mapvar is non-nil, it sets mapvar as a variable instead.

If prompt is non-nil, that becomes the overall prompt string for the keymap. The
prompt string should be given for menu keymaps (see Section 22.12.1 [Defining
Menus|, page 343).

22.6 Active Keymaps

Emacs normally contains many keymaps; at any given time, just a few of them are active
in that they participate in the interpretation of user input. These are the global keymap,
the current buffer’s local keymap, and the keymaps of any enabled minor modes.

The global keymap holds the bindings of keys that are defined regardless of the current
buffer, such as C-f. The variable global-map holds this keymap, which is always active.

Each buffer may have another keymap, its local keymap, which may contain new or
overriding definitions for keys. The current buffer’s local keymap is always active except
when overriding-local-map overrides it. Text properties can specify an alternative local
map for certain parts of the buffer; see Section 32.19.4 [Special Properties|, page 567.

Each minor mode can have a keymap; if it does, the keymap is active when the minor
mode is enabled.

The variable overriding-local-map, if non-nil, specifies another local keymap that
overrides the buffer’s local map and all the minor mode keymaps.

All the active keymaps are used together to determine what command to execute when
a key is entered. Emacs searches these maps one by one, in order of decreasing precedence,
until it finds a binding in one of the maps. The procedure for searching a single keymap is
called key lookup; see Section 22.7 [Key Lookup|, page 333.

Normally, Emacs first searches for the key in the minor mode maps, in the order specified
by minor-mode-map-alist; if they do not supply a binding for the key, Emacs searches
the local map; if that too has no binding, Emacs then searches the global map. However, if
overriding-local-map is non-nil, Emacs searches that map first, before the global map.

Since every buffer that uses the same major mode normally uses the same local keymap,
you can think of the keymap as local to the mode. A change to the local keymap of a
buffer (using local-set-key, for example) is seen also in the other buffers that share that
keymap.

Chapter 22: Keymaps 331

The local keymaps that are used for Lisp mode and some other major modes exist even
if they have not yet been used. These local maps are the values of variables such as 1isp-
mode-map. For most major modes, which are less frequently used, the local keymap is
constructed only when the mode is used for the first time in a session.

The minibuffer has local keymaps, too; they contain various completion and exit com-
mands. See Section 20.1 [Intro to Minibuffers|, page 265.

Emacs has other keymaps that are used in a different way—translating events within
read-key-sequence. See Section 40.8.2 [Translating Input], page 739.

See Appendix H [Standard Keymaps|, page 805, for a list of standard keymaps.

global-map Variable
This variable contains the default global keymap that maps Emacs keyboard input to
commands. The global keymap is normally this keymap. The default global keymap
is a full keymap that binds self-insert-command to all of the printing characters.

It is normal practice to change the bindings in the global map, but you should not
assign this variable any value other than the keymap it starts out with.

current-global-map Function
This function returns the current global keymap. This is the same as the value of
global-map unless you change one or the other.

(current-global-map)
= (keymap [set-mark-command beginning-of-line ...
delete-backward-char])

current-local-map Function
This function returns the current buffer’s local keymap, or nil if it has none. In
the following example, the keymap for the ‘*scratch*’ buffer (using Lisp Interaction
mode) is a sparse keymap in which the entry for (ESC), ASCII code 27, is another sparse
keymap.
(current-local-map)
= (keymap
(10 . eval-print-last-sexp)
(9 . lisp-indent-line)
(127 . backward-delete-char-untabify)
(27 keymap
(24 . eval-defun)
(17 . indent-sexp)))

current-minor-mode-maps Function
This function returns a list of the keymaps of currently enabled minor modes.

use-global-map keymap Function
This function makes keymap the new current global keymap. It returns nil.

It is very unusual to change the global keymap.

332 GNU Emacs Lisp Reference Manual

use-local-map keymap Function
This function makes keymap the new local keymap of the current buffer. If keymap is
nil, then the buffer has no local keymap. use-local-map returns nil. Most major
mode commands use this function.

minor-mode-map-alist Variable
This variable is an alist describing keymaps that may or may not be active according
to the values of certain variables. Its elements look like this:

(variable . keymap)

The keymap keymap is active whenever variable has a non-nil value. Typically
variable is the variable that enables or disables a minor mode. See Section 23.2.2
[Keymaps and Minor Modes], page 367.

Note that elements of minor-mode-map-alist do not have the same structure as
elements of minor-mode-alist. The map must be the CDR of the element; a list with
the map as the second element will not do. The CDR can be either a keymap (a list)
or a symbol whose function definition is a keymap.

When more than one minor mode keymap is active, their order of priority is the order
of minor-mode-map-alist. But you should design minor modes so that they don’t
interfere with each other. If you do this properly, the order will not matter.

See Section 23.2.2 [Keymaps and Minor Modes], page 367, for more information about
minor modes. See also minor-mode-key-binding (see Section 22.8 [Functions for Key
Lookup], page 335).

minor-mode-overriding-map-alist Variable
This variable allows major modes to override the key bindings for particular minor
modes. The elements of this alist look like the elements of minor-mode-map-alist:
(variable . keymap).

If a variable appears as an element of minor-mode-overriding-map-alist, the map
specified by that element totally replaces any map specified for the same variable in
minor-mode-map-alist.

minor-mode-overriding-map-alist is automatically buffer-local in all buffers.

overriding-local-map Variable
If non-nil, this variable holds a keymap to use instead of the buffer’s local keymap
and instead of all the minor mode keymaps. This keymap, if any, overrides all other
maps that would have been active, except for the current global map.

overriding-terminal-local-map Variable
If non-nil, this variable holds a keymap to use instead of overriding-local-map,
the buffer’s local keymap and all the minor mode keymaps.

This variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Displays], page 484. It is used to implement incremental search
mode.

Chapter 22: Keymaps 333

overriding-local-map-menu-flag Variable
If this variable is non-nil, the value of overriding-local-map or overriding-
terminal-local-map can affect the display of the menu bar. The default value is
nil, so those map variables have no effect on the menu bar.

Note that these two map variables do affect the execution of key sequences entered
using the menu bar, even if they do not affect the menu bar display. So if a menu
bar key sequence comes in, you should clear the variables before looking up and
executing that key sequence. Modes that use the variables would typically do this
anyway; normally they respond to events that they do not handle by “unreading”
them and exiting.

special-event-map Variable
This variable holds a keymap for special events. If an event type has a binding in this
keymap, then it is special, and the binding for the event is run directly by read-event.
See Section 21.8 [Special Events], page 314.

22.7 Key Lookup

Key lookup is the process of finding the binding of a key sequence from a given keymap.
Actual execution of the binding is not part of key lookup.

Key lookup uses just the event type of each event in the key sequence; the rest of the
event is ignored. In fact, a key sequence used for key lookup may designate mouse events
with just their types (symbols) instead of with entire mouse events (lists). See Section 21.6
[Input Events], page 297. Such a “key-sequence” is insufficient for command-execute to
run, but it is sufficient for looking up or rebinding a key.

When the key sequence consists of multiple events, key lookup processes the events
sequentially: the binding of the first event is found, and must be a keymap; then the second
event’s binding is found in that keymap, and so on until all the events in the key sequence
are used up. (The binding thus found for the last event may or may not be a keymap.)
Thus, the process of key lookup is defined in terms of a simpler process for looking up a
single event in a keymap. How that is done depends on the type of object associated with
the event in that keymap.

Let’s use the term keymap entry to describe the value found by looking up an event type
in a keymap. (This doesn’t include the item string and other extra elements in menu key
bindings, because lookup-key and other key lookup functions don’t include them in the
returned value.) While any Lisp object may be stored in a keymap as a keymap entry, not
all make sense for key lookup. Here is a table of the meaningful kinds of keymap entries:

nil nil means that the events used so far in the lookup form an undefined key.
When a keymap fails to mention an event type at all, and has no default binding,
that is equivalent to a binding of nil for that event type.

command The events used so far in the lookup form a complete key, and command is its
binding. See Section 12.1 [What Is a Function], page 155.

array The array (either a string or a vector) is a keyboard macro. The events used
so far in the lookup form a complete key, and the array is its binding. See
Section 21.15 [Keyboard Macros], page 322, for more information.

334

keymap

list

symbol

GNU Emacs Lisp Reference Manual

The events used so far in the lookup form a prefix key. The next event of the
key sequence is looked up in keymap.

The meaning of a list depends on the types of the elements of the list.

o If the CAR of list is the symbol keymap, then the list is a keymap, and is
treated as a keymap (see above).

e If the CAR of list is lambda, then the list is a lambda expression. This is
presumed to be a command, and is treated as such (see above).

e If the CAR of list is a keymap and the CDR is an event type, then this is an
indirect entry:

(othermap . othertype)

When key lookup encounters an indirect entry, it looks up instead the
binding of othertype in othermap and uses that.

This feature permits you to define one key as an alias for another key.
For example, an entry whose CAR is the keymap called esc-map and whose
CDR is 32 (the code for (SPC)) means, “Use the global binding of Meta-SPCO),
whatever that may be.”

The function definition of symbol is used in place of symbol. If that too is a
symbol, then this process is repeated, any number of times. Ultimately this
should lead to an object that is a keymap, a command, or a keyboard macro.
A list is allowed if it is a keymap or a command, but indirect entries are not
understood when found via symbols.

Note that keymaps and keyboard macros (strings and vectors) are not valid
functions, so a symbol with a keymap, string, or vector as its function definition
is invalid as a function. It is, however, valid as a key binding. If the definition
is a keyboard macro, then the symbol is also valid as an argument to command-
execute (see Section 21.3 [Interactive Call], page 292).

The symbol undefined is worth special mention: it means to treat the key as
undefined. Strictly speaking, the key is defined, and its binding is the command
undefined; but that command does the same thing that is done automatically
for an undefined key: it rings the bell (by calling ding) but does not signal an
error.

undefined is used in local keymaps to override a global key binding and make
the key “undefined” locally. A local binding of nil would fail to do this because
it would not override the global binding.

anything else

If any other type of object is found, the events used so far in the lookup form
a complete key, and the object is its binding, but the binding is not executable
as a command.

In short, a keymap entry may be a keymap, a command, a keyboard macro, a symbol
that leads to one of them, or an indirection or nil. Here is an example of a sparse keymap
with two characters bound to commands and one bound to another keymap. This map is
the normal value of emacs-1isp-mode-map. Note that 9 is the code for (TAB), 127 for (DEL),
27 for (ESC), 17 for C-q and 24 for C-x.

Chapter 22: Keymaps 335

(keymap (9 . lisp-indent-line)
(127 . backward-delete-char-untabify)
(27 keymap (17 . indent-sexp) (24 . eval-defun)))

22.8 Functions for Key Lookup

Here are the functions and variables pertaining to key lookup.

lookup-key keymap key &optional accept-defaults Function
This function returns the definition of key in keymap. All the other functions de-
scribed in this chapter that look up keys use lookup-key. Here are examples:
(lookup-key (current-global-map) "\C-x\C-f")
= find-file
(Lookup-key (current-global-map) "\C-x\C-f12345")
= 2
If the string or vector key is not a valid key sequence according to the prefix keys
specified in keymap, it must be “too long” and have extra events at the end that do
not fit into a single key sequence. Then the value is a number, the number of events
at the front of key that compose a complete key.

If accept-defaults is non-nil, then lookup-key considers default bindings as well as
bindings for the specific events in key. Otherwise, lookup-key reports only bindings
for the specific sequence key, ignoring default bindings except when you explicitly ask
about them. (To do this, supply t as an element of key; see Section 22.2 [Format of
Keymaps], page 326.)
If key contains a meta character (not a function key), that character is implicitly
replaced by a two-character sequence: the value of meta-prefix-char, followed by
the corresponding non-meta character. Thus, the first example below is handled by
conversion into the second example.
(lookup-key (current-global-map) "\M-f")
= forward-word
(lookup-key (current-global-map) "\ef")
= forward-word
Unlike read-key-sequence, this function does not modify the specified events in
ways that discard information (see Section 21.7.1 [Key Sequence Input], page 309).
In particular, it does not convert letters to lower case and it does not change drag
events to clicks.

undefined Command
Used in keymaps to undefine keys. It calls ding, but does not cause an error.

key-binding key &optional accept-defaults Function
This function returns the binding for key in the current keymaps, trying all the active
keymaps. The result is nil if key is undefined in the keymaps.
The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

An error is signaled if key is not a string or a vector.

336 GNU Emacs Lisp Reference Manual

(key-binding "\C-x\C-f")
= find-file

local-key-binding key &optional accept-defaults Function
This function returns the binding for key in the current local keymap, or nil if it is
undefined there.

The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

global-key-binding key &optional accept-defaults Function
This function returns the binding for command key in the current global keymap, or
nil if it is undefined there.

The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

minor-mode-key-binding key &optional accept-defaults Function
This function returns a list of all the active minor mode bindings of key. More
precisely, it returns an alist of pairs (modename . binding), where modename is the
variable that enables the minor mode, and binding is key’s binding in that mode. If
key has no minor-mode bindings, the value is nil.

If the first binding found is not a prefix definition (a keymap or a symbol defined as
a keymap), all subsequent bindings from other minor modes are omitted, since they
would be completely shadowed. Similarly, the list omits non-prefix bindings that
follow prefix bindings.

The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

meta-prefix-char Variable
This variable is the meta-prefix character code. It is used when translating a meta
character to a two-character sequence so it can be looked up in a keymap. For useful
results, the value should be a prefix event (see Section 22.5 [Prefix Keys|, page 329).
The default value is 27, which is the AscI1 code for (ESC).

As long as the value of meta-prefix-char remains 27, key lookup translates M-b into
b, which is normally defined as the backward-word command. However, if you
were to set meta-prefix-char to 24, the code for C-x, then Emacs will translate
M-b into C-x b, whose standard binding is the switch-to-buffer command. (Don’t
actually do this!) Here is an illustration of what would happen:
meta-prefix-char ; The default value.
= 27
(key-binding "\M-b")
= backward-word
?\C-x ; The print representation
= 24 ; of a character.
(setq meta-prefix-char 24)
= 24

Chapter 22: Keymaps 337

(key-binding "\M-b")
= switch-to-buffer ; Now, typing M-b is
; like typing C-x b.

(setq meta-prefix-char 27) ; Avoid confusion!
= 27 ; Restore the default value!
This translation of one event into two happens only for characters, not for other kinds
of input events. Thus, M-F1), a function key, is not converted into F1).

22.9 Changing Key Bindings

The way to rebind a key is to change its entry in a keymap. If you change a binding
in the global keymap, the change is effective in all buffers (though it has no direct effect
in buffers that shadow the global binding with a local one). If you change the current
buffer’s local map, that usually affects all buffers using the same major mode. The global-
set-key and local-set-key functions are convenient interfaces for these operations (see
Section 22.10 [Key Binding Commands|, page 340). You can also use define-key, a more
general function; then you must specify explicitly the map to change.

In writing the key sequence to rebind, it is good to use the special escape sequences for
control and meta characters (see Section 2.3.8 [String Type], page 18). The syntax ‘\C-’
means that the following character is a control character and ‘\M-’ means that the following
character is a meta character. Thus, the string "\M-x" is read as containing a single M-x,
"\C-f" is read as containing a single C-f, and "\M-\C-x" and "\C-\M-x" are both read
as containing a single C-M-x. You can also use this escape syntax in vectors, as well as
others that aren’t allowed in strings; one example is ‘[?\C-\H-x home]’. See Section 2.3.3
[Character Type|, page 11.

The key definition and lookup functions accept an alternate syntax for event types in
a key sequence that is a vector: you can use a list containing modifier names plus one
base event (a character or function key name). For example, (control ?7a) is equivalent to
?\C-a and (hyper control left) is equivalent to C-H-left. One advantage of such lists
is that the precise numeric codes for the modifier bits don’t appear in compiled files.

For the functions below, an error is signaled if keymap is not a keymap or if key is
not a string or vector representing a key sequence. You can use event types (symbols) as
shorthand for events that are lists.

define-key keymap key binding Function

This function sets the binding for key in keymap. (If key is more than one event long,
the change is actually made in another keymap reached from keymap.) The argument
binding can be any Lisp object, but only certain types are meaningful. (For a list of
meaningful types, see Section 22.7 [Key Lookup], page 333.) The value returned by
define-key is binding.

Every prefix of key must be a prefix key (i.e., bound to a keymap) or undefined,;
otherwise an error is signaled. If some prefix of key is undefined, then define-key
defines it as a prefix key so that the rest of key can be defined as specified.

If there was previously no binding for key in keymap, the new binding is added at
the beginning of keymap. The order of bindings in a keymap makes no difference in

338 GNU Emacs Lisp Reference Manual

most cases, but it does matter for menu keymaps (see Section 22.12 [Menu Keymaps],
page 343).

Here is an example that creates a sparse keymap and makes a number of bindings in it:

(setq map (make-sparse-keymap))
= (keymap)

(define-key map "\C-f" ’forward-char)
= forward-char

map
= (keymap (6 . forward-char))

;3 Build sparse submap for C-x and bind f in that.
(define-key map "\C-xf" ’forward-word)
= forward-word

map
= (keymap
(24 keymap ; C-x
(102 . forward-word)) ; f
(6 . forward-char)) ; C-f

;3 Bind C-p to the ctl-x-map.

(define-key map "\C-p" ctl-x-map)

;5 ctl-x-map

= [nil ... find-file ... backward-kill-sentence]
;5 Bind C-f to foo in the ctl-x-map.

(define-key map "\C-p\C-f" ’foo)

= ’foo

map

= (keymap ; Note foo in ctl-x-map.
(16 keymap [nil ... foo ... backward-kill-sentencel])
(24 keymap

(102 . forward-word))
(6 . forward-char))
Note that storing a new binding for C-p C-f actually works by changing an entry in ctl-
x-map, and this has the effect of changing the bindings of both C-p C-f and C-x C-f in the
default global map.

substitute-key-definition olddef newdef keymap &optional oldmap Function

This function replaces olddef with newdef for any keys in keymap that were bound
to olddef. In other words, olddef is replaced with newdef wherever it appears. The
function returns nil.

For example, this redefines C-x C-f£, if you do it in an Emacs with standard bindings:

(substitute-key-definition
’find-file ’find-file-read-only (current-global-map))

If oldmap is non-nil, that changes the behavior of substitute-key-definition:
the bindings in oldmap determine which keys to rebind. The rebindings still happen
in keymap, not in oldmap. Thus, you can change one map under the control of the
bindings in another. For example,

Chapter 22: Keymaps 339

(substitute-key-definition
’delete-backward-char ’my-funny-delete
my-map global-map)

puts the special deletion command in my-map for whichever keys are globally bound
to the standard deletion command.
Here is an example showing a keymap before and after substitution:
(setq map ’ (keymap
(?1 . olddef-1)
(7?2 . olddef-2)

(73 . olddef-1)))
= (keymap (49 . olddef-1) (50 . olddef-2) (51 . olddef-1))

(substitute-key-definition ’olddef-1 ’newdef map)

= nil

map

= (keymap (49 . newdef) (50 . olddef-2) (51 . newdef))

suppress-keymap keymap &optional nodigits Function
This function changes the contents of the full keymap keymap by making all the print-
ing characters undefined. More precisely, it binds them to the command undefined.
This makes ordinary insertion of text impossible. suppress-keymap returns nil.

If nodigits is nil, then suppress-keymap defines digits to run digit-argument, and
- to run negative-argument. Otherwise it makes them undefined like the rest of the
printing characters.

The suppress-keymap function does not make it impossible to modify a buffer, as
it does not suppress commands such as yank and quoted-insert. To prevent any
modification of a buffer, make it read-only (see Section 27.7 [Read Only Buffers],
page 447).

Since this function modifies keymap, you would normally use it on a newly created
keymap. Operating on an existing keymap that is used for some other purpose is likely
to cause trouble; for example, suppressing global-map would make it impossible to
use most of Emacs.

Most often, suppress-keymap is used to initialize local keymaps of modes such as
Rmail and Dired where insertion of text is not desirable and the buffer is read-only.
Here is an example taken from the file ‘emacs/lisp/dired.el’, showing how the local
keymap for Dired mode is set up:

(setq dired-mode-map (make-keymap))

(suppress-keymap dired-mode-map)

(define-key dired-mode-map "r" ’dired-rename-file)
(define-key dired-mode-map "\C-d" ’dired-flag-file-deleted)
(define-key dired-mode-map "d" ’dired-flag-file-deleted)
(define-key dired-mode-map "v" ’dired-view-file)
(define-key dired-mode-map "e" ’dired-find-file)
(define-key dired-mode-map "f" ’dired-find-file)

340 GNU Emacs Lisp Reference Manual

22.10 Commands for Binding Keys

This section describes some convenient interactive interfaces for changing key bindings.
They work by calling define-key.

People often use global-set-key in their init files (see Section 40.1.2 [Init File],
page 722) for simple customization. For example,

(global-set-key "\C-x\C-\\" ’next-line)
or

(global-set-key [?\C-x ?\C-\\] ’next-line)
or

(global-set-key [(control ?x) (control ?\\)] ’next-line)
redefines C-x C-\ to move down a line.

(global-set-key [M-mouse-1] ’mouse-set-point)

redefines the first (leftmost) mouse button, typed with the Meta key, to set point where
you click.

Be careful when using non-AScCII text characters in Lisp specifications of keys to bind.
If these are read as multibyte text, as they usually will be in a Lisp file (see Section 15.3
[Loading Non-ASCII], page 196), you must type the keys as multibyte too. For instance, if
you use this:

(global-set-key "6" ’my-function) ; bind o-umlaut
or
(global-set-key 76 ’my-function) ; bind o-umlaut

and your language environment is multibyte Latin-1, these commands actually bind the
multibyte character with code 2294, not the unibyte Latin-1 character with code 246 (M-v).
In order to use this binding, you need to enter the multibyte Latin-1 character as keyboard
input. One way to do this is by using an appropriate input method (see section “Input
Methods” in The GNU Emacs Manual).

If you want to use a unibyte character in the key binding, you can construct the key
sequence string using multibyte-char-to-unibyte or string-make-unibyte (see Sec-
tion 33.2 [Converting Representations], page 584).

global-set-key key definition Command
This function sets the binding of key in the current global map to definition.

(global-set-key key definition)

(define-key (current-global-map) key definition)

global-unset-key key Command
This function removes the binding of key from the current global map.

One use of this function is in preparation for defining a longer key that uses key as a
prefix—which would not be allowed if key has a non-prefix binding. For example:

Chapter 22: Keymaps 341

(global-unset-key "\C-1")
= nil
(global-set-key "\C-1\C-1" ’redraw-display)
= nil
This function is implemented simply using define-key:
(global-unset-key key)

(define-key (current-global-map) key nil)

local-set-key key definition Command
This function sets the binding of key in the current local keymap to definition.

(local-set-key key definition)

(define-key (current-local-map) key definition)

local-unset-key key Command
This function removes the binding of key from the current local map.

(local-unset-key key)

(define-key (current-local-map) key nil)

22.11 Scanning Keymaps

This section describes functions used to scan all the current keymaps for the sake of
printing help information.

accessible-keymaps keymap &optional prefix Function
This function returns a list of all the keymaps that can be reached (via zero or more
prefix keys) from keymap. The value is an association list with elements of the form
(key . map), where key is a prefix key whose definition in keymap is map.

The elements of the alist are ordered so that the key increases in length. The first
element is always ("" . keymap), because the specified keymap is accessible from
itself with a prefix of no events.

If prefix is given, it should be a prefix key sequence; then accessible-keymaps
includes only the submaps whose prefixes start with prefix. These elements look just
as they do in the value of (accessible-keymaps); the only difference is that some
elements are omitted.

In the example below, the returned alist indicates that the key (ESC), which is displayed
as ‘" [, is a prefix key whose definition is the sparse keymap (keymap (83 . center-
paragraph) (115 . foo)).

(accessible-keymaps (current-local-map))
= (("" keymap
(27 keymap ; Note this keymap for is repeated below.
(83 . center-paragraph)
(115 . center-line))
(9 . tab-to-tab-stop))

342

GNU Emacs Lisp Reference Manual

(n- [ll keymap
(83 . center-paragraph)
(115 . fo0)))

In the following example, C-h is a prefix key that uses a sparse keymap starting with
(keymap (118 . describe-variable)...). Another prefix, C-x 4, uses a keymap
which is also the value of the variable ctl-x-4-map. The event mode-1line is one of
several dummy events used as prefixes for mouse actions in special parts of a window.

(accessible-keymaps (current-global-map))
= (("" keymap [set-mark-command beginning-of-line ...
delete-backward-char])

(""H" keymap (118 . describe-variable)
(8 . help-for-help))
(""X" keymap [x-flush-mouse-queue ...
backward-kill-sentence])
(""[" keymap [mark-sexp backward-sexp ...
backward-kill-word])
(""X4" keymap (15 . display-buffer) ...)
([mode-line] keymap
(S-mouse-2 . mouse-split-window-horizontally) ...))

These are not all the keymaps you would see in actuality.

where-is-internal command &optional keymap firstonly noindirect Function

This function is a subroutine used by the where-is command (see section “Help” in
The GNU Emacs Manual). It returns a list of key sequences (of any length) that are
bound to command in a set of keymaps.

The argument command can be any object; it is compared with all keymap entries
using eq.

If keymap is nil, then the maps used are the current active keymaps, disregarding
overriding-local-map (that is, pretending its value is nil). If keymap is non-nil,
then the maps searched are keymap and the global keymap. If keymap is a list of
keymaps, only those keymaps are searched.

Usually it’s best to use overriding-local-map as the expression for keymap. Then
where-is-internal searches precisely the keymaps that are active. To search only
the global map, pass (keymap) (an empty keymap) as keymap.

If firstonly is non-ascii, then the value is a single string representing the first key
sequence found, rather than a list of all possible key sequences. If firstonly is t, then
the value is the first key sequence, except that key sequences consisting entirely of
ASCII characters (or meta variants of ASCII characters) are preferred to all other key
sequences.

If noindirect is non-nil, where-is-internal doesn’t follow indirect keymap bindings.
This makes it possible to search for an indirect definition itself.

(where-is-internal ’describe-function)
:> (ll\“hfll ll\"hdll)

Chapter 22: Keymaps 343

describe-bindings &optional prefix Command
This function creates a listing of all current key bindings, and displays it in a buffer
named ‘*Help*’. The text is grouped by modes—minor modes first, then the major
mode, then global bindings.

If prefix is non-nil, it should be a prefix key; then the listing includes only keys that
start with prefix.

The listing describes meta characters as followed by the corresponding non-meta
character.

When several characters with consecutive ASCII codes have the same definition, they
are shown together, as ‘firstchar. . lastchar’. In this instance, you need to know the
ASCII codes to understand which characters this means. For example, in the default
global map, the characters ‘SPC) .. =’ are described by a single line. is ASCII
32, 7 is Asci 126, and the characters between them include all the normal printing
characters, (e.g., letters, digits, punctuation, etc.); all these characters are bound to
self-insert-command.

22.12 Menu Keymaps

A keymap can define a menu as well as bindings for keyboard keys and mouse button.
Menus are usually actuated with the mouse, but they can work with the keyboard also.

22.12.1 Defining Menus

A keymap is suitable for menu use if it has an overall prompt string, which is a string that
appears as an element of the keymap. (See Section 22.2 [Format of Keymaps]|, page 326.)
The string should describe the purpose of the menu’s commands. Emacs displays the overall
prompt string as the menu title in some cases, depending on the toolkit (if any) used for
displaying menus.! Keyboard menus also display the overall prompt string.

The easiest way to construct a keymap with a prompt string is to specify the string as an
argument when you call make-keymap, make-sparse-keymap or define-prefix-command
(see Section 22.3 [Creating Keymaps|, page 327).

The order of items in the menu is the same as the order of bindings in the keymap. Since
define-key puts new bindings at the front, you should define the menu items starting at the
bottom of the menu and moving to the top, if you care about the order. When you add an

item to an existing menu, you can specify its position in the menu using define-key-after
(see Section 22.12.7 [Modifying Menus|, page 353).

22.12.1.1 Simple Menu Items

The simpler and older way to define a menu keymap binding looks like this:
(item-string . real-binding)
The CAR, item-string, is the string to be displayed in the menu. It should be short—

preferably one to three words. It should describe the action of the command it corresponds
to.

You can also supply a second string, called the help string, as follows:

L1t is required for menus which do not use a toolkit, e.g. under MS-DOS.

344 GNU Emacs Lisp Reference Manual

(item-string help . real-binding)

help specifies a “help-echo” string to display while the mouse is on that item in the same
way as help-echo text properties (see [Help display], page 570).

As far as define-key is concerned, item-string and help-string are part of the event’s
binding. However, lookup-key returns just real-binding, and only real-binding is used for
executing the key.

If real-binding is nil, then item-string appears in the menu but cannot be selected.

If real-binding is a symbol and has a non-nil menu-enable property, that property is
an expression that controls whether the menu item is enabled. Every time the keymap is
used to display a menu, Emacs evaluates the expression, and it enables the menu item only
if the expression’s value is non-nil. When a menu item is disabled, it is displayed in a
“fuzzy” fashion, and cannot be selected.

The menu bar does not recalculate which items are enabled every time you look at a
menu. This is because the X toolkit requires the whole tree of menus in advance. To force
recalculation of the menu bar, call force-mode-line-update (see Section 23.3 [Mode Line
Format], page 368).

You’ve probably noticed that menu items show the equivalent keyboard key sequence (if
any) to invoke the same command. To save time on recalculation, menu display caches this
information in a sublist in the binding, like this:

(item-string [help-string| (key-binding-data) . real-binding)
Don’t put these sublists in the menu item yourself; menu display calculates them automat-

ically. Don’t mention keyboard equivalents in the item strings themselves, since that is
redundant.

22.12.1.2 Extended Menu Items

An extended-format menu item is a more flexible and also cleaner alternative to the
simple format. It consists of a list that starts with the symbol menu-item. To define a
non-selectable string, the item looks like this:

(menu-item item-name)

A string starting with two or more dashes specifies a separator line; see Section 22.12.1.3
[Menu Separators|, page 346.

To define a real menu item which can be selected, the extended format item looks like

this:
(menu-item item-name real-binding
. Iitem-property-list)

Here, item-name is an expression which evaluates to the menu item string. Thus, the string
need not be a constant. The third element, real-binding, is the command to execute. The
tail of the list, item-property-list, has the form of a property list which contains other
information. Here is a table of the properties that are supported:

:enable form
The result of evaluating form determines whether the item is enabled (non-nil
means yes). If the item is not enabled, you can’t really click on it.

Chapter 22: Keymaps 345

:visible form
The result of evaluating form determines whether the item should actually
appear in the menu (non-nil means yes). If the item does not appear, then the
menu is displayed as if this item were not defined at all.

:help help
The value of this property, help, specifies a “help-echo” string to display while
the mouse is on that item. This is displayed in the same way as help-echo text
properties (see [Help display], page 570). Note that this must be a constant
string, unlike the help-echo property for text and overlays.

:button (type . selected)
This property provides a way to define radio buttons and toggle buttons. The
CAR, type, says which: it should be :toggle or :radio. The CDR, selected,
should be a form; the result of evaluating it says whether this button is currently
selected.

A toggle is a menu item which is labeled as either “on” or “oftf” according to
the value of selected. The command itself should toggle selected, setting it to
t if it is nil, and to nil if it is t. Here is how the menu item to toggle the
debug-on-error flag is defined:
(menu-item "Debug on Error" toggle-debug-on-error
:button (:toggle
(and (boundp ’debug-on-error)
debug-on-error)))

This works because toggle-debug-on-error is defined as a command which
toggles the variable debug-on-error.

Radio buttons are a group of menu items, in which at any time one and only
one is “selected.” There should be a variable whose value says which one is
selected at any time. The selected form for each radio button in the group
should check whether the variable has the right value for selecting that button.
Clicking on the button should set the variable so that the button you clicked
on becomes selected.

:key-sequence key-sequence
This property specifies which key sequence is likely to be bound to the same
command invoked by this menu item. If you specify the right key sequence,
that makes preparing the menu for display run much faster.

If you specify the wrong key sequence, it has no effect; before Emacs displays
key-sequence in the menu, it verifies that key-sequence is really equivalent to
this menu item.

:key-sequence nil
This property indicates that there is normally no key binding which is equivalent
to this menu item. Using this property saves time in preparing the menu for
display, because Emacs does not need to search the keymaps for a keyboard
equivalent for this menu item.

However, if the user has rebound this item’s definition to a key sequence, Emacs
ignores the :keys property and finds the keyboard equivalent anyway.

346 GNU Emacs Lisp Reference Manual

:keys string
This property specifies that string is the string to display as the keyboard equiv-
alent for this menu item. You can use the ‘\\[...]” documentation construct
in string.

:filter filter-fn
This property provides a way to compute the menu item dynamically. The
property value filter-fn should be a function of one argument; when it is called,
its argument will be real-binding. The function should return the binding to
use instead.

22.12.1.3 Menu Separators

A menu separator is a kind of menu item that doesn’t display any text—instead, it
divides the menu into subparts with a horizontal line. A separator looks like this in the
menu keymap:

(menu-item separator-type)
where separator-type is a string starting with two or more dashes.

In the simplest case, separator-type consists of only dashes. That specifies the default
kind of separator. (For compatibility, "" and - also count as separators.)

Starting in Emacs 21, certain other values of separator-type specify a different style of
separator. Here is a table of them:

"—-no-line"
"-—space"
An extra vertical space, with no actual line.

"--single-line"
A single line in the menu’s foreground color.

"--double-line"
A double line in the menu’s foreground color.

"--single-dashed-line"
A single dashed line in the menu’s foreground color.

"--double-dashed-line"
A double dashed line in the menu’s foreground color.

"--shadow-etched-in"
A single line with a 3D sunken appearance. This is the default, used separators
consisting of dashes only.

"--shadow-etched-out"
A single line with a 3D raised appearance.

"—--shadow-etched-in-dash"
A single dashed line with a 3D sunken appearance.

"--shadow-etched-out-dash"
A single dashed line with a 3D raised appearance.

Chapter 22: Keymaps 347

"--shadow-double-etched-in"
Two lines with a 3D sunken appearance.

"--shadow-double-etched-out"
Two lines with a 3D raised appearance.

"--shadow-double-etched-in-dash"
Two dashed lines with a 3D sunken appearance.

"--shadow-double-etched-out-dash"
Two dashed lines with a 3D raised appearance.

You can also give these names in another style, adding a colon after the double-dash
and replacing each single dash with capitalization of the following word. Thus,
"--:singlelLine", is equivalent to "--single-line".

Some systems and display toolkits don’t really handle all of these separator types. If
you use a type that isn’t supported, the menu displays a similar kind of separator that is
supported.

22.12.1.4 Alias Menu Items

Sometimes it is useful to make menu items that use the “same” command but with
different enable conditions. The best way to do this in Emacs now is with extended menu
items; before that feature existed, it could be done by defining alias commands and using
them in menu items. Here’s an example that makes two aliases for toggle-read-only and
gives them different enable conditions:

(defalias ’make-read-only ’toggle-read-only)

(put ’make-read-only ’menu-enable ’(not buffer-read-only))
(defalias ’make-writable ’toggle-read-only)

(put ’make-writable ’menu-enable ’buffer-read-only)

When using aliases in menus, often it is useful to display the equivalent key bindings
for the “real” command name, not the aliases (which typically don’t have any key bindings
except for the menu itself). To request this, give the alias symbol a non-nil menu-alias
property. Thus,

(put ’make-read-only ’menu-alias t)

(put ’make-writable ’menu-alias t)
causes menu items for make-read-only and make-writable to show the keyboard bindings
for toggle-read-only.

22.12.2 Menus and the Mouse

The usual way to make a menu keymap produce a menu is to make it the definition of a
prefix key. (A Lisp program can explicitly pop up a menu and receive the user’s choice—see
Section 29.15 [Pop-Up Menus|, page 500.)

If the prefix key ends with a mouse event, Emacs handles the menu keymap by popping
up a visible menu, so that the user can select a choice with the mouse. When the user clicks
on a menu item, the event generated is whatever character or symbol has the binding that
brought about that menu item. (A menu item may generate a series of events if the menu
has multiple levels or comes from the menu bar.)

348 GNU Emacs Lisp Reference Manual

It’s often best to use a button-down event to trigger the menu. Then the user can select
a menu item by releasing the button.

A single keymap can appear as multiple menu panes, if you explicitly arrange for this.
The way to do this is to make a keymap for each pane, then create a binding for each of
those maps in the main keymap of the menu. Give each of these bindings an item string
that starts with ‘@’. The rest of the item string becomes the name of the pane. See the file
‘lisp/mouse.el’ for an example of this. Any ordinary bindings with ‘@-less item strings
are grouped into one pane, which appears along with the other panes explicitly created for
the submaps.

X toolkit menus don’t have panes; instead, they can have submenus. Every nested
keymap becomes a submenu, whether the item string starts with ‘@’ or not. In a toolkit
version of Emacs, the only thing special about ‘@ at the beginning of an item string is that
the ‘@’ doesn’t appear in the menu item.

You can also produce multiple panes or submenus from separate keymaps. The full
definition of a prefix key always comes from merging the definitions supplied by the various
active keymaps (minor mode, local, and global). When more than one of these keymaps
is a menu, each of them makes a separate pane or panes (when Emacs does not use an
X-toolkit) or a separate submenu (when using an X-toolkit). See Section 22.6 [Active
Keymaps], page 330.

22.12.3 Menus and the Keyboard

When a prefix key ending with a keyboard event (a character or function key) has a
definition that is a menu keymap, the user can use the keyboard to choose a menu item.

Emacs displays the menu’s overall prompt string followed by the alternatives (the item
strings of the bindings) in the echo area. If the bindings don’t all fit at once, the user can
type to see the next line of alternatives. Successive uses of eventually get to
the end of the menu and then cycle around to the beginning. (The variable menu-prompt-
more-char specifies which character is used for this; is the default.)

When the user has found the desired alternative from the menu, he or she should type
the corresponding character—the one whose binding is that alternative.

This way of using menus in an Emacs-like editor was inspired by the Hierarkey system.

menu-prompt-more-char Variable
This variable specifies the character to use to ask to see the next line of a menu. Its

initial value is 32, the code for (SPC).

22.12.4 Menu Example

Here is a complete example of defining a menu keymap. It is the definition of the ‘Print’
submenu in the ‘Tools’ menu in the menu bar, and it uses the simple menu item format
(see Section 22.12.1.1 [Simple Menu Items|, page 343). First we create the keymap, and
give it a name:

(defvar menu-bar-print-menu (make-sparse-keymap "Print"))

Next we define the menu items:

Chapter 22: Keymaps 349

(define-key menu-bar-print-menu [ps-print-region]
>("Postscript Print Region" . ps-print-region-with-faces))

(define-key menu-bar-print-menu [ps-print-buffer]
>("Postscript Print Buffer" . ps-print-buffer-with-faces))

(define-key menu-bar-print-menu [separator-ps-print]

) (II__II))
(define-key menu-bar-print-menu [print-region]
>("Print Region" . print-region))

(define-key menu-bar-print-menu [print-buffer]
>("Print Buffer" . print-buffer))

Note the symbols which the bindings are “made for”; these appear inside square brackets,
in the key sequence being defined. In some cases, this symbol is the same as the command
name; sometimes it is different. These symbols are treated as “function keys”, but they are
not real function keys on the keyboard. They do not affect the functioning of the menu
itself, but they are “echoed” in the echo area when the user selects from the menu, and
they appear in the output of where-is and apropos.

The binding whose definition is ("--") is a separator line. Like a real menu item,
the separator has a key symbol, in this case separator-ps-print. If one menu has two
separators, they must have two different key symbols.

Here is code to define enable conditions for two of the commands in the menu:

(put ’print-region ’menu-enable ’mark-active)
(put ’ps-print-region-with-faces ’menu-enable ’mark-active)

Here is how we make this menu appear as an item in the parent menu:

(define-key menu-bar-tools-menu [print]
(cons "Print" menu-bar-print-menu))

Note that this incorporates the submenu keymap, which is the value of the variable menu-
bar-print-menu, rather than the symbol menu-bar-print-menu itself. Using that symbol
in the parent menu item would be meaningless because menu-bar-print-menu is not a
command.

If you wanted to attach the same print menu to a mouse click, you can do it this way:

(define-key global-map [C-S-down-mouse-1]
menu-bar-print-menu)

We could equally well use an extended menu item (see Section 22.12.1.2 [Extended Menu
Items], page 344) for print-region, like this:

(define-key menu-bar-print-menu [print-region]
> (menu-item "Print Region" print-region
:enable mark-active))

With the extended menu item, the enable condition is specified inside the menu item itself.
If we wanted to make this item disappear from the menu entirely when the mark is inactive,
we could do it this way:

(define-key menu-bar-print-menu [print-region]
’(menu-item "Print Region" print-region
:visible mark-active))

350 GNU Emacs Lisp Reference Manual

22.12.5 The Menu Bar

Most window systems allow each frame to have a menu bar—a permanently displayed
menu stretching horizontally across the top of the frame. The items of the menu bar are the
subcommands of the fake “function key” menu-bar, as defined by all the active keymaps.

To add an item to the menu bar, invent a fake “function key” of your own (let’s call it
key), and make a binding for the key sequence [menu-bar key]. Most often, the binding
is a menu keymap, so that pressing a button on the menu bar item leads to another menu.

When more than one active keymap defines the same fake function key for the menu bar,
the item appears just once. If the user clicks on that menu bar item, it brings up a single,
combined menu containing all the subcommands of that item—the global subcommands,
the local subcommands, and the minor mode subcommands.

The variable overriding-local-map is normally ignored when determining the menu
bar contents. That is, the menu bar is computed from the keymaps that would be active if
overriding-local-map were nil. See Section 22.6 [Active Keymaps|, page 330.

In order for a frame to display a menu bar, its menu-bar-lines parameter must be
greater than zero. Emacs uses just one line for the menu bar itself; if you specify more than
one line, the other lines serve to separate the menu bar from the windows in the frame.
We recommend 1 or 2 as the value of menu-bar-lines. See Section 29.3.3 [Window Frame
Parameters], page 486.

Here’s an example of setting up a menu bar item:

(modify-frame-parameters (selected-frame)
> ((menu-bar-lines . 2)))

;3 Make a menu keymap (with a prompt string)
;3 and make it the menu bar item’s definition.
(define-key global-map [menu-bar words]

(cons "Words" (make-sparse-keymap "Words")))

;3 Define specific subcommands in this menu.
(define-key global-map

[menu-bar words forward]

> ("Forward word" . forward-word))
(define-key global-map

[menu-bar words backward]

> ("Backward word" . backward-word))

A local keymap can cancel a menu bar item made by the global keymap by rebinding
the same fake function key with undefined as the binding. For example, this is how Dired
suppresses the ‘Edit’ menu bar item:

(define-key dired-mode-map [menu-bar edit] ’undefined)

edit is the fake function key used by the global map for the ‘Edit’ menu bar item. The
main reason to suppress a global menu bar item is to regain space for mode-specific items.

menu-bar-final-items Variable
Normally the menu bar shows global items followed by items defined by the local
maps.

Chapter 22: Keymaps 351

This variable holds a list of fake function keys for items to display at the end of the
menu bar rather than in normal sequence. The default value is (help-menu); thus,
the ‘Help’ menu item normally appears at the end of the menu bar, following local
menu items.

menu-bar-update-hook Variable
This normal hook is run whenever the user clicks on the menu bar, before displaying
a submenu. You can use it to update submenus whose contents should vary.

22.12.6 Tool bars

A tool bar is a row of icons at the top of a frame, that execute commands when you
click on them—in effect, a kind of graphical menu bar. Emacs supports tool bars starting
with version 21.

The frame parameter tool-bar-lines (X resource ‘toolBar’) controls how many lines’
worth of height to reserve for the tool bar. A zero value suppresses the tool bar. If the value
is nonzero, and auto-resize-tool-bars is non-nil, the tool bar expands and contracts
automatically as needed to hold the specified contents.

The tool bar contents are controlled by a menu keymap attached to a fake “function
key” called tool-bar (much like the way the menu bar is controlled). So you define a tool
bar item using define-key, like this:

(define-key global-map [tool-bar key] item)

where key is a fake “function key” to distinguish this item from other items, and item is
a menu item key binding (see Section 22.12.1.2 [Extended Menu Items|, page 344), which
says how to display this item and how it behaves.

The usual menu keymap item properties, :visible, :enable, :button, and :filter,
are useful in tool bar bindings and have their normal meanings. The real-binding in the
item must be a command, not a keymap; in other words, it does not work to define a tool
bar icon as a prefix key.

The :help property specifies a “help-echo” string to display while the mouse is on that
item. This is displayed in the same way as help-echo text properties (see [Help display],
page 570).

In addition, you should use the :image property; this is how you specify the image to
display in the tool bar:

:image image
images is either a single image specification or a vector of four image specifica-
tions. If you use a vector of four, one of them is used, depending on circum-

stances:

item 0 Used when the item is enabled and selected.
item 1 Used when the item is enabled and deselected.
item 2 Used when the item is disabled and selected.

item 3 Used when the item is disabled and deselected.

352 GNU Emacs Lisp Reference Manual

If image is a single image specification, Emacs draws the tool bar button in disabled
state by applying an edge-detection algorithm to the image.

The default tool bar is defined so that items specific to editing do not appear for major
modes whose command symbol has a mode-class property of special (see Section 23.1.1
[Major Mode Conventions|, page 356). Major modes may add items to the global bar by
binding [tool-bar foo] in their local map. It makes sense for some major modes to replace
the default tool bar items completely, since not many can be accommodated conveniently,
and the default bindings make this easy by using an indirection through tool-bar-map.

tool-bar-map Variable
By default, the global map binds [tool-bar] as follows:
(global-set-key [tool-bar]
> (menu-item "tool bar" ignore
:filter (lambda (ignore) tool-bar-map)))

Thus the tool bar map is derived dynamically from the value of variable tool-bar-
map and you should normally adjust the default (global) tool bar by changing that
map. Major modes may replace the global bar completely by making tool-bar-map
buffer-local and set to a keymap containing only the desired items. Info mode provides
an example.

There are two convenience functions for defining tool bar items, as follows.

tool-bar-add-item icon def key &rest props Function

This function adds an item to the tool bar by modifying tool-bar-map. The image
to use is defined by icon, which is the base name of an XPM, XBM or PBM image file
to located by find-image. Given a value ‘"exit"’, say, ‘exit.xpm’, ‘exit.pbm’ and
‘exit.xbm’ would be searched for in that order on a color display. On a monochrome
display, the search order is ‘.pbm’, ‘.xbm’ and ‘.xpm’. The binding to use is the
command def, and key is the fake function key symbol in the prefix keymap. The
remaining arguments props are additional property list elements to add to the menu
item specification.

To define items in some local map, bind ‘tool-bar-map with let around calls of this
function:

(defvar foo-tool-bar-map
(let ((tool-bar-map (make-sparse-keymap)))
(tool-bar-add-item ...)

tool-bar-map))

tool-bar-add-item-from-menu command icon &optional map &rest Function
props
This command is a convenience for defining tool bar items which are consistent with
existing menu bar bindings. The binding of command is looked up in the menu bar in
map (default global-map) and modified to add an image specification for icon, which
is looked for in the same way as by tool-bar-add-item. The resulting binding is
then placed in tool-bar-map. map must contain an appropriate keymap bound to

Chapter 22: Keymaps 353

[menu-bar]. The remaining arguments props are additional property list elements
to add to the menu item specification.

auto-resize-tool-bar Variable
If this variable is non-nil, the tool bar automatically resizes to show all defined tool
bar items—but not larger than a quarter of the frame’s height.

auto-raise-tool-bar-items Variable
If this variable is non-nil, tool bar items display in raised form when the mouse
moves over them.

tool-bar-item-margin Variable
This variable specifies an extra margin to add around tool bar items. The value is an
integer, a number of pixels. The default is 1.

tool-bar-item-relief Variable
This variable specifies the shadow width for tool bar items. The value is an integer,
a number of pixels. The default is 3.

You can define a special meaning for clicking on a tool bar item with the shift, control,
meta, etc., modifiers. You do this by setting up additional items that relate to the origi-
nal item through the fake function keys. Specifically, the additional items should use the
modified versions of the same fake function key used to name the original item.

Thus, if the original item was defined this way,

(define-key global-map [tool-bar shell]
> (menu-item "Shell" shell
:image (image :type xpm :file "shell.xpm")))

then here is how you can define clicking on the same tool bar image with the shift modifier:
(define-key global-map [tool-bar S-shell] ’some-command)

See Section 21.6.2 [Function Keys], page 298, for more information about how to add
modifiers to function keys.

22.12.7 Modifying Menus

When you insert a new item in an existing menu, you probably want to put it in a
particular place among the menu’s existing items. If you use define-key to add the item,
it normally goes at the front of the menu. To put it elsewhere in the menu, use define-
key-after:

354 GNU Emacs Lisp Reference Manual

define-key-after map key binding &optional after Function
Define a binding in map for key, with value binding, just like def ine-key, but position
the binding in map after the binding for the event after. The argument key should be
of length one—a vector or string with just one element. But after should be a single
event type—a symbol or a character, not a sequence. The new binding goes after the
binding for after. If after is t or is omitted, then the new binding goes last, at the
end of the keymap. However, new bindings are added before any inherited keymap.

Here is an example:

(define-key-after my-menu [drink]

> ("Drink" . drink-command) ’eat)
makes a binding for the fake function key and puts it right after the binding

for (EAT).

Here is how to insert an item called ‘Work’ in the ‘Signals’ menu of Shell mode, after
the item break:
(define-key-after

(lookup-key shell-mode-map [menu-bar signals])
[work] ’("Work" . work-command) ’break)

Chapter 23: Major and Minor Modes 355

23 Major and Minor Modes

A mode is a set of definitions that customize Emacs and can be turned on and off while
you edit. There are two varieties of modes: major modes, which are mutually exclusive
and used for editing particular kinds of text, and minor modes, which provide features that
users can enable individually.

This chapter describes how to write both major and minor modes, how to indicate them
in the mode line, and how they run hooks supplied by the user. For related topics such as
keymaps and syntax tables, see Chapter 22 [Keymaps|, page 325, and Chapter 35 [Syntax
Tables|, page 621.

23.1 Major Modes

Major modes specialize Emacs for editing particular kinds of text. Each buffer has only
one major mode at a time.

The least specialized major mode is called Fundamental mode. This mode has no mode-
specific definitions or variable settings, so each Emacs command behaves in its default
manner, and each option is in its default state. All other major modes redefine various
keys and options. For example, Lisp Interaction mode provides special key bindings for C-j
(eval-print-last-sexp), (lisp-indent-line), and other keys.

When you need to write several editing commands to help you perform a specialized
editing task, creating a new major mode is usually a good idea. In practice, writing a
major mode is easy (in contrast to writing a minor mode, which is often difficult).

If the new mode is similar to an old one, it is often unwise to modify the old one to
serve two purposes, since it may become harder to use and maintain. Instead, copy and
rename an existing major mode definition and alter the copy—or define a derived mode
(see Section 23.1.5 [Derived Modes|, page 364). For example, Rmail Edit mode, which is
in ‘emacs/lisp/mail/rmailedit.el’, is a major mode that is very similar to Text mode
except that it provides two additional commands. Its definition is distinct from that of Text
mode, but uses that of Text mode.

Even if the new mode is not an obvious derivative of any other mode, it can be conve-
nient to define it as a derivative of fundamental-mode, so that define-derived-mode can
automatically enforce the most important coding conventions for you.

Rmail Edit mode offers an example of changing the major mode temporarily for a buffer,
so it can be edited in a different way (with ordinary Emacs commands rather than Rmail
commands). In such cases, the temporary major mode usually provides a command to
switch back to the buffer’s usual mode (Rmail mode, in this case). You might be tempted
to present the temporary redefinitions inside a recursive edit and restore the usual ones
when the user exits; but this is a bad idea because it constrains the user’s options when
it is done in more than one buffer: recursive edits must be exited most-recently-entered
first. Using an alternative major mode avoids this limitation. See Section 21.12 [Recursive
Editing], page 319.

The standard GNU Emacs Lisp library directory tree contains the code for several major
modes, in files such as ‘text-mode.el’, ‘texinfo.el’, ‘lisp-mode.el’, ‘c-mode.el’, and
‘rmail.el’. They are found in various subdirectories of the ‘1isp’ directory. You can study

356 GNU Emacs Lisp Reference Manual

these libraries to see how modes are written. Text mode is perhaps the simplest major
mode aside from Fundamental mode. Rmail mode is a complicated and specialized mode.

23.1.1 Major Mode Conventions

The code for existing major modes follows various coding conventions, including con-
ventions for local keymap and syntax table initialization, global names, and hooks. Please
follow these conventions when you define a new major mode.

This list of conventions is only partial, because each major mode should aim for con-
sistency in general with other Emacs major modes. This makes Emacs as a whole more
coherent. It is impossible to list here all the possible points where this issue might come
up; if the Emacs developers point out an area where your major mode deviates from the
usual conventions, please make it compatible.

¢

e Define a command whose name ends in ‘-mode’, with no arguments, that switches to
the new mode in the current buffer. This command should set up the keymap, syntax
table, and buffer-local variables in an existing buffer, without changing the buffer’s
contents.

e Write a documentation string for this command that describes the special commands
available in this mode. C-h m (describe-mode) in your mode will display this string.

The documentation string may include the special documentation substrings, ‘\ [com-
mand]’, ‘\{keymap}’, and ‘\<keymap>’, which enable the documentation to adapt
automatically to the user’s own key bindings. See Section 24.3 [Keys in Documenta-
tion], page 390.

e The major mode command should start by calling kill-all-local-variables. This
is what gets rid of the buffer-local variables of the major mode previously in effect.

e The major mode command should set the variable major-mode to the major mode
command symbol. This is how describe-mode discovers which documentation to print.

e The major mode command should set the variable mode-name to the “pretty” name of
the mode, as a string. This string appears in the mode line.

e Since all global names are in the same name space, all the global variables, constants,
and functions that are part of the mode should have names that start with the major
mode name (or with an abbreviation of it if the name is long). See Section D.1 [Coding
Conventions|, page 765.

e In a major mode for editing some kind of structured text, such as a programming
language, indentation of text according to structure is probably useful. So the mode
should set indent-line-function to a suitable function, and probably customize other
variables for indentation.

e The major mode should usually have its own keymap, which is used as the local keymap
in all buffers in that mode. The major mode command should call use-local-map to
install this local map. See Section 22.6 [Active Keymaps], page 330, for more informa-
tion.

This keymap should be stored permanently in a global variable named modename-
mode-map. Normally the library that defines the mode sets this variable.

See Section 11.6 [Tips for Defining|, page 139, for advice about how to write the code
to set up the mode’s keymap variable.

Chapter 23: Major and Minor Modes 357

e The key sequences bound in a major mode keymap should usually start with C-c,
followed by a control character, a digit, or {, }, <, >, : or ;. The other punctuation
characters are reserved for minor modes, and ordinary letters are reserved for users.

It is reasonable for a major mode to rebind a key sequence with a standard meaning, if
it implements a command that does “the same job” in a way that fits the major mode
better. For example, a major mode for editing a programming language might redefine
C-M-a to “move to the beginning of a function” in a way that works better for that
language.

Major modes such as Dired or Rmail that do not allow self-insertion of text can rea-
sonably redefine letters and other printing characters as editing commands. Dired and
Rmail both do this.

e Major modes must not define to do anything other than insert a newline. The
command to insert a newline and then indent is C-j. Please keep this distinction
uniform for all major modes.

e Major modes should not alter options that are primary a matter of user preference, such
as whether Auto-Fill mode is enabled. Leave this to each user to decide. However, a
major mode should customize other variables so that Auto-Fill mode will work usefully
if the user decides to use it.

e The mode may have its own syntax table or may share one with other related modes. If
it has its own syntax table, it should store this in a variable named modename-mode-
syntax-table. See Chapter 35 [Syntax Tables|, page 621.

e If the mode handles a language that has a syntax for comments, it should set the
variables that define the comment syntax. See section “Options Controlling Comments”
in The GNU Emacs Manual.

e The mode may have its own abbrev table or may share one with other related modes.
If it has its own abbrev table, it should store this in a variable named modename-
mode-abbrev-table. See Section 36.2 [Abbrev Tables|, page 635.

e The mode should specify how to do highlighting for Font Lock mode, by setting up a
buffer-local value for the variable font-lock-defaults (see Section 23.5 [Font Lock
Mode], page 377).

e The mode should specify how Imenu should find the definitions or sections of a buffer, by
setting up a buffer-local value for the variable imenu-generic-expression or imenu-
create-index-function (see Section 23.4 [Imenu], page 375).

e Use defvar or defcustom to set mode-related variables, so that they are not reinitial-
ized if they already have a value. (Such reinitialization could discard customizations
made by the user.)

e To make a buffer-local binding for an Emacs customization variable, use make-local-
variable in the major mode command, not make-variable-buffer-local. The latter
function would make the variable local to every buffer in which it is subsequently set,
which would affect buffers that do not use this mode. It is undesirable for a mode to
have such global effects. See Section 11.10 [Buffer-Local Variables], page 146.

With rare exceptions, the only reasonable way to use make-variable-buffer-local
in a Lisp package is for a variable which is used only within that package. Using it on
a variable used by other packages would interfere with them.

358 GNU Emacs Lisp Reference Manual

e Each major mode should have a mode hook named modename-mode-hook. The major
mode command should run that hook, with run-hooks, as the very last thing it does.
See Section 23.6 [Hooks], page 383.

e The major mode command may also run the hooks of some more basic modes. For
example, indented-text-mode runs text-mode-hook as well as indented-text-mode-
hook. It may run these other hooks immediately before the mode’s own hook (that is,
after everything else), or it may run them earlier.

e If something special should be done if the user switches a buffer from this mode to any
other major mode, this mode can set up a buffer-local value for change-major-mode-
hook (see Section 11.10.2 [Creating Buffer-Local], page 148).

e If this mode is appropriate only for specially-prepared text, then the major mode
command symbol should have a property named mode-class with value special, put
on as follows:

(put ’funny-mode ’mode-class ’special)

This tells Emacs that new buffers created while the current buffer is in Funny mode
should not inherit Funny mode. Modes such as Dired, Rmail, and Buffer List use this
feature.

e If you want to make the new mode the default for files with certain recognizable names,
add an element to auto-mode-alist to select the mode for those file names. If you
define the mode command to autoload, you should add this element in the same file
that calls autoload. Otherwise, it is sufficient to add the element in the file that
contains the mode definition. See Section 23.1.3 [Auto Major Mode], page 361.

e In the documentation, you should provide a sample autoload form and an example
of how to add to auto-mode-alist, that users can include in their init files (see Sec-
tion 40.1.2 [Init File], page 722).

e The top-level forms in the file defining the mode should be written so that they may
be evaluated more than once without adverse consequences. Even if you never load the
file more than once, someone else will.

23.1.2 Major Mode Examples

Text mode is perhaps the simplest mode besides Fundamental mode. Here are excerpts
from ‘text-mode.el’ that illustrate many of the conventions listed above:

;3 Create mode-specific tables.
(defvar text-mode-syntax-table nil
"Syntax table used while in text mode.")

(if text-mode-syntax-table
O ; Do not change the table if it is already set up.
(setq text-mode-syntax-table (make-syntax-table))
(modify-syntax-entry 7\" ". " text-mode-syntax-table)
(modify-syntax-entry 7\\ ". " text-mode-syntax-table)
(modify-syntax-entry 7’ "w " text-mode-syntax-table))

(defvar text-mode-abbrev-table nil
"Abbrev table used while in text mode.")
(define-abbrev-table ’text-mode-abbrev-table ())

Chapter 23: Major and Minor Modes 359

(defvar text-mode-map nil ; Create a mode-specific keymap.

"Keymap for Text mode.
Many other modes, such as Mail mode, Outline mode and Indented Text mode,
inherit all the commands defined in this map.")

(if text-mode-map
O ; Do not change the keymap if it is already set up.
(setq text-mode-map (make-sparse-keymap))
(define-key text-mode-map "\e\t" ’ispell-complete-word)
(define-key text-mode-map "\t" ’indent-relative)
(define-key text-mode-map "\es" ’center-line)
(define-key text-mode-map "\eS" ’center-paragraph))

Here is the complete major mode function definition for Text mode:

(defun text-mode ()
"Major mode for editing text intended for humans to read...
Special commands: \\{text-mode-map}
Turning on text-mode runs the hook ‘text-mode-hook’."
(interactive)
(kill-all-local-variables)
(use-local-map text-mode-map)
(setq local-abbrev-table text-mode-abbrev-table)
(set-syntax-table text-mode-syntax-table)
(make-local-variable ’paragraph-start)
(setq paragraph-start (concat "[\t]l*$\\|" page-delimiter))
(make-local-variable ’paragraph-separate)
(setq paragraph-separate paragraph-start)
(make-local-variable ’indent-line-function)
(setq indent-line-function ’indent-relative-maybe)
(setq mode-name "Text")
(setq major-mode ’text-mode)
(run-hooks ’text-mode-hook)) ; Finally, this permits the user to
; customize the mode with a hook.

The three Lisp modes (Lisp mode, Emacs Lisp mode, and Lisp Interaction mode) have
more features than Text mode and the code is correspondingly more complicated. Here are
excerpts from ‘lisp-mode.el’ that illustrate how these modes are written.

; ;3 Create mode-specific table variables.

(defvar lisp-mode-syntax-table nil "")
(defvar emacs-lisp-mode-syntax-table nil "")
(defvar lisp-mode-abbrev-table nil "")

(if (not emacs-lisp-mode-syntax-table) ; Do not change the table
; if it is already set.
(let ((i 0))
(setq emacs-lisp-mode-syntax-table (make-syntax-table))

360 GNU Emacs Lisp Reference Manual

;5 Set syntax of chars up to 0 to class of chars that are

3 part of symbol names but not words.

s (The number 0 is 48 in the ASCII character set.)

(while (< i ?0)
(modify-syntax-entry i "_ " emacs-lisp-mode-syntax-table)
(setq i (1+ 1)))

;3 Set the syntax for other characters.

(modify-syntax-entry 7 " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry 7\t " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\("() " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\) ")(" emacs-lisp-mode-syntax-table)
c))

;; Create an abbrev table for lisp-mode.
(define-abbrev-table ’lisp-mode-abbrev-table ())
Much code is shared among the three Lisp modes. The following function sets various
variables; it is called by each of the major Lisp mode functions:

(defun lisp-mode-variables (lisp-syntax)
(cond (lisp-syntax
(set-syntax-table lisp-mode-syntax-table)))
(setq local-abbrev-table lisp-mode-abbrev-table)

Functions such as forward-paragraph use the value of the paragraph-start variable.
Since Lisp code is different from ordinary text, the paragraph-start variable needs to be
set specially to handle Lisp. Also, comments are indented in a special fashion in Lisp and
the Lisp modes need their own mode-specific comment-indent-function. The code to set
these variables is the rest of lisp-mode-variables.

(make-local-variable ’paragraph-start)

(setq paragraph-start (concat page-delimiter "\\[$"))
(make-local-variable ’paragraph-separate)

(setq paragraph-separate paragraph-start)

(make-local-variable ’comment-indent-function)
(setq comment-indent-function ’lisp-comment-indent))

Each of the different Lisp modes has a slightly different keymap. For example, Lisp mode
binds C-c C-z to run-1lisp, but the other Lisp modes do not. However, all Lisp modes have
some commands in common. The following code sets up the common commands:

(defvar shared-lisp-mode-map ()
"Keymap for commands shared by all sorts of Lisp modes.")

(if shared-lisp-mode-map
O
(setq shared-lisp-mode-map (make-sparse-keymap))
(define-key shared-lisp-mode-map "\e\C-q" ’indent-sexp)
(define-key shared-lisp-mode-map "\177"
’backward-delete-char-untabify))

Chapter 23: Major and Minor Modes 361

And here is the code to set up the keymap for Lisp mode:

(defvar lisp-mode-map ()
"Keymap for ordinary Lisp mode...")

(if lisp-mode-map
O
(setq lisp-mode-map (make-sparse-keymap))
(set-keymap-parent lisp-mode-map shared-lisp-mode-map)
(define-key lisp-mode-map "\e\C-x" ’lisp-eval-defun)
(define-key lisp-mode-map "\C-c\C-z" ’run-lisp))

Finally, here is the complete major mode function definition for Lisp mode.

(defun lisp-mode ()

"Major mode for editing Lisp code for Lisps other than GNU Emacs Lisp.
Commands :
Delete converts tabs to spaces as it moves back.
Blank lines separate paragraphs. Semicolons start comments.
\\{1lisp-mode-map}
Note that ‘run-lisp’ may be used either to start an inferior Lisp job
or to switch back to an existing one.

Entry to this mode calls the value of ‘lisp-mode-hook’
if that value is non-nil."

(interactive)

(kill-all-local-variables)

(use-local-map lisp-mode-map) ; Select the mode’s keymap.

(setq major-mode ’lisp-mode) ; This is how describe-mode
; finds out what to describe.

(setq mode-name "Lisp") ; This goes into the mode line.

(lisp-mode-variables t) ; This defines various variables

(setq imenu-case-fold-search t)

(set-syntax-table lisp-mode-syntax-table)

(run-hooks ’lisp-mode-hook)) ; This permits the user to use a
; hook to customize the mode.

23.1.3 How Emacs Chooses a Major Mode

Based on information in the file name or in the file itself, Emacs automatically selects
a major mode for the new buffer when a file is visited. It also processes local variables
specified in the file text.

fundamental-mode Command
Fundamental mode is a major mode that is not specialized for anything in particular.
Other major modes are defined in effect by comparison with this one—their defini-
tions say what to change, starting from Fundamental mode. The fundamental-mode
function does not run any hooks; you're not supposed to customize it. (If you want
Emacs to behave differently in Fundamental mode, change the global state of Emacs.)

362 GNU Emacs Lisp Reference Manual

normal-mode &optional find-file Command
This function establishes the proper major mode and buffer-local variable bindings for
the current buffer. First it calls set-auto-mode, then it runs hack-local-variables
to parse, and bind or evaluate as appropriate, the file’s local variables.

If the find-file argument to normal-mode is non-nil, normal-mode assumes that the
find-file function is calling it. In this case, it may process a local variables list
at the end of the file and in the ‘-*-’ line. The variable enable-local-variables
controls whether to do so. See section “Local Variables in Files” in The GNU Emacs
Manual, for the syntax of the local variables section of a file.

If you run normal-mode interactively, the argument find-file is normally nil. In this
case, normal-mode unconditionally processes any local variables list.

normal-mode uses condition-case around the call to the major mode function, so
errors are caught and reported as a ‘File mode specification error’, followed by
the original error message.

set-auto-mode Function
This function selects the major mode that is appropriate for the current buffer. It
may base its decision on the value of the ‘—*-’ line, on the visited file name (using
auto-mode-alist), on the ‘#!’ line (using interpreter-mode-alist), or on the file’s
local variables list. However, this function does not look for the ‘mode:’ local variable
near the end of a file; the hack-local-variables function does that. See section
“How Major Modes are Chosen” in The GNU Emacs Manual.

default-major-mode User Option
This variable holds the default major mode for new buffers. The standard value is
fundamental-mode.

If the value of default-major-mode is nil, Emacs uses the (previously) current
buffer’s major mode for the major mode of a new buffer. However, if that major
mode symbol has a mode-class property with value special, then it is not used for
new buffers; Fundamental mode is used instead. The modes that have this property
are those such as Dired and Rmail that are useful only with text that has been
specially prepared.

set-buffer-major-mode buffer Function
This function sets the major mode of buffer to the value of default-major-mode. If
that variable is nil, it uses the current buffer’s major mode (if that is suitable).

The low-level primitives for creating buffers do not use this function, but medium-
level commands such as switch-to-buffer and find-file-noselect use it whenever
they create buffers.

initial-major-mode Variable
The value of this variable determines the major mode of the initial ‘*scratch#*’ buffer.
The value should be a symbol that is a major mode command. The default value is
lisp-interaction-mode.

Chapter 23: Major and Minor Modes 363

auto-mode-alist Variable
This variable contains an association list of file name patterns (regular expressions;
see Section 34.2 [Regular Expressions], page 602) and corresponding major mode
commands. Usually, the file name patterns test for suffixes, such as ‘.el” and ‘.c’,
but this need not be the case. An ordinary element of the alist looks like (regexp .
mode-function) .

For example,

(("\\“/tmp/fol/" . text-mode)

("\\.texinfo\\’" . texinfo-mode)
("\\.texi\\’" . texinfo-mode)
("\\.el\\’" . emacs-lisp-mode)

("\\.c\\"" . c-mode)
("\\.h\\’" . c-mode)
)

When you visit a file whose expanded file name (see Section 25.8.4 [File Name Ex-
pansion|, page 417) matches a regexp, set-auto-mode calls the corresponding mode-
function. This feature enables Emacs to select the proper major mode for most files.

If an element of auto-mode-alist has the form (regexp function t), then after calling
function, Emacs searches auto-mode-alist again for a match against the portion of
the file name that did not match before. This feature is useful for uncompression
packages: an entry of the form ("\\.gz\\’" function t) can uncompress the file and
then put the uncompressed file in the proper mode according to the name sans ‘.gz’.

Here is an example of how to prepend several pattern pairs to auto-mode-alist.
(You might use this sort of expression in your init file.)

(setq auto-mode-alist
(append
;; File name (within directory) starts with a dot.
»(C"/N\\N.[T/1*%\\’" . fundamental-mode)
;; File name has no dot.
("["\\./1+\\’" . fundamental-mode)
;3 File name ends in ‘.C’.
("\\.C\\"" . c++-mode))
auto-mode-alist))

interpreter-mode-alist Variable
This variable specifies major modes to use for scripts that specify a command inter-
preter in a ‘#!’ line. Its value is a list of elements of the form (interpreter . mode);
for example, ("perl" . perl-mode) is one element present by default. The element
says to use mode mode if the file specifies an interpreter which matches interpreter.
The value of interpreter is actually a regular expression.

This variable is applicable only when the auto-mode-alist does not indicate which
major mode to use.

364 GNU Emacs Lisp Reference Manual

23.1.4 Getting Help about a Major Mode

The describe-mode function is used to provide information about major modes. It is
normally called with C-h m. The describe-mode function uses the value of major-mode,
which is why every major mode function needs to set the major-mode variable.

describe-mode Command
This function displays the documentation of the current major mode.

The describe-mode function calls the documentation function using the value of
major-mode as an argument. Thus, it displays the documentation string of the major
mode function. (See Section 24.2 [Accessing Documentation], page 388.)

major-mode Variable
This variable holds the symbol for the current buffer’s major mode. This symbol
should have a function definition that is the command to switch to that major mode.
The describe-mode function uses the documentation string of the function as the
documentation of the major mode.

23.1.5 Defining Derived Modes

It’s often useful to define a new major mode in terms of an existing one. An easy way
to do this is to use define-derived-mode.

define-derived-mode variant parent name docstring body. . . Macro
This construct defines variant as a major mode command, using name as the string
form of the mode name.

The new command variant is defined to call the function parent, then override certain
aspects of that parent mode:

e The new mode has its own keymap, named variant-map. define-derived-mode
initializes this map to inherit from parent-map, if it is not already set.

e The new mode has its own syntax table, kept in the variable variant-
syntax-table. define-derived-mode initializes this variable by copying
parent-syntax-table, if it is not already set.

e The new mode has its own abbrev table, kept in the variable variant-
abbrev-table. define-derived-mode initializes this variable by copying
parent-abbrev-table, if it is not already set.

e The new mode has its own mode hook, variant-hook, which it runs in standard
fashion as the very last thing that it does. (The new mode also runs the mode
hook of parent as part of calling parent.)

In addition, you can specify how to override other aspects of parent with body. The
command variant evaluates the forms in body after setting up all its usual overrides,
just before running variant-hook.

The argument docstring specifies the documentation string for the new mode. If you
omit docstring, define-derived-mode generates a documentation string.

Here is a hypothetical example:

Chapter 23: Major and Minor Modes 365

(define-derived-mode hypertext-mode
text-mode "Hypertext"
"Major mode for hypertext.
\\{hypertext-mode-mapl}"
(setq case-fold-search nil))

(define-key hypertext-mode-map
[down-mouse-3] ’do-hyper-1link)

Do not write an interactive spec in the definition; define-derived-mode does that
automatically.

23.2 Minor Modes

A minor mode provides features that users may enable or disable independently of the
choice of major mode. Minor modes can be enabled individually or in combination. Minor
modes would be better named “generally available, optional feature modes,” except that
such a name would be unwieldy.

A minor mode is not usually meant as a variation of a single major mode. Usually
they are general and can apply to many major modes. For example, Auto Fill mode works
with any major mode that permits text insertion. To be general, a minor mode must be
effectively independent of the things major modes do.

A minor mode is often much more difficult to implement than a major mode. One reason
is that you should be able to activate and deactivate minor modes in any order. A minor
mode should be able to have its desired effect regardless of the major mode and regardless
of the other minor modes in effect.

Often the biggest problem in implementing a minor mode is finding a way to insert the
necessary hook into the rest of Emacs. Minor mode keymaps make this easier than it used
to be.

23.2.1 Conventions for Writing Minor Modes

There are conventions for writing minor modes just as there are for major modes. Several
of the major mode conventions apply to minor modes as well: those regarding the name of
the mode initialization function, the names of global symbols, and the use of keymaps and
other tables.

In addition, there are several conventions that are specific to minor modes.

e Make a variable whose name ends in ‘-mode’ to control the minor mode. We call this
the mode variable. The minor mode command should set this variable (nil to disable;
anything else to enable).

If possible, implement the mode so that setting the variable automatically enables or
disables the mode. Then the minor mode command does not need to do anything
except set the variable.

This variable is used in conjunction with the minor-mode-alist to display the minor
mode name in the mode line. It can also enable or disable a minor mode keymap.
Individual commands or hooks can also check the variable’s value.

366 GNU Emacs Lisp Reference Manual

If you want the minor mode to be enabled separately in each buffer, make the variable
buffer-local.

e Define a command whose name is the same as the mode variable. Its job is to enable
and disable the mode by setting the variable.

The command should accept one optional argument. If the argument is nil, it should
toggle the mode (turn it on if it is off, and off if it is on). Otherwise, it should turn the
mode on if the argument is a positive integer, a symbol other than nil or -, or a list
whose CAR is such an integer or symbol; it should turn the mode off otherwise.

Here is an example taken from the definition of transient-mark-mode. It shows the
use of transient-mark-mode as a variable that enables or disables the mode’s behavior,
and also shows the proper way to toggle, enable or disable the minor mode based on
the raw prefix argument value.

(setq transient-mark-mode
(if (null arg) (not transient-mark-mode)
(> (prefix-numeric-value arg) 0)))

e Add an element to minor-mode-alist for each minor mode (see Section 23.3.2 [Mode
Line Variables|, page 371), if you want to indicate the minor mode in the mode line.
This element should be a list of the following form:

(mode-variable string)

Here mode-variable is the variable that controls enabling of the minor mode, and string
is a short string, starting with a space, to represent the mode in the mode line. These
strings must be short so that there is room for several of them at once.

When you add an element to minor-mode-alist, use assq to check for an existing
element, to avoid duplication. For example:

(unless (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist)))

or like this, using add-to-1list (see Section 11.8 [Setting Variables|, page 142):

(add-to-list ’minor-mode-alist ’(leif-mode " Leif"))

Global minor modes distributed with Emacs should if possible support enabling and
disabling via Custom (see Chapter 14 [Customization|, page 179). To do this, the first step
is to define the mode variable with defcustom, and specify :type boolean.

If just setting the variable is not sufficient to enable the mode, you should also specify a
:set method which enables the mode by invoke the mode command. Note in the variable’s
documentation string that setting the variable other than via Custom may not take effect.

Also mark the definition with an autoload cookie (see Section 15.4 [Autoload], page 197),
and specify a :require so that customizing the variable will load the library that defines
the mode. This will copy suitable definitions into ‘loaddefs.el’ so that users can use
customize-option to enable the mode. For example:

Chapter 23: Major and Minor Modes 367

;5 s ###tautoload
(defcustom msb-mode nil
"Toggle msb-mode.
Setting this variable directly does not take effect;
use either \\[customize] or the function ‘msb-mode’."
:set (lambda (symbol value)
(msb-mode (or value 0)))
:initialize ’custom-initialize-default
:version "20.4"
:type ’boolean
:group ’msb
:require ’msb)

23.2.2 Keymaps and Minor Modes

Each minor mode can have its own keymap, which is active when the mode is enabled.
To set up a keymap for a minor mode, add an element to the alist minor-mode-map-alist.
See Section 22.6 [Active Keymaps], page 330.

One use of minor mode keymaps is to modify the behavior of certain self-inserting
characters so that they do something else as well as self-insert. In general, this is the only
way to do that, since the facilities for customizing self-insert-command are limited to
special cases (designed for abbrevs and Auto Fill mode). (Do not try substituting your
own definition of self-insert-command for the standard one. The editor command loop
handles this function specially.)

The key sequences bound in a minor mode should consist of C-c followed by a punc-
tuation character other than {, }, <, >, :, and ;. (Those few punctuation characters are
reserved for major modes.)

23.2.3 Defining Minor Modes

The macro define-minor-mode offers a convenient way of implementing a mode in one
self-contained definition. It supports only buffer-local minor modes, not global ones.

define-minor-mode mode doc &optional init-value mode-indicator Macro
keymap body...
This macro defines a new minor mode whose name is mode (a symbol). It defines
a command named mode to toggle the minor mode, with doc as its documentation
string. It also defines a variable named mode, which is set to t or nil by enabling or
disabling the mode. The variable is initialized to init-value.

The command named mode finishes by executing the body forms, if any, after it has
performed the standard actions such as setting the variable named mode.

The string mode-indicator says what to display in the mode line when the mode is
enabled; if it is nil, the mode is not displayed in the mode line.

The optional argument keymap specifies the keymap for the minor mode. It can be
a variable name, whose value is the keymap, or it can be an alist specifying bindings
in this form:

368 GNU Emacs Lisp Reference Manual

(key-sequence . definition)

Here is an example of using define-minor-mode:

(define-minor-mode hungry-mode
"Toggle Hungry mode.
With no argument, this command toggles the mode.
Non-null prefix argument turns on the mode.
Null prefix argument turns off the mode.

When Hungry mode is enabled, the control delete key
gobbles all preceding whitespace except the last.
See the command \\[hungry-electric-delete]."
;; The initial value.
nil
;3 The indicator for the mode line.
n Hungry n
;3 The minor mode bindings.
>(("\C-\"7" . hungry-electric-delete)
(n\c_\M_\A?u
(lambda ()
(interactive)
(hungry-electric-delete t)))))

This defines a minor mode named “Hungry mode”, a command named hungry-mode to
toggle it, a variable named hungry-mode which indicates whether the mode is enabled, and

a variable named hungry-mode-map which holds the keymap that is active when the mode
is enabled. It initializes the keymap with key bindings for C-(DEL) and C-M-(DEL).

The name easy-mmode-define-minor-mode is an alias for this macro.

23.3 Mode Line Format

Each Emacs window (aside from minibuffer windows) typically has a mode line at the
bottom, which displays status information about the buffer displayed in the window. The
mode line contains information about the buffer, such as its name, associated file, depth
of recursive editing, and major and minor modes. A window can also have a header line,
which is much like the mode line but appears at the top of the window (starting in Emacs
21).

This section describes how to control the contents of the mode line and header line. We
include it in this chapter because much of the information displayed in the mode line relates
to the enabled major and minor modes.

mode-line-format is a buffer-local variable that holds a template used to display the
mode line of the current buffer. All windows for the same buffer use the same mode-line-
format, so their mode lines appear the same—except for scrolling percentages, and line
and column numbers, since those depend on point and on how the window is scrolled.
header-line-format is used likewise for header lines.

The mode line and header line of a window are normally updated whenever a different
buffer is shown in the window, or when the buffer’s modified-status changes from nil to
t or vice-versa. If you modify any of the variables referenced by mode-line-format (see

Chapter 23: Major and Minor Modes 369

Section 23.3.2 [Mode Line Variables], page 371), or any other variables and data structures
that affect how text is displayed (see Chapter 38 [Display], page 661), you may want to
force an update of the mode line so as to display the new information or display it in the
new way.

force-mode-line-update Function
Force redisplay of the current buffer’s mode line and header line.

The mode line is usually displayed in inverse video; see mode-line-inverse-video in
Section 38.15 [Inverse Video|, page 702.

23.3.1 The Data Structure of the Mode Line

The mode line contents are controlled by a data structure of lists, strings, symbols, and
numbers kept in buffer-local variables. The data structure is called a mode line construct,
and it is built in recursive fashion out of simpler mode line constructs. The same data
structure is used for constructing frame titles (see Section 29.4 [Frame Titles|, page 492)
and header lines (see Section 23.3.5 [Header Lines|, page 375).

mode-line-format Variable
The value of this variable is a mode line construct with overall responsibility for the
mode line format. The value of this variable controls which other variables are used
to form the mode line text, and where they appear.

If you set this variable to nil in a buffer, that buffer does not have a mode line. (This
feature was added in Emacs 21.)

A mode line construct may be as simple as a fixed string of text, but it usually specifies
how to use other variables to construct the text. Many of these variables are themselves
defined to have mode line constructs as their values.

The default value of mode-line-format incorporates the values of variables such as
mode-name and minor-mode-alist. Because of this, very few modes need to alter mode-
line-format itself. For most purposes, it is sufficient to alter some of the variables that
mode-line-format refers to.

A mode line construct may be a list, a symbol, or a string. If the value is a list, each
element may be a list, a symbol, or a string.

The mode line can display various faces, if the strings that control it have the face
property. See Section 23.3.4 [Properties in Mode], page 374. In addition, the face mode-
line is used as a default for the whole mode line (see Section 38.11.1 [Standard Faces],
page 678).

string A string as a mode line construct is displayed verbatim in the mode line ex-
cept for %-constructs. Decimal digits after the ‘%’ specify the field width for
space filling on the right (i.e., the data is left justified). See Section 23.3.3
[%-Constructs|, page 373.

symbol A symbol as a mode line construct stands for its value. The value of symbol is
used as a mode line construct, in place of symbol. However, the symbols t and
nil are ignored, as is any symbol whose value is void.

370 GNU Emacs Lisp Reference Manual

There is one exception: if the value of symbol is a string, it is displayed verba-
tim: the %-constructs are not recognized.

(string rest...) or (list rest...)
A list whose first element is a string or list means to process all the elements
recursively and concatenate the results. This is the most common form of mode
line construct.

(:eval form)
A list whose first element is the symbol :eval says to evaluate form, and use
the result as a string to display. (This feature is new as of Emacs 21.)

(symbol then else)
A list whose first element is a symbol that is not a keyword specifies a condi-
tional. Its meaning depends on the value of symbol. If the value is non-nil,
the second element, then, is processed